亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        microRNA調(diào)控動物毛色和膚色的研究進(jìn)展

        2016-07-14 00:30:49巫小倩劉辰東堵晶晶張順華
        畜牧獸醫(yī)學(xué)報 2016年6期

        巫小倩,劉辰東,堵晶晶,羅 嘉,朱 礪,張順華

        (四川農(nóng)業(yè)大學(xué)動物科技學(xué)院,成都 611130)

        ?

        microRNA調(diào)控動物毛色和膚色的研究進(jìn)展

        巫小倩,劉辰東,堵晶晶,羅嘉,朱礪*,張順華*

        (四川農(nóng)業(yè)大學(xué)動物科技學(xué)院,成都 611130)

        黑色素細(xì)胞對于毛色和膚色的形成具有至關(guān)重要的作用。黑色素細(xì)胞由胚胎時期的神經(jīng)嵴干細(xì)胞分化而來,在成熟黑色素細(xì)胞內(nèi)通過一系列復(fù)雜的酶催化反應(yīng)最終生成黑色素,從而決定動物的毛色和膚色。黑色素的生成過程復(fù)雜,受到一些轉(zhuǎn)錄因子、激素、信號通路分子協(xié)同調(diào)控。microRNA(miRNA)是一類長約22 nt的內(nèi)源性非編碼RNA,主要通過抑制轉(zhuǎn)錄后的翻譯過程來調(diào)控基因表達(dá)。越來越多的研究表明,miRNA與黑色素生成相關(guān)。本文對黑色素沉積相關(guān)的miRNAs的挖掘和鑒定工作以及miRNAs調(diào)控毛色和膚色的研究進(jìn)展進(jìn)行綜述。

        microRNA;黑色素細(xì)胞;黑色素;毛色;膚色

        毛色和膚色是脊椎動物最容易被觀察到的重要表型特征,可用于區(qū)分動物亞種(或品種)[1]。一般哺乳動物毛色和膚色與吸引異性、躲避天敵、通訊交流等相關(guān)[2-4]。而對于羊駝、綿羊等毛用動物而言,毛色則是最重要的經(jīng)濟(jì)性狀[5-6]。因此,動物表皮色素沉積一直受到人們的廣泛關(guān)注,對膚色和毛色形成研究具有重要的經(jīng)濟(jì)價值。 miRNA是廣泛存在于真核細(xì)胞的進(jìn)化高度保守的單鏈非編碼RNA,可以在轉(zhuǎn)錄后水平調(diào)控靶基因表達(dá),從而參與細(xì)胞增殖、分化、凋亡等多種生物學(xué)過程。大量研究表明,miRNA可以作為一種重要的調(diào)控因子參與黑色素形成。迄今為止,鑒定出大量miRNAs參與調(diào)控脂肪沉積、心肌纖維化以及細(xì)胞衰老等過程[7-9],而miRNA調(diào)控毛色和膚色的研究卻十分欠缺。亟待持續(xù)挖掘與黑色素形成相關(guān)的miRNA。

        1 miRNA的研究背景

        miRNA是一類長約22 nt的內(nèi)源非編碼RNA,可以在轉(zhuǎn)錄后水平調(diào)控基因表達(dá)[10]。R.C.Lee等[11]發(fā)現(xiàn)第一個miRNA—lin-4,它可以調(diào)節(jié)秀麗隱桿線蟲幼蟲階段性發(fā)育。目前已經(jīng)有超過28 645個miRNA被發(fā)現(xiàn)和鑒定(http://www.mirbase.org/)。miRNA參與調(diào)控細(xì)胞增殖、分化、凋亡等多種生物學(xué)過程,對維持機(jī)體正常的生理功能有至關(guān)重要的作用[12-13]。miRNA基因在RNA聚合酶II作用下形成初級轉(zhuǎn)錄物pri-miRNA,隨后Drosha酶和伴侶蛋白DGCR8組成的復(fù)合物將pri-miRNA剪切成為具有莖環(huán)結(jié)構(gòu)的前體pre-miRNA,pre-miRNA被轉(zhuǎn)運蛋白Exportin-5轉(zhuǎn)運到胞質(zhì)中并由Dicer酶加工形成長約20 nt的雙鏈miRNA,然后解鏈產(chǎn)生成熟的miRNA和其互補(bǔ)鏈miRNA*[14]。早期對于miRNA*的功能知之甚少,近年來研究發(fā)現(xiàn),miRNA*能與AGO2形成RISC復(fù)合體發(fā)揮類似siRNA的作用[15-16]。在無脊椎動物中存在一種新的miRNA合成機(jī)制,稱為 “mitron”途徑,它形成具有套索結(jié)構(gòu)的中間體,不依賴Dicer酶的剪切作用,最終產(chǎn)生成熟的miRNA[17-18]。在哺乳動物體內(nèi),miRNA可以與核糖核蛋白AGO結(jié)合生成沉默復(fù)合體 (RNA-induced silencing complex,RISC),miRNA的2~8位種子序列與mRNA的3′-UTR區(qū)或ORF互補(bǔ)結(jié)合,隨后RISC介導(dǎo)mRNA降解或抑制翻譯從而抑制靶基因表達(dá)[10,14]。有研究發(fā)現(xiàn),let-7、miR-125b可以加速mRNA脫腺苷,降低細(xì)胞內(nèi)mRNA有效含量[19-20]。而某些植物中,miRNA可以介導(dǎo)自身基因座或靶基因甲基化,在表觀水平調(diào)控基因表達(dá)[21-22]。

        2 黑色素生成

        2.1黑色素細(xì)胞的起源

        動物毛囊和皮膚基底層的黑色素細(xì)胞能夠合成黑色素,黑色素沉積的種類和含量共同決定動物的毛色和膚色。除視網(wǎng)膜色素細(xì)胞外,所有黑色素細(xì)胞起源于胚胎時期的軀干神經(jīng)嵴細(xì)胞[23]。神經(jīng)嵴細(xì)胞短暫存在于神經(jīng)胚形成期間,在神經(jīng)管閉合前后開始分散遷移,沿背側(cè)遷移的神經(jīng)嵴細(xì)胞分化為成黑色素細(xì)胞。成黑色素細(xì)胞繼續(xù)遷移至胚胎真皮,并隨著胚胎的發(fā)育漸布于全身,且穿過基膜到達(dá)表皮[24-25]。大多數(shù)成黑色素細(xì)胞聚集于發(fā)育的毛囊中,部分成黑色素細(xì)胞分化為Kit陽性細(xì)胞、多巴胺陽性細(xì)胞,最終分化為成熟的黑色素細(xì)胞[26]。另有少數(shù)成黑色素細(xì)胞分化為黑色素細(xì)胞存留于表皮基底層。

        2.2黑色素生成

        黑色素主要由黑色素細(xì)胞合成產(chǎn)生。黑色素小體是黑色素細(xì)胞特有的細(xì)胞器,它是合成黑色素的主要場所。黑色素的合成經(jīng)過4個階段[27]:Ⅰ、Ⅱ 階段在高爾基體-內(nèi)質(zhì)網(wǎng)-溶酶體復(fù)合體(GERL-complex)內(nèi)形成暫無活性的黑色素小體,此時的黑色素小體無法合成黑色素。酪氨酸酶由核糖體合成后經(jīng)高爾基體轉(zhuǎn)運活化進(jìn)入黑色素小體,同時酪氨酸也通過膜的主動運輸進(jìn)入黑色素小體,黑色素小體有產(chǎn)生黑色素的能力,黑色素合成進(jìn)入Ⅲ、Ⅳ階段。在黑色素小體內(nèi),酪氨酸在活化的酪氨酸酶的作用下羥化為多巴,多巴進(jìn)一步氧化生成高度活躍的中間產(chǎn)物多巴醌。當(dāng)酪氨酸酶充足時,多巴醌經(jīng)過一系列氧化反應(yīng)最終生成吲哚苯醌,形成真黑色素(Eumelanin);當(dāng)酪氨酸酶缺乏時,由半胱氨酸或谷胱甘肽提供巰基使多巴醌轉(zhuǎn)化成半胱氨酰多巴,最終生成褐黑色素(Pheomelanin)[28]。黑色素小體內(nèi)形成的黑色素被黑色素細(xì)胞以胞突的方式釋放。動物的膚色和毛色主要由棕色或黑色的真黑色素和黃色或微紅棕色的褐黑色素的比例決定。

        2.3黑色素生成重要轉(zhuǎn)錄因子——MITF

        黑色素生成過程復(fù)雜,受到許多轉(zhuǎn)錄因子調(diào)控[29-31],其中,小眼畸形相關(guān)轉(zhuǎn)錄因子(Microphthalmia-associated transcription factor,MITF)對于黑色素形成非常重要[11]。MITF于1942年被發(fā)現(xiàn),且研究表明,MITF失活能夠?qū)е滦∈?、斑馬魚幾乎完全失去黑色素細(xì)胞[32]。MITF是黑色素細(xì)胞發(fā)育和功能的關(guān)鍵調(diào)控基因,對黑色素細(xì)胞的存活、遷移、增殖和分化都起著不可或缺的作用[33]。MITF能夠調(diào)控一些與色素形成相關(guān)基因的活性從而決定黑色素的種類與數(shù)量,如酪氨酸酶基因(Tyrosinase,Tyr)、酪氨酸酶相關(guān)蛋白1基因(Tyrosinase-related protein 1,Tyrp1)、酪氨酸酶相關(guān)蛋白2基因(Tyrosinase-related protein 2,Tyrp2)等[34]。某些轉(zhuǎn)錄因子可作用于MITF的啟動子區(qū)域,從而促進(jìn)MITF的表達(dá),如β連環(huán)蛋白(beta-catenin,β-catenin)、盒基因 3(Paired box 3,PAX3)、SOX10基因(SRY-box containing gene 10,SOX10)等[35]。研究表明,MITF的表達(dá)和活性與黑色素細(xì)胞的命運息息相關(guān)。

        3 miRNA調(diào)控黑色素沉積研究進(jìn)展

        越來越多的研究表明,miRNA可以調(diào)控黑色素形成相關(guān)的基因、轉(zhuǎn)錄因子和重要的信號分子從而影響黑色素生成[36]。近年來,已經(jīng)有一些調(diào)控黑色素生成的miRNA被發(fā)現(xiàn),同時,miRNA調(diào)控黑色素生成的網(wǎng)絡(luò)正在逐步形成(圖1)。

        圖1 miRNA調(diào)控黑色素生成網(wǎng)絡(luò)圖Fig.1 The network of miRNA regulates melanogenesis

        3.1黑色素形成的miRNA表達(dá)譜測定

        挖掘和鑒定與黑色素沉積相關(guān)miRNA是研究miRNA調(diào)控黑色素沉積的前提。高通量技術(shù)在挖掘miRNA上表現(xiàn)出巨大優(yōu)勢,能夠發(fā)現(xiàn)不同毛色或膚色表型動物中差異表達(dá)miRNA的種類和豐度,從而推動miRNA在色素沉積上的相關(guān)研究。近幾年,研究者對不同毛色、膚色的農(nóng)業(yè)經(jīng)濟(jì)動物進(jìn)行miRNA測序,發(fā)現(xiàn)大量與黑色素形成相關(guān)的miRNA,為miRNA調(diào)控皮膚色素沉積奠定基礎(chǔ)。X.Tian等[37]利用Illumina 測序從棕色和白色羊駝皮膚中分別發(fā)現(xiàn)267和272個保守的miRNA(包含22個新鑒定出的miRNA),其中35個miRNA在白色羊駝中高表達(dá),13個miRNA在棕色羊駝中高表達(dá),miR-202、miR-542-5p、miR-424、miR-370和 miR-22-3p 等高表達(dá)于白色羊駝,miR-211、miR-184、miR-486、miR-885和miR-451 高表達(dá)于棕色羊駝。B.Yan等[38]利用Solexa測序研究紅色和白色鯉魚皮膚的miRNA表達(dá)譜,共發(fā)現(xiàn)13個差異表達(dá)的miRNA,其中10個差異表達(dá)miRNA在紅色和白色羅非魚中存在相同的差異表達(dá)模式。P.Dynoodt等[39]用毛喉素和紫外線處理小鼠黑色素細(xì)胞,從正常組和處理組中發(fā)現(xiàn)16個差異表達(dá)miRNA,13個在正常組中高表達(dá),3個在處理組中高表達(dá)。Z.Wu等[40]對雜毛山羊的黑毛和白毛毛囊miRNA測序,得到205個保守的miRNA以及9個新的miRNA,共存在6個差異表達(dá)miRNA,其中5個在黑毛毛囊中高表達(dá),這5個miRNA能作用于大量與毛色形成相關(guān)的信號通路,包括MAPK信號通路[41]。利用高通量測序找到大量與色素沉積相關(guān)的miRNA,但是這種相關(guān)需要進(jìn)一步被驗證,從而形成miRNA調(diào)控色素沉積的網(wǎng)絡(luò)。

        3.2miRNA對MITF轉(zhuǎn)錄因子的調(diào)控作用

        MITF是黑色素形成過程中最重要的轉(zhuǎn)錄因子,miRNA可以通過調(diào)控MITF的表達(dá)從而調(diào)節(jié)動物黑色素形成。Z.Zhu等[42]和J.Guo等[43]研究發(fā)現(xiàn),miR-25和miR-218能夠直接作用于MITF的3′UTR,過表達(dá)miR-25和miR-218均能夠降低MITF及其下游基因的表達(dá),如Tyr、Tyrp1、Tyrp2抑制黑色素形成。C.Dong等[44]首次利用轉(zhuǎn)基因小鼠研究miRNA影響動物毛色,發(fā)現(xiàn)轉(zhuǎn)基因小鼠毛色與miR-137的表達(dá)量相關(guān),miR-137能夠直接作用于MITF,下調(diào)MITF及下游基因表達(dá)[45]。隨著miR-137表達(dá)量增加,小鼠毛色由黑逐漸變黃,毛干中黑色素含量減少[44]。miR-429能夠直接作用于叉頭蛋白D3基因(Forkhead box D3,F(xiàn)oxD3)的3′UTR,F(xiàn)oxD3與神經(jīng)脊干細(xì)胞的遷移相關(guān),能夠下調(diào)分化相關(guān)基因的表達(dá)[46]。miR-429沉默導(dǎo)致FoxD3表達(dá)量顯著升高,MITF及其下游基因的表達(dá)被抑制,鯉魚皮膚中黑色素減少、顏色改變[38]。miR-429在鯉魚發(fā)育過程中存在很強(qiáng)的時空特異性表達(dá),miR-429隨著鯉魚發(fā)育在皮膚中表達(dá)量逐漸增加,鯉魚發(fā)育出具有顏色的皮膚。miR-10b在山羊黑毛毛囊中高表達(dá)[40],miR-10b能抑制HOX基因家族表達(dá),HOXA10能夠上調(diào)毛色相關(guān)基因DKK1(Dickkopf 1,DKK1)的表達(dá),DKK1能夠通過抑制β-catenin以及MITF的表達(dá)抑制黑色素形成[47-49]。

        3.3miRNA對Wnt/TGF-β/cAMP信號通路的調(diào)控作用

        miRNA還可以與信號轉(zhuǎn)導(dǎo)通路中關(guān)鍵分子的mRNA結(jié)合,通過影響細(xì)胞信號通路的傳遞間接調(diào)控黑色素細(xì)胞的色素沉積。Wnt/β-catenin通路對于細(xì)胞命運、增殖、分化和遷移具有重要的作用[50-53]。Wnt3a不僅能夠促進(jìn)神經(jīng)脊干細(xì)胞分化為黑色素細(xì)胞,而且能夠通過維持MITF的表達(dá)促進(jìn)成黑素細(xì)胞分化為黑色素細(xì)胞[54-55]。Y.Zhao等[56]利用小鼠黑色素細(xì)胞研究發(fā)現(xiàn),miR-27a-3p能夠與Wnt3a的3′UTR結(jié)合,抑制Wnt3a蛋白以及下游基因β-catenin的表達(dá),抑制和過表達(dá)miR-27a-3p,發(fā)現(xiàn)miR-27a-3p的表達(dá)量與黑色素細(xì)胞中黑色素含量呈負(fù)相關(guān)。轉(zhuǎn)化生長因子-β1(Transforming growth factor-β1,TGF-β1)信號轉(zhuǎn)導(dǎo)主要由其下游Smads分子介導(dǎo)[57]。TGF-β/Smad信號通路與Wnt /β-catenin信號通路間存在著交互調(diào)節(jié)作用,TGF-β1可間接活化β-catenin,進(jìn)一步激活Wnt /β-catenin信號通路[58]。賈小云等[59]利用羊駝黑色素細(xì)胞研究miR-663對黑色素沉積的影響,發(fā)現(xiàn)miR-663能夠靶向作用于TGF-β1基因,從而抑制TGF-β1的表達(dá),影響TGF-β/Smad和Wnt /β-catenin信號通路,抑制羊駝黑色素細(xì)胞中的黑色素生成。X.Tian等[37]對白色和棕色羊駝測序發(fā)現(xiàn)大量新的miRNA,lap-miR-nov66在白色羊駝皮膚中高表達(dá)。lap-miR-nov66能夠作用于可溶性鳥苷酸環(huán)化基因(Soluble guanylate cyclase,sGC)的CDS區(qū)域,上調(diào)sGC的表達(dá)量,導(dǎo)致cGMP表達(dá)量上升,而cAMP表達(dá)量降低,從而通過PKA通路作用于MITF轉(zhuǎn)錄因子,抑制黑色素生成[60]。

        3.4miRNA對其他因子的調(diào)控作用

        miRNA除調(diào)控MITF和一些信號通路影響色素沉積外,還可作用于其他基因影響黑色素形成。小鼠注射pre-MiR-434-5p能夠?qū)е缕淦つw中Tyr表達(dá)量降低,小鼠毛色變白,且合成的miR-434-5p類似物miR-Tyr與甘油混合涂抹于人皮膚表面,使人皮膚變白變亮[61]。K.H.Kim等[62]研究發(fā)現(xiàn),miR-125b能夠作用于DCT和Tyr基因抑制黑色素沉積,黑色素細(xì)胞中,miR-125能夠通過啟動子高度甲基化,降低miR-125b的表達(dá),促進(jìn)黑色素生成。P.Dynoodt等[39]研究發(fā)現(xiàn),miR-145能夠通過不同途徑影響黑色素的沉積。miR-145能夠作用于小鼠和人Myo5a基因的3′UTR,而Myo5A、Mlph以及Rab27a能形成復(fù)雜的Rab27a-Mlph-Myo5a三聯(lián)體蛋白[63],同時,miR-145高表達(dá)能夠使與黑色素沉積相關(guān)基因表達(dá)量降低,如MITF、Myo5A、Rab27a、Tyr等[39]。

        4 展 望

        動物毛色和膚色是極為重要的表型特征,與吸引異性、躲避天敵等緊密相關(guān)。對毛用動物而言,毛色更是重要的經(jīng)濟(jì)性狀。近年來,大量與毛色形成相關(guān)基因已經(jīng)被發(fā)現(xiàn)和鑒定,其中MITF不僅能夠影響黑色素細(xì)胞的存活、遷移、增殖和分化,還能夠調(diào)控黑色素形成相關(guān)基因的活性。目前已經(jīng)發(fā)現(xiàn)一些調(diào)控黑色素沉積的miRNA,它們作用于黑色素沉積相關(guān)的轉(zhuǎn)錄因子和信號通路,共同調(diào)控色素沉積,miRNA調(diào)控色素沉積網(wǎng)絡(luò)正逐漸形成。但miRNA對色素沉積調(diào)控網(wǎng)絡(luò)僅初步形成,尚需深度挖掘,進(jìn)一步補(bǔ)充、完善。研究黑色素沉積的分子機(jī)制,構(gòu)建miRNA對色素沉積的調(diào)控網(wǎng)絡(luò),利用miRNA定向改變動物毛色以及將miRNA應(yīng)用于美容行業(yè)將會成為未來研究miRNA調(diào)控色素沉積的新方向。

        [1]HANNA L L,SANDERS J O,RILEY D G,et al.Identification of a major locus interacting with MC1R and modifying black coat color in an F2Nellore-Angus population[J].GenetSelEvol,2014,46:4.

        [2]CARO T.The adaptive significance of coloration in mammals[J].BioScience,2005,55(2):125-136.

        [3]MIYAGI R,TERAI Y.The diversity of male nuptial coloration leads to species diversity in Lake Victoria cichlids[J].GenesGenetSyst,2013,88(3):145-153.

        [4]TAKAHASHI A.Pigmentation and behavior:potential association through pleiotropic genes in Drosophila[J].GenesGenetSyst,2013,88(3):165-174.

        [5]CHANDRAMOHAN B,RENIERI C,LA MANNA V,et al.The alpaca agouti gene:genomic locus,transcripts and causative mutations of eumelanic and pheomelanic coat color[J].Gene,2013,521(2):303-310.

        [6]DENG W D,SHU W,YANG S L,et al.Pigmentation in Black-boned sheep (Ovisaries):association with polymorphism of the MC1R gene[J].MolBiolRep,2009,36(3):431-436.

        [7]張進(jìn)威,羅毅,王宇豪,等.MicroRNA 調(diào)控動物脂肪細(xì)胞分化研究進(jìn)展[J].遺傳,2015,37(12):1175-1184.

        ZHANG J W,LUO Y,WANG Y H,et al.microRNA regulates animal adipocyte differentiation[J].Hereditas(Beijing),2015,37(12):1175-1184.(in Chinese)

        [8]王世強(qiáng),李丹,李博雅,等.microRNA 調(diào)控心肌纖維化研究進(jìn)展[J].生命的化學(xué),2015,35(4):565-570.

        WANG S Q,LI D,LI B Y,et al.Research progress of myocardial fibrosis regulated by microRNA [J].ChemistryofLife,2015,35(4):565-570.(in Chinese)

        [9]吳剛,王丹,黃毅,等.衰老相關(guān) microRNAs 研究進(jìn)展[J].生物化學(xué)與生物物理進(jìn)展,2014,41(3):273-287.

        WU G,WANG D,HUANG Y,et al.The research progress of microRNAs in aging[J].ProgressinBichemistryandBiophysics,2014,41(3):273-287.(in Chinese)

        [10]BARTEL D P.microRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.

        [11]LEE R C,F(xiàn)EINBAUM R L,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.

        [12]TANG Y,ZHENG J,SUN Y,et al.microRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2[J].IntHeartJ,2009,50(3):377-387.

        [13]SHENOY A,BLELLOCH R H.Regulation of microRNA function in somatic stem cell proliferation and differentiation[J].NatRevMolCellBiol,2014,15(9):565-576.

        [14]TREIBER T,TREIBER N,MEISTER G.Regulation of microRNA biogenesis and function[J].ThrombHaemost,2012,107(4):605-610.

        [15]YANG J S,PHILLIPS M D,BETEL D,et al.Widespread regulatory activity of vertebrate microRNA* species[J].RNA,2011,17(2):312-326.

        [16]馬圣運,白玉,韓凝,等.miRNA*生物合成及其功能研究的新發(fā)現(xiàn)[J].遺傳,2012,34(4):383-388.

        MA S Y,BAI Y,HAN N,et al.Recent research progress of biogenesis and functions of miRNA*[J].Hereditas(Beijing),2012,34(4):383-388.(in Chinese)

        [17]AMERES S L,ZAMORE P D.Diversifying microRNA sequence and function[J].NatRevMolCellBiol,2013,14(8):475-488.

        [18]WESTHOLM J O,LADEWIG E,OKAMURA K,et al.Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs[J].RNA,2012,18(2):177-192.

        [19]DJURANOVIC S,NAHVI A,GREEN R.miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay[J].Science,2012,336(6078):237-240.

        [20]WU L,F(xiàn)AN J,BELASCO J G.microRNAs direct rapid deadenylation of mRNA[J].ProcNatlAcadSciUSA,2006,103(11):4034-4039.

        [21]MATZKE M A,MOSHER R A.RNA-directed DNA methylation:an epigenetic pathway of increasing complexity[J].NatRevGenet,2014,15(6):394-408.

        [22]WU L,ZHOU H,ZHANG Q,et al.DNA methylation mediated by a microRNA pathway[J].MolCell,2010,38(3):465-475.

        [23]LABONNE C,BRONNER-FRASER M.Induction and patterning of the neural crest,a stem cell-like precursor population[J].JNeurobiol,1998,36(2):175-189.

        [24]BAKER C V,BRONNER-FRASER M,LE DOUARIN N M,et al.Early- and late-migrating cranial neural crest cell populations have equivalent developmental potentialinvivo[J].Development,1997,124(16):3077-3087.

        [25]文琴.發(fā)育神經(jīng)生物學(xué)[M].北京:科學(xué)出版社,2007.

        WEN Q.Developmental neurobiology[M].Beijing:Science Press,2007.

        [26]HIROBE T.Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods[J].AnatRec,1984,208(4):589-594.

        [27]RILEY P A.Melanin[J].IntJBiochemCellBiol,1997,29(11):1235-1239.

        [28]ITO S,NAKANISHI Y,VALENZUELA R K,et al.Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples:application to chemical analysis of human hair melanins[J].PigmentCellMelanomaRes,2011,24(4):605-613.

        [29]GUENTHER C A,TASIC B,LUO L,et al.A molecular basis for classic blond hair color in Europeans[J].NatGenet,2014,46(7):748-752.

        [30]V?GE D I,NIEMINEN M,ANDERSON D G,et al.Two missense mutations in melanocortin 1 receptor (MC1R) are strongly associated with dark ventral coat color in reindeer (Rangifertarandus)[J].AnimGenet,2014,45(5):750-753.

        [31]ABITBOL M,LEGRAND R,TIRET L.A missense mutation in the agouti signaling protein gene (ASIP) is associated with the no light points coat phenotype in donkeys[J].GenetSelEvol,2015,47:28.

        [32]UONG A,ZON L I.Melanocytes in development and cancer[J].JCellphysiol,2010,222(1):38-41.

        [33]WHITE R M,ZON L I.Melanocytes in development,regeneration,and cancer[J].CellStemCell,2008,3(3):242-252.

        [34]YASUMOTO K,YOKOYAMA K,SHIBATA K,et al.Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene[J].MolCellBiol,1994,14(12):8058-8070.

        [35]BONDURAND N,PINGAULT V,GOERICH D E,et al.Interaction among SOX10,PAX3 and MITF,three genes altered in Waardenburg syndrome[J].HumMolGenet,2000,9(13):1907-1917.

        [36]MIONE M,BOSSERHOFF A.microRNAs in melanocyte and melanoma biology[J].PigmentCellMelanomaRes,2015,28(3):340-354.

        [37]TIAN X,JIANG J,F(xiàn)AN R,et al.Identification and characterization of microRNAs in white and brown alpaca skin[J].BMCGenomics,2012,13:555.

        [38]YAN B,LIU B,ZHU C D,et al.microRNAs regulation of skin pigmentation in fish[J].JCellSci,2013,126(Pt 15):3401-3408.

        [39]DYNOODT P,MESTDAGH P,VAN PEER G,et al.Identification of miR-145 as a key regulator of the pigmentary process[J].JInvestDermatol,2013,133(1):201-209.

        [40]WU Z,F(xiàn)U Y,CAO J,et al.Identification of differentially expressed miRNAs between white and black hair follicles by RNA-sequencing in the goat (Caprahircus)[J].IntJMolSci,2014,15(6):9531-9545.

        [41]AHN J H,JIN S H,KANG H Y.LPS induces melanogenesis through p38 MAPK activation in human melanocytes[J].ArchDermatolRes,2008,300(6):325-329.

        [42]ZHU Z,HE J,JIA X,et al.microRNAs-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (Lamapacos) skin melanocytes[J].DomestAnimEndocrinol,2010,38(3):200-209.

        [43]GUO J,ZHANG J F,WANG W M,et al.microRNAs-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression[J].RNABiol,2014,11(6):732-741.

        [44]DONG C,WANG H,XUE L,et al.Coat color determination by miR-137 mediated down-regulation of microphthalmia-associated transcription factor in a mouse model[J].RNA,2012,18(9):1679-1686.

        [45]馬淑慧,薛霖莉,徐剛,等.黑色素細(xì)胞中過量表達(dá) miR-137 對 TYRP-1 和 TYRP-2 的影響[J].中國農(nóng)業(yè)科學(xué),2013,46(16):3452-3459.

        MA S H,XUE L L,XU G,et al.The influences of over-expressing miR-137 on TYRP-1 and TYRP-2 in melanocytes[J].ScientiaAgriculturaSinica,2013,46(16):3452-3459.(in Chinese)

        [46]ABEL E V,APLIN A E.FOXD3 is a mutant B-RAF-regulated inhibitor of G1-S progression in melanoma cells[J].CancerRes,2010,70(7):2891-2900.

        [47]MAGNUSSON M,BRUN A C,MIYAKE N,et al.HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development[J].Blood,2007,109(9):3687-3696.

        [48]YAMAGUCHI Y,PASSERON T,HOASHI T,et al.Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β-catenin signaling in keratinocytes[J].FASEBJ,2008,22(4):1009-1020.

        [49]YAMAGUCHI Y,PASSERON T,WATABE H,et al.The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes:mechanisms underlying its suppression of melanocyte function and proliferation[J].JInvestDermatol,2007,127(5):1217-1225.

        [50]CLEVERS H,LOH K M,NUSSE R.Stem cell signaling.An integral program for tissue renewal and regeneration:Wnt signaling and stem cell control[J].Science,2014,346(6205):1248012.

        [51]MILLER J R.The wnts[J].GenomeBiol,2002,3(1):REVIEWS3001.

        [52]MOON R T,BROWN J D,TORRES M.WNTs modulate cell fate and behavior during vertebrate development[J].TrendsGenet,1997,13(4):157-162.

        [53]SETHI J K,VIDAL-PUIG A.Wnt signalling and the control of cellular metabolism[J].BiochemJ,2010,427(1):1-17.

        [54]DUNN K J,BRADY M,OCHSENBAUER-JAMBOR C,et al.WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action[J].PigmentCellRes,2005,18(3):167-180.

        [55]JIN E J,ERICKSON C A,TAKADA S,et al.Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo[J].DevBiol,2001,233(1):22-37.

        [56]ZHAO Y,WANG P,MENG J,et al.microRNAs-27a-3p inhibits melanogenesis in mouse skin melanocytes by targeting Wnt3a[J].IntJMolSci,2015,16(5):10921-10933.

        [57]PARK S H.Fine tuning and cross-talking of TGF-β signal by inhibitory Smads[J].JBiochemMolBiol,2005,38(1):9-16.

        [58]GUO X,WANG X F.Signaling cross-talk between TGF-β/BMP and other pathways[J].CellRes,2009,19(1):71-88.

        [59]賈小云,金雷皓,苗瀲涓,等.miR-663 通過靶向 TGF-β1 調(diào)控羊駝黑色素細(xì)胞的黑色素生成[J].中國農(nóng)業(yè)科學(xué),2015,48(1):165-173.

        JIA X Y,JIN L H,MIAO Y J,et al.Melanin synthesis of alpaca melanocytes regulated by miR-663 through targeting TGF-β1[J].ScientiaAgriclturaSinica,2015,48(1):165-173.(in Chinese)

        [60]YANG S,F(xiàn)AN R,SHI Z,et al.Identification of a novel microRNA important for melanogenesis in alpaca (Vicugnapacos) [J].JAnimSci,2015,93(4):1622-1631.

        [61]WU D TS,CHEN J S,CHANG D C,et al.miR-434-5p mediates skin whitening and lightening[J].ClinlCosmetInvestigDermatol,2008,1:19-35.

        [62]KIM K H,BIN B H,KIM J,et al.Novel inhibitory function of miR-125b in melanogenesis[J].PigmentCellMelanomaRes,2014,27(1):140-144.

        [63]VAN GELE M,DYNOODT P,LAMBERT J.Griscelli syndrome:a model system to study vesicular trafficking[J].PigmentCellMelanomaRes,2009,22(3):268-282.

        (編輯程金華)

        Research Progress of the Role of microRNAs in the Regulation of Animal Coat and Skin Color

        WU Xiao-qian,LIU Chen-dong,DU Jing-jing,LUO Jia,ZHU Li*,ZHANG Shun-hua*

        (CollegeofAnimalScienceandTechnology,SichuanAgriculturalUniversity,Chengdu611130,China)

        Melanocyte,generated from embryonic neural crest stem cells,plays important roles in coat and skin color formation.Melanin,the product of a series of enzyme catalyzed reactions in melanocyte,determines animal coat and skin color.Melanogenesis is a complex process involving coordinated regulation of some transcription factors,hormones and signaling pathway molecules.microRNA (miRNA) is a class of endogenous,non-coding,small RNA molecule (about 22 nt),which regulates gene expression mainly at the post-transcription level.More and more evidences demonstrated that miRNA involve in the regulation of melanogenesis.Herein,it was reviewed in this paper the studies on the discovery and identification of melanin-associated miRNAs,and the research progress of how miRNAs regulate animal coat and skin color.

        microRNA;melanocyte;melanin;coat color;skin color

        10.11843/j.issn.0366-6964.2016.06.002

        2015-12-22

        四川省科技支撐計劃項目(2013NZ0041;2013NZ0056);四川省科技富民強(qiáng)縣專項行動計劃項目

        巫小倩(1991-),女,四川什邡人,碩士生,主要從事豬遺傳育種研究,E-mail:1097377344@qq.com

        朱礪,教授,博士生導(dǎo)師,主要從事豬遺傳育種研究,E-mail:zhuli7508@163.com; 張順華,博士,碩士生導(dǎo)師,主要從事豬遺傳育種研究,E-mail:363445986@qq.com

        Q343

        A

        0366-6964(2016)06-1086-07

        久久亚洲精品成人av无码网站| 国产毛片一区二区日韩| 亚洲一区二区三区免费的视频| 久久久久久夜精品精品免费啦 | 女人脱了内裤趴开腿让男躁| 永久免费不卡在线观看黄网站| 99国产精品无码专区| 男男做h嗯啊高潮涩涩| 护士的小嫩嫩好紧好爽| 国产成人久久精品77777综合| 精品无码成人片一区二区| 日韩av中文字幕波多野九色 | 亚洲第一看片| av在线男人的免费天堂| 日本视频二区在线观看| 亚洲av成人无码网站…| 国产亚洲欧美精品一区| 亚洲综合小综合中文字幕| 国产高清在线观看av片| 99久久国产露脸精品竹菊传媒| 欧美破处在线观看| 成av人片一区二区久久| 人人妻人人狠人人爽| 欧美日韩综合网在线观看| 人妻少妇无乱码中文字幕| 精品久久av一区二区| 久青草久青草视频在线观看| 亚洲黄色性生活一级片| 亚洲成a人一区二区三区久久| 少妇性俱乐部纵欲狂欢电影| 大地资源网更新免费播放视频| 精选二区在线观看视频| 国产日本精品视频一区二区| 无码毛片视频一区二区本码| 国产乱人伦真实精品视频| 久久久亚洲av午夜精品| 亚洲中文字幕无码中文字| 亚洲国产精品线路久久| 国产av一区仑乱久久精品| 国产av精品一区二区三| 国农村精品国产自线拍|