亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        AM真菌物種多樣性:生態(tài)功能、影響因素及維持機(jī)制

        2016-07-21 01:22:27楊海水熊艷琴戴亞軍許明敏
        生態(tài)學(xué)報(bào) 2016年10期

        楊海水, 熊艷琴, 王 琪, 郭 伊, 戴亞軍, 許明敏

        南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 南京 210095

        ?

        AM真菌物種多樣性:生態(tài)功能、影響因素及維持機(jī)制

        楊海水*, 熊艷琴, 王琪, 郭伊, 戴亞軍, 許明敏

        南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 南京210095

        摘要:AM真菌物種多樣性是土壤生態(tài)系統(tǒng)生物多樣性的重要組分之一。盡管對(duì)AM真菌多樣性已有多年研究,但是,已有研究絕大多數(shù)僅停留在對(duì)AM真菌群落種屬解析層面上,對(duì)AM真菌物種多樣性生態(tài)功能及維持機(jī)制方面的認(rèn)識(shí)較淺。從生態(tài)功能、影響因素及維持機(jī)制3個(gè)方面系統(tǒng)地綜述了近年來(lái)AM真菌多樣性領(lǐng)域的研究進(jìn)展。認(rèn)為AM真菌多樣性對(duì)植物群落生產(chǎn)力的調(diào)控機(jī)制及結(jié)合理論與實(shí)踐解析AM真菌多樣性維持機(jī)制是該領(lǐng)域未來(lái)的重點(diǎn)研究方向。

        關(guān)鍵詞:叢枝菌根真菌;多樣性;生態(tài)功能;生態(tài)位;中性過(guò)程

        叢枝菌根 (arbuscular mycorrhiza, AM) 真菌是一類分布廣泛、異常豐富的土壤微生物[1]。AM真菌隸屬于球囊菌門 (Glomeromycota),能與80%以上的陸生植物根系形成共生關(guān)系[2]。在這一共生關(guān)系中,寄主植物為AM真菌提供碳源,而AM真菌為其寄主提供礦質(zhì)養(yǎng)分。與此同時(shí),還能促進(jìn)寄主抵御環(huán)境脅迫。幾乎所有陸地生境均有AM真菌分布,除了森林、農(nóng)田及草地等常見(jiàn)生境之外,甚至一些極端生境中依然有AM真菌存在,包括沙漠、濕地、極地、高寒草甸及紅樹(shù)林生態(tài)系統(tǒng)等[3]。這表明,AM真菌具有豐富的物種多樣性。劉潤(rùn)進(jìn) 等[4]已對(duì)2010年之前不同生態(tài)系統(tǒng)中AM真菌多樣性的研究狀況進(jìn)行了詳細(xì)的綜述分析。近年來(lái),AM真菌物種多樣性研究領(lǐng)域取得了諸多開(kāi)創(chuàng)性成果,尤其在AM真菌物種多樣性的生態(tài)功能和維持機(jī)制方面。針對(duì)AM真菌的物種多樣性,本文分別從生態(tài)功能、影響因素及形成機(jī)制三個(gè)方面進(jìn)行分析,旨在為AM真菌多樣性的未來(lái)研究方向提供參考依據(jù)。

        1 AM真菌物種多樣性的生態(tài)功能

        1.1促進(jìn)植物群落多樣性

        研究發(fā)現(xiàn),AM真菌物種多樣性能夠促進(jìn)植物群落的物種多樣性。van der Heijden 等[5]發(fā)現(xiàn),AM真菌多樣性是維持植物群落多樣性的重要決定因子之一。在北美棄荒地草地生態(tài)系統(tǒng),植物群落多樣性與AM真菌物種豐度顯著正相關(guān)。然而,這一現(xiàn)象背后的潛在機(jī)制并清楚。Urcelay和Diaz[6]對(duì)此提出了理論假設(shè),認(rèn)為這一現(xiàn)象是由植物的菌根依賴性決定。如果優(yōu)勢(shì)種的菌根依賴性較高,AM真菌促進(jìn)優(yōu)勢(shì)種群進(jìn)一步增加而降低植物群落多樣性;如果從屬種的菌根依賴性較高,AM真菌則增加植物群落多樣性。而在此之前,O′Connor等[7]已經(jīng)通過(guò)實(shí)驗(yàn)證實(shí),在草地群落中,施加苯菌靈抑制菌根活性后,菌根依賴性較高的Medicagominima數(shù)量降低,菌根依賴性較低的Salviaverbenaca數(shù)量增加,而對(duì)非菌根植物Carrichteraannua無(wú)影響?;谇叭搜芯?,在特定環(huán)境中,一種植物對(duì)某些AM真菌具有一定的偏好性[8- 9]??梢詫?duì)Urcelay和Diaz 的理論假設(shè)進(jìn)一步擴(kuò)展。隨著AM真菌物種多樣性增加,植物群落的從屬種遇到各自偏好的AM真菌的可能性增大,從而擴(kuò)大各自的種群,進(jìn)而增加整個(gè)植物群落的多樣性。Bever[8]將AM真菌的多樣性與寄主植物多樣性的關(guān)系歸因于正、負(fù)反饋。如果AM真菌與某種植物正反饋互作,則促進(jìn)該種植物的生長(zhǎng)而降低植物群落多樣性;反之,如果為負(fù)反饋,則促進(jìn)不同植物的共存而增加植物的多樣性。針對(duì)Bever的“負(fù)反饋促進(jìn)寄主植物共存”的理論,因此,這可能是由寄主植物選擇特異的AM真菌群落引起[10]。Vandenkoornhuyse等[9]發(fā)現(xiàn),共存植物根內(nèi)AM真菌群落組成是完全不同的。兩組不同的AM真菌群落,可能會(huì)利用完全不同的土壤空間資源,從而造成兩種寄主植物的資源生態(tài)位分化。這種菌根介導(dǎo)的生態(tài)位分化減少了寄主植物間的資源競(jìng)爭(zhēng),從而促進(jìn)了互惠共存。因此,隨著AM真菌物種多樣性增加,植物群落從屬種構(gòu)建與之共生的特異性AM真菌群落的可能性增加,從而降低植物間的競(jìng)爭(zhēng),促進(jìn)植物種間共存,增加物種多樣性。

        1.2增加植物群落穩(wěn)定性

        研究發(fā)現(xiàn),AM真菌多樣性對(duì)植物群落的穩(wěn)定性起著重要作用。van der Heijden等[5]研究了AM真菌多樣性對(duì)歐洲鈣質(zhì)草地群落穩(wěn)定性的影響,發(fā)現(xiàn),當(dāng)AM真菌多樣性較低時(shí),只要AM真菌菌種發(fā)生變化,植物群落的結(jié)構(gòu)和組成就會(huì)發(fā)生劇烈變動(dòng)。然而,隨著AM真菌物種多樣性增加,菌種變化導(dǎo)致的植物群落不穩(wěn)定性逐漸消失。我們認(rèn)為,造成植物群落穩(wěn)定性變異的現(xiàn)象可能是由植物的菌根依賴性和AM真菌的功能冗余決定[6,11]。在AM真菌物種多樣性較低時(shí),兩種真菌具有相似功能的可能性較低。當(dāng)AM真菌組成發(fā)生變化時(shí),如前所述,對(duì)特定AM真菌具有較強(qiáng)依賴性的植物群落從屬種種群必然發(fā)生變化。然而,在高AM真菌物種多樣性條件下,不同種AM真菌出現(xiàn)功能冗余的現(xiàn)象可能發(fā)生。當(dāng)植物群落缺失某種或幾種AM真菌時(shí),具有相似功能的其他種AM真菌可以進(jìn)行功能替代。從整個(gè)植物群落來(lái)看,其物種組成并不受到影響。Wagg等[12]發(fā)現(xiàn),AM真菌多樣性可以減輕豆科植物和草本植物之間的競(jìng)爭(zhēng),從而促進(jìn)群落的穩(wěn)定。這一現(xiàn)象可以從菌根介導(dǎo)的資源生態(tài)位分化進(jìn)行解釋。豆科與草本植物的根際環(huán)境差異很大,在AM真菌多樣性較高的接種條件下,這可能導(dǎo)致二者選擇不同的AM真菌群落與之共生。不同AM真菌群落將會(huì)利用不同的土壤資源,從而減少兩者之間的競(jìng)爭(zhēng)而穩(wěn)定群落。此外,葉少萍等[13]發(fā)現(xiàn),接種AM真菌的狗牙根在刈割之后,具有較快的生長(zhǎng)速率。這表明,即使受到干擾,在AM真菌物種多樣性較高時(shí),植物群落也能夠很快恢復(fù)穩(wěn)定。

        1.3提高植物群落生產(chǎn)力

        AM真菌多樣性最重要的生態(tài)功能之一就是其能夠提高植物系統(tǒng)的生產(chǎn)力。van der Heijden等[5]和Vogelsang等[14]分別發(fā)現(xiàn),植物群落的生產(chǎn)力隨著AM真菌物種多樣性增加而升高。對(duì)這一現(xiàn)象的潛在機(jī)制,目前,學(xué)術(shù)界存在較大爭(zhēng)議,互補(bǔ)效應(yīng) (complementary effect) 和選擇效應(yīng) (select effect) 均可對(duì)此現(xiàn)象作出解釋?!盎パa(bǔ)效應(yīng)”學(xué)派以Koide為代表,認(rèn)為,不同的AM真菌具有不同功能,隨著AM真菌物種多樣性增加,與之相應(yīng)的功能多樣性也增加,通過(guò)“功能互補(bǔ)”,使植物群落的生產(chǎn)力增加。van der Heijden等[5]認(rèn)為,AM真菌多樣性越高,其根外菌絲網(wǎng)絡(luò)越廣闊,能更充分地利用土壤中的養(yǎng)分。Jansa等[15]通過(guò)定量PCR技術(shù),發(fā)現(xiàn),雙接種AM真菌 (Glomusintraradices和G.etunicatum),韭菜的P含量顯著高于任何一種單接種AM真菌處理,從而精確證實(shí)了“功能互補(bǔ)”假說(shuō)。然而,“選擇效應(yīng)”學(xué)派,以Wardle 為代表,認(rèn)為,隨著AM真菌物種多樣性增加,植物群落遇到高效AM真菌(super fungus)的可能性增加,從而總的系統(tǒng)生產(chǎn)力也隨之增加[16]。Vogelsang等[14]發(fā)現(xiàn),相對(duì)于單種AM真菌效應(yīng),互補(bǔ)效應(yīng)要小得多,因此認(rèn)為,AM真菌多樣新促進(jìn)植物生產(chǎn)力增加的現(xiàn)象可能是由某一“超級(jí)”AM真菌引起。為了整合兩大學(xué)派的爭(zhēng)議,Wagg等[17]通過(guò)詳盡的實(shí)驗(yàn)證實(shí),“互補(bǔ)效應(yīng)”在較為貧瘠的土壤中占主導(dǎo)地位,而“選擇效應(yīng)”在肥沃土壤中占主導(dǎo)地位。

        2AM真菌物種多樣性的影響因素

        2.1寄主植物對(duì)AM真菌多樣性的影響

        由于AM真菌為植物根系共生微生物,近年來(lái),寄主植物對(duì)AM真菌多樣性的影響越來(lái)越受關(guān)注。在一定程度上,寄主植物多樣性決定著AM真菌多樣性[4]。研究發(fā)現(xiàn),寄主對(duì)AM真菌多樣性的影響可以發(fā)生在不同分類水平上。在基因型或生態(tài)型水平上,郭紹霞和劉潤(rùn)進(jìn)[18]研究了不同品種牡丹根際AM真菌孢子群落,發(fā)現(xiàn),AM真菌種屬組成隨牡丹品種不同而不同。Schechter和Bruns[19]研究了蛇紋巖和非蛇紋巖生態(tài)型Collinsiasparsiflora根內(nèi)AM真菌群落,發(fā)現(xiàn),不同生態(tài)型寄主根內(nèi)AM真菌群落完全不同。在物種水平上,不同種寄主植物生理代謝、根系內(nèi)環(huán)境及分泌物不同,必然會(huì)影響AM真菌的侵染策略,從而改變其群落組成[20- 21]。大量研究表明,同一生境共存的植物,其根內(nèi)具有明顯不同的AM真菌群落,包括熱帶森林[22]、溫帶草地[9]、溫帶橡樹(shù)林[23]、半干旱海岸沙丘[24]、高山草甸[25]、干熱河谷[26]和農(nóng)田[27]。在屬水平上,Lemanceau等[28]研究了4種Medicago屬植物,發(fā)現(xiàn),其根內(nèi)AM真菌群落組成也是完全不同。目前,在植物群落水平上,AM真菌多樣性也受到了廣泛關(guān)注。Johnson等[29]發(fā)現(xiàn),植物群落組成會(huì)顯著影響AM真菌的多樣性。B?rstler等[30]研究了高山草甸AM真菌群落,發(fā)現(xiàn),其多樣性變化與地上植物多樣性顯著相關(guān)。Hausmann和Hawkes[31- 32]發(fā)現(xiàn),鄰體植物及建植次序均會(huì)影響AM真菌群落組成及多樣性。Alguacil等[33]研究發(fā)現(xiàn),灌叢群落復(fù)雜性調(diào)控著AM真菌的多樣性。van de Voorde等[34]報(bào)道,植物群落構(gòu)建歷史也會(huì)影響AM真菌的群落組成和多樣性。

        2.2環(huán)境條件對(duì)AM真菌多樣性的影響

        土壤及氣候顯著影響AM真菌群落組成和多樣性[4]。在稀樹(shù)草原,Landis等[35]發(fā)現(xiàn),AM真菌多樣性與土壤類型和養(yǎng)分含量顯著相關(guān),N含量高的土壤,AM真菌物種豐富度較高;這一結(jié)果與Santos等[36]的研究結(jié)果相反。Landis認(rèn)為,此現(xiàn)象是由較低P/N比導(dǎo)致。Hazard等[37]發(fā)現(xiàn),在景觀尺度上,AM真菌的群落組成由局部非生物環(huán)境決定,如土壤pH、降雨和土壤類型。Wirsel[38]發(fā)現(xiàn),土壤條件是濕地蘆葦根內(nèi)AM真菌群落多樣性變異的決定因子。此外,氣候因子,如海拔和溫度都會(huì)顯著影響AM真菌的多樣性。Gai等[39]研究了青藏高原高寒草甸系統(tǒng),發(fā)現(xiàn),延海拔梯度升高,AM真菌的物種豐富度依次降低。Lugo等[40]研究了南美普納草原,發(fā)現(xiàn),AM真菌多樣性延海拔升高而降低。Wu等[41]報(bào)道了富士山AM真菌多樣性海拔梯度性分布格局。Koske[42]發(fā)現(xiàn),當(dāng)寄主植物和土壤條件相似,AM真菌物種多樣性隨溫度增加而增加。Pringle和Bever[43]發(fā)現(xiàn),不同種AM真菌具有不同的物候特性,Acaulosporacolossica主要在暖季產(chǎn)孢,而Gigasporagigantea的產(chǎn)孢季節(jié)主要在冷季。

        2.3人為干擾對(duì)AM真菌多樣性的影響

        基于AM真菌多樣性的重要生態(tài)功能,人為干擾是否會(huì)導(dǎo)致AM真菌多樣性喪失,已經(jīng)引起了廣泛關(guān)注。Helgason等[44]報(bào)道,與森林系統(tǒng)相比,農(nóng)業(yè)措施,如耕作、施肥和農(nóng)藥等降低了AM真菌物種多樣性。Oehl等[45]發(fā)現(xiàn),土地使用強(qiáng)度與AM真菌物種多樣性呈負(fù)相關(guān)。Alguacil等[46]發(fā)現(xiàn),不同耕作措施會(huì)直接或間接影響亞熱帶農(nóng)作物根內(nèi)AM真菌的多樣性。然而,Hijri等[47]對(duì)此卻提出了質(zhì)疑。他們通過(guò)詳實(shí)的大田取樣與分子實(shí)驗(yàn)技術(shù)驗(yàn)證,發(fā)現(xiàn),農(nóng)田土壤AM真菌多樣性未必低,低投入輪作體系可能會(huì)更好的保護(hù)AM真菌多樣性。Alguacil等[48]發(fā)現(xiàn),在熱帶稀樹(shù)草原,施磷顯著降低AM真菌多樣性。Santos等[36]發(fā)現(xiàn),在瑞士半干旱草地,施用無(wú)機(jī)氮肥降低了AM真菌多樣性。Su和Guo[49]發(fā)現(xiàn),過(guò)度放牧顯著降低了內(nèi)蒙古草原AM真菌多樣性。然而,采取適當(dāng)?shù)娜藶榇胧┮部梢栽黾油寥繟M真菌的多樣性。例如,Alguacil等[50]發(fā)現(xiàn),通過(guò)長(zhǎng)期城市垃圾填埋可以增加土壤AM真菌的多樣性。Verbruggen等[51]發(fā)現(xiàn),有機(jī)農(nóng)業(yè)顯著增強(qiáng)了AM真菌的物種豐富度。

        3AM真菌物種多樣性維持機(jī)制

        物種多樣性維持機(jī)制是生態(tài)學(xué)研究的核心之一[52]?;谏鷳B(tài)位分化維持群落物種多樣性的理論已經(jīng)發(fā)展了近1個(gè)世紀(jì)。但是,自然群落物種多樣性的維持機(jī)制至今仍有諸多方面難以解釋。Hubbell[53]提出了“中性理論”,假定“不同物種的生態(tài)功能等價(jià)”,對(duì)傳統(tǒng)的生態(tài)位理論提出了挑戰(zhàn)。從而引起了理論生態(tài)學(xué)和群落生態(tài)學(xué)的強(qiáng)烈爭(zhēng)議。近年來(lái),生態(tài)學(xué)家趨于將這兩種理論進(jìn)行整合[54]。在不同環(huán)境條件下,生態(tài)位過(guò)程和中性過(guò)程可能會(huì)相互轉(zhuǎn)化。然而,目前關(guān)于物種多樣性維持機(jī)制的探討主要集中在植物群落,而對(duì)微生物群落的關(guān)注較少。??瞬萚54]認(rèn)為,未來(lái)研究應(yīng)該更多關(guān)注生態(tài)位理論和中性理論在土壤微生物群落構(gòu)建上的應(yīng)用,以檢驗(yàn)其普適性。

        盡管AM真菌物種多樣性具有非常重要的生態(tài)功能,然而,迄今為止,其多樣性維持機(jī)制的理論和實(shí)驗(yàn)研究極度缺乏。如前所述,AM真菌幾乎在所有陸地生境均有分布,因此,我們有理由認(rèn)為,AM真菌的群落構(gòu)建過(guò)程由中性隨機(jī)過(guò)程決定。Lekberg等[55]分析了不同干擾程度下大葉車前根內(nèi)AM真菌群落,發(fā)現(xiàn),有一種AM真菌序列類群出現(xiàn)于所有干擾條件,并占有優(yōu)勢(shì)地位,因此,認(rèn)為,局部AM真菌群落構(gòu)建由中性過(guò)程決定。然而,大量研究表明,環(huán)境條件和寄主植物會(huì)顯著影響AM真菌群落,暗示生態(tài)位過(guò)程對(duì)AM真菌多樣性維持起著主要作用。例如,F(xiàn)itzsimons等[56]發(fā)現(xiàn),土壤pH和NO3+能夠很好的預(yù)測(cè)AM真菌群落的變化。寄主植物的鄰體及建植次序、多樣性及群落構(gòu)建歷史等顯著影響AM真菌群落構(gòu)建過(guò)程[29,31- 32,34]。Davison等[57]發(fā)現(xiàn),AM真群群落構(gòu)建并非隨機(jī),具有一定的寄主選擇性。Pringle和Bever[43]發(fā)現(xiàn),北卡草地AM真菌多樣性是由物候和空間生態(tài)位共同維持。Dumbrell等[58]研究表明,生態(tài)位過(guò)程和隨機(jī)過(guò)程同時(shí)對(duì)AM真菌多樣性的維持起著作用。Caruso等[59]通過(guò)文獻(xiàn)整合分析,發(fā)現(xiàn),多重群落構(gòu)建規(guī)則維持AM真菌群落多樣性。以上分析表明,中性過(guò)程和生態(tài)位過(guò)程可能同時(shí)參與維持AM真菌群落的多樣性,孰主孰次,可能由環(huán)境條件決定。例如,毒性植物L(fēng)igulariavirgaurea驅(qū)動(dòng)鄰體植物根內(nèi)AM真菌群落構(gòu)建由中性過(guò)程向生態(tài)位過(guò)程轉(zhuǎn)變[59]。

        目前,關(guān)于生態(tài)位過(guò)程和中性過(guò)程對(duì)AM真菌群落多樣性維持的貢獻(xiàn)可以從以下兩條途徑進(jìn)行判定:第一,基于AM真菌系統(tǒng)發(fā)育關(guān)系的最近關(guān)聯(lián)指數(shù) (Nearest Related Index, NRI)[60]。如果NRI顯著大于0,則AM真菌群落成聚集格局,由生態(tài)位過(guò)程驅(qū)動(dòng);如果NRI等于0,則AM真菌群落由隨機(jī)中性過(guò)程驅(qū)動(dòng)。這一分析可以用R軟件“picante”程輯包進(jìn)行。第二,基于AIC值的模型篩選[61]。目前,用于檢驗(yàn)生態(tài)位過(guò)程的模型有Broken stick、Pre-emption、Log-normal、Zipf 和Zipf-Mandelbrot,用于檢驗(yàn)中性過(guò)程的模型有 ZSM。通過(guò)比較各個(gè)模型的AIC值,AIC值最小的模型即為解釋AM真菌多樣性維持過(guò)程的最佳模型。AIC=-2×log-likehood+2×npar,log-likehood為基于AM真菌群落數(shù)據(jù)計(jì)算的模型對(duì)數(shù)似然值,npar為模型所用的參數(shù)個(gè)數(shù)。

        4研究展望

        從20世紀(jì)80年代基于孢子形態(tài)分類的AM真菌物種多樣性研究開(kāi)始,到90年代分子生物學(xué)技術(shù)引入,導(dǎo)致AM真菌分子多樣性研究的大力推進(jìn),至今已有30余年。目前,關(guān)于AM真菌多樣性的影響因素研究地較為清楚。未來(lái)的菌根生態(tài)研究應(yīng)主要從以下幾個(gè)方面進(jìn)行開(kāi)展:

        (1)AM真菌多樣性的生態(tài)功能:需要集中精力挖掘AM真菌多樣性增加植物群落生產(chǎn)力的潛在機(jī)制。目前,國(guó)際上僅有的幾項(xiàng)研究,僅僅闡述了AM真菌多樣性與植物生產(chǎn)力正相關(guān)的現(xiàn)象。但是,其內(nèi)在機(jī)制還需進(jìn)一步深究確認(rèn)。

        (2)AM真菌多樣性維持機(jī)制:需要在不同生態(tài)系統(tǒng)中開(kāi)展中性理論與生態(tài)位理論的驗(yàn)證,以及隨環(huán)境脅迫變化,二者之間是否會(huì)相互轉(zhuǎn)化。

        參考文獻(xiàn)(References):

        [1]Smith S E, Read D J. Mycorrhizal Symbiosis. 3rd ed. San Diego: Academic Press, Inc, 2008.

        [2]Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16 (5): 299- 363.

        [3]楊海水. 宿主植物對(duì)叢枝菌根真菌的影響——共生功能、地理分布及多樣性[D]. 杭州: 浙江大學(xué), 2013.

        [4]劉潤(rùn)進(jìn), 焦惠, 李巖, 李敏, 朱新產(chǎn). 叢枝菌根真菌物種多樣性研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20 (9): 2301- 2307.

        [5]van der Heijden M G A, Klironomos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders I R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396 (6706): 69- 72.

        [6]Urcelay C, Díaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 2003, 6 (5): 388- 391.

        [7]O′Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 2002, 154 (1): 209- 218.

        [8]Bever J D. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 2002, 244 (1/2): 281- 290.

        [9]Vandenkoornhuyse P, Ridgway K P, Watson I J, Fitter A H, Young J P W. Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 2003, 12 (11): 3085- 3095.

        [10]Yang H S, Zang Y Y, Yuan Y G, Tang J J, Chen X. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology, 2012, 12: 50- 50.

        [11]Maherali H, Klironomos J N. Influence of Phylogeny on fungal community assembly and ecosystem functioning. Science, 2007, 316 (5832): 1746- 1748.

        [12]Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden M G A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92 (6): 1303- 1313.

        [13]葉少萍, 曾秀華, 辛國(guó)榮, 白昌軍, 羅仁峰, 劉新魯. 不同磷水平下叢枝菌根真菌(AMF)對(duì)狗牙根生長(zhǎng)與再生的影響. 草業(yè)學(xué)報(bào), 2013, 22 (1): 46- 52.

        [14]Vogelsang K M, Reynolds H L, Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172 (3): 554- 562.

        [15]Jansa J, Smith F A, Smith S E. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 2008, 177 (3): 779- 789.

        [16]Wardle D A. Is "sampling effect" a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos, 1999, 87 (2): 403- 407.

        [17]Wagg C, Jansa J, Schmid B, van der Heijden M G A. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14 (10): 1001- 1009.

        [18]郭紹霞, 劉潤(rùn)進(jìn). 不同品種牡丹對(duì)叢枝菌根真菌群落結(jié)構(gòu)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21 (8): 1993- 1997.

        [19]Schechter S P, Bruns T D. Serpentine and non-serpentine ecotypes ofCollinsiasparsifloraassociate with distinct arbuscular mycorrhizal fungal assemblages. Molecular Ecology, 2008, 17 (13): 3198- 3210.

        [20]Liu R J, Wang F Y. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 2003, 13 (3): 123- 127.

        [21]王宇濤. 珠江河口紅樹(shù)林生境AMF群落多樣性及其環(huán)境響應(yīng)[D]. 廣州: 中山大學(xué), 2011.

        [22]Husband R, Herre E A, Turner S L, Gallery R, Young J P W. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 2002, 11 (12): 2669- 2678.

        [23]Douhan G W, Petersen C, Bledsoe C S, Rizzo D M. Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: host specificity or non-specific amplification? Mycorrhiza, 2005, 15 (5): 365- 372.

        [24]Martínez-García L B, Pugnaire F I. Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Applied Soil Ecology, 2011, 48 (3): 313- 317.

        [26]Li L F, Li T, Zhang Y, Zhao Z W. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiology Ecology, 2010, 71 (3): 418- 427.

        [27]Gosling P, Mead A, Proctor M, Hammond J P, Bending G D. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist, 2013, 198 (2): 546- 556.

        [28]Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D.Medicagospecies affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytologist, 2007, 176 (1): 197- 210.

        [29]Johnson D, Vandenkoornhuyse P J, Leake J R, Gilbert L, Booth R E, Grime J P, Young J P W, Read D J. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161 (2): 503- 515.

        [30]B?rstler B, Renker C, Kahmen A, Buscot F. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils, 2006, 42 (4): 286- 298.

        [31]Hausmann N T, Hawkes C V. Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytologist, 2009, 183 (4): 1188- 1200.

        [32]Hausmann N T, Hawkes C V. Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology, 2010, 91 (8): 2333- 2343.

        [33]Alguacil M M, Roldán A, Torres M P. Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environmental Microbiology, 2009, 11(10): 2649- 2659.

        [34]van de Voorde T F J, van der Putten W H, Gamper H A, Hol W H G, Bezemer T M. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment. New Phytologist, 2010, 186 (3): 746- 754.

        [35]Landis F C, Gargas A, Givnish T J. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist, 2004, 164 (3): 493- 504.

        [36]Santos J C, Finlay R D, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytologist, 2006, 172 (1): 159- 168.

        [37]Hazard C, Gosling P, van der Gast C J, Mitchell D T, Doohan F M, Bending G D. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. The ISME Journal, 2013, 7 (3): 498- 508.

        [38]Wirsel S G. Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 2006, 48 (2): 129- 138.

        [39]Gai J P, Tian H, Yang F Y, Christie P, Li X L, Klironomos J N. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia, 2012, 55 (3): 145- 151.

        [40]Lugo M A, Ferrero M, Menoyo E, Estevez M C, Sieriz F, Anton A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an Altitudinal gradient in south American puna grassland. Microbial Ecology, 2008, 55 (4): 705- 713.

        [41]Wu B Y, Hogetsu T, Isobe K, Ishii R. Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza, 2007, 17 (6): 495- 506.

        [42]Koske R E. Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia, 1987, 79 (1): 55- 68.

        [43]Pringle A, Bever J D. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. American Journal of Botany, 2002, 89 (9): 1439- 1446.

        [44]Helgason T, Daniell T J, Husband R, Fitter A H, Young J P W. Ploughing up the wood-wide web? Nature, 1998, 394 (6692): 431- 431.

        [45]Oehl F, Sieverding E, Ineichen K, M?der P, Boller T, Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology, 2003, 69 (5): 2816- 2824.

        [46]Alguacil M M, Lumini E, Roldan A, Salinas-Garcia J R, Bonfante P, Bianciotto V. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecological Applications, 2008, 18 (2): 527- 36.

        [47]Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology, 2006, 15 (8): 2277- 2289.

        [48]Alguacil M D, Lozano Z, Campoy M J, Roldan A. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology, Biochemistry, 2010, 42 (7): 1114- 1122.

        [49]Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17 (8): 689- 693.

        [50]Alguacil M M, Torrecillas E, Caravaca F, Fernández D A, Azcón R, Roldán A. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biology and Biochemistry, 2011, 43 (7): 1498- 1508.

        [51]Verbruggen E, R?ling W F M, Gamper H A, Kowalchuk G A, Verhoef H A, van der Heijden M G A. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 2010, 186 (4): 968- 979.

        [52]牛紅玉, 王崢?lè)? 練琚愉, 葉萬(wàn)輝, 沈浩. 群落構(gòu)建研究的新進(jìn)展: 進(jìn)化和生態(tài)相結(jié)合的群落譜系結(jié)構(gòu)研究. 生物多樣性, 2011, 19 (3): 275- 283.

        [53]Hubbell S P. The unified neutral theory of biodiversity and biogeography [D]. Princeton and Oxford: Princeton University Press, 2001.

        [54]??瞬? 劉懌寧, 沈澤昊, 何芳良, 方精云. 群落構(gòu)建的中性理論和生態(tài)位理論. 生物多樣性, 2009, 17 (6): 579- 593.

        [55]Lekberg Y, Schnoor T, Kj?ller R, Gibbons S M, Hansen L H, Al-Soud W A, S?rensen S J, Rosendahl S. 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. Journal of Ecology, 2012, 100 (1): 151- 160.

        [56]Fitzsimons M S, Miller R M, Jastrow J D. Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia, 2008, 158 (1): 117- 127.

        [57]Davison J, ?pik M, Daniell T J, Moora M & Zobel M. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology, 2011, 78 (1): 103- 115.

        [58]Dumbrell A J, Nelson M, Helgason T, Dytham C, Fitter A H. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal, 2010, 4 (3): 337- 345.

        [59]Caruso T, Hempel S, Powell J R, Barto E K, Rillig M C. Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology, 2012, 93 (5): 1115- 1124.

        [60]Shi G X, Liu Y J, Mao L, Jiang S J, Zhang Q, Cheng G, An L Z, Du G Z, Feng H Y. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant. PLoS One, 2014, 9 (4): e95672.

        [61]Mendes L W, Kuramae E E, Navarrete A A, van Veen J A, Tsai S M. Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 2014, 8 (8): 1577- 1587.

        Arbuscular mycorrhizal fungal species diversity: ecological functioning,determinants and assembling mechanisms

        YANG Haishui*, XIONG Yanqin, WANG Qi, GUO Yi, DAI Yajun, XU Mingmin

        CollegeofAgriculture,NanjingAgriculturalUniversity,Nanjing210095,China

        Abstract:Arbuscular mycorrhizal fungi (AMF) are a group of ecologically important soil microbes and show wide geographic distribution across the globe. AMF form obligate symbiosis with roots of -80% land plants. In the symbiosis, host plants provide carbon for AMF in return for several benefits, i.e., promoting nutrient uptake, tolerating drought and salt stress, resisting pathogens and herbivores, etc. AMF also can redistribute resources (i.e., C, N and P) between plants and alter their competitive interactions, and thus drive plant population dynamics and community processes. AMF diversity is one of the most important components in soil diversity. In the past decades, AMF are found in almost all terrestrial habitats, including grassland, forest, desert, wetland, alpine meadow, polar region and mangrove, etc. This suggests that AMF have high species diversity. Although AMF diversity has a relatively long research history, most studies only tried to investigate species composition in AMF communities, little is known about the functioning of AMF diversity. In this mini-review, we summarized the new advances in the AMF diversity field, including ecological functioning, determinants and assembling rules. AMF diversity has important ecological functioning. Here, we discussed three aspects: the effects on plant system diversity, stability and productivity. First, several studies reported that AMF diversity is an important determinant for plant diversity. This might be caused by mycorrhizal dependence of subordinate plants. Some studies found that host plants have some preferentially selection towards AMF. Thus, with increasing AMF diversity, subordinate plants will have a higher probability to meet their best AMF partner. Another possibility is that negative plant-mycorrhiza feedbacks might generate positive AMF diversity-plant diversity patterns. This might be caused by host selection towards specific AMF communities. Distinctive AMF communities will make host plants occupy different niche for soil resources. Secondly, AMF diversity could stabilize plant community. Two possibilities can be used to explain this pattern. One is functioning redundancy for several AMF species. In AMF communities with high diversity, loss of certain fungal species will not affect plant community because of similar functioning shared by other AMF. The other possibility is that high AMF diversity will relax competition between different plants for soil nutrients. Third, AMF diversity promotes plant productivity. It seems a general pattern but the mechanisms underling it are still in debate. Complementary effect states that different AMF have different functioning. Higher AMF diversity will have greater functional diversity, which will generate higher plant productivity. Sampling effect states that higher AMF diversity increases the probability of plants encountering the super fungus. Many factors can affect AMF diversity, but here, we are only concentrated in host plants, environmental conditions and anthropogenic disturbance. Host plants affect AMF diversity through different taxonomic levels, including genetype or ecotype, species and community. Environmental conditions include soil nutrient, i.e., N and P, soil type, pH, precipitation and temperature. Anthropogenic disturbance includes agricultural practices, such as tillage, pesticides, fertilization, and land use conversion. Lastly, we discussed the theoretical hypothesis of AMF community assembling process, and provided the analytical methods for dissecting niche and neutral process. At present, it is debating for the assembling process of AMF community in mycorrhizal ecology. In fact, both processes might act simultaneously for AMF community. We deem that future studies should pay attention to the mechanisms underling the positive AMF species diversity-plant productivity relationships, as well as the AMF diversity maintaining mechanisms.

        Key Words:arbuscular mycorrhizal fungi; diversity; ecological roles; niche; neutral theory

        基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(31400373); 江蘇省自然科學(xué)基金資助項(xiàng)目(SBK20140689); 中國(guó)博士后科學(xué)基金資助項(xiàng)目(2014M561659)

        收稿日期:2014- 10- 11; 網(wǎng)絡(luò)出版日期:2015- 10- 10

        *通訊作者

        Corresponding author.E-mail: yanghaishui@njau.edu.cn

        DOI:10.5846/stxb201410112001

        楊海水, 熊艷琴, 王琪, 郭伊, 戴亞軍, 許明敏.AM真菌物種多樣性:生態(tài)功能、影響因素及維持機(jī)制.生態(tài)學(xué)報(bào),2016,36(10):2826- 2832.

        Yang H S, Xiong Y Q, Wang Q, Guo Y, Dai Y J, Xu M M.Arbuscular mycorrhizal fungal species diversity: ecological functioning, determinants and assembling mechanisms.Acta Ecologica Sinica,2016,36(10):2826- 2832.

        日本成人中文字幕亚洲一区| 亚洲精品成人片在线观看| 无码成人片一区二区三区| 国产精品一区二区久久精品蜜臀| 91精品国产91综合久久蜜臀 | 国产杨幂AV在线播放| 国产三区三区三区看三区| 十八禁视频网站在线观看| 欧美成a人片在线观看久| 99福利影院| 日本啪啪视频一区二区| 久久久久久久亚洲av无码| 婷婷色中文字幕综合在线| 呦泬泬精品导航| 国成成人av一区二区三区| 久久99亚洲精品久久久久| 国产精品va无码一区二区| 青青国产成人久久91| 蜜桃视频成年人在线观看| 人妻夜夜爽天天爽三区丁香花| 野外少妇愉情中文字幕| 亚洲电影一区二区三区| 亚洲一区二区三区麻豆| 天堂资源中文网| 无码人妻精一区二区三区| 久久精品免视看国产盗摄| 81久久免费精品国产色夜| 手机看黄av免费网址| 久久综合精品国产丝袜长腿| 精品久久久久久99人妻| 论理视频二区三区四区在线观看| 熟女少妇精品一区二区| 日韩毛片在线看| 久久精品国产亚洲av调教| 人妻少妇被猛烈进入中文字幕| 柠檬福利第一导航在线| 视频一区精品自拍| 亚洲一区二区三区四区精品| 人妻少妇精品无码专区| 欧美末成年videos在线观看| 少妇被搞高潮在线免费观看|