高慶東,祝旭龍,向俊西,呂毅,李建輝 陜西省人民醫(yī)院 (西安交通大學(xué)第三附屬醫(yī)院) 腫瘤外科,陜西 西安 700682 延安大學(xué)醫(yī)學(xué)院,陜西 延安 76000 西安交通大學(xué)第一附屬醫(yī)院 肝膽外科,陜西 西安 7006
?
基于組織工程研究的可降解支架材料選擇策略
高慶東1,2,祝旭龍1,2,向俊西3,呂毅3,李建輝1
1 陜西省人民醫(yī)院 (西安交通大學(xué)第三附屬醫(yī)院) 腫瘤外科,陜西西安710068
2 延安大學(xué)醫(yī)學(xué)院,陜西延安716000
3 西安交通大學(xué)第一附屬醫(yī)院 肝膽外科,陜西西安710061
高慶東, 祝旭龍, 向俊西, 等. 基于組織工程研究的可降解支架材料選擇策略. 生物工程學(xué)報(bào), 2016, 32(2): 172–184.
Gao QD, Zhu XL, Xiang JX, et al. Strategies to choose scaffold materials for tissue engineering. Chin J Biotech, 2016, 32(2): 172–184.
摘 要:目前,器官或組織移植是治療器官衰竭或大范圍組織缺損唯一長期有效的方法,但存在供體短缺、免疫排斥等問題。組織工程技術(shù)作為一種潛在的替代治療方法,支架材料的選擇是其中具有決定意義的組成部分。組織工程支架材料按其來源可分為天然及其改性修飾材料、人工合成與復(fù)合支架材料3種。組織工程目的就是修復(fù)臨床上的病損組織或器官,并達(dá)到較理想的結(jié)構(gòu)和功能的恢復(fù)。因此組織工程支架也必須從基本性質(zhì)上具有一定的仿生化結(jié)構(gòu)及功能,即“活”支架,這樣才能徹底代替病損組織或器官。通過多種支架材料的優(yōu)化組合 (即材料的復(fù)合),對材料進(jìn)行表面改性、制備工藝優(yōu)化及添加細(xì)胞因子緩釋微球等技術(shù),模擬病損器官組織的特性及周圍環(huán)境,有望打開組織工程的新局面。理想的組織工程支架應(yīng)當(dāng)以臨床需要為根本目的,依靠材料學(xué)、分子生物學(xué)、工程學(xué)等多學(xué)科間的交叉研究,取各家之長,優(yōu)化配比組合,達(dá)到仿生的目的。本課題組前期工作已經(jīng)將骨髓間充質(zhì)干細(xì)胞體外誘導(dǎo)分化為膽管上皮樣細(xì)胞,并設(shè)計(jì)出左旋聚乳酸/聚己內(nèi)酯共聚物(PLCL) 膽道支架,內(nèi)部混有包含生長因子的納米緩釋微球,供細(xì)胞因子的遠(yuǎn)期釋放,支架內(nèi)表面涂有基質(zhì)膠/膠原混合層,且膠內(nèi)加入bFGF、EGF,提供誘導(dǎo)因子的早期釋放。將誘導(dǎo)細(xì)胞與PLCL膽道支架復(fù)合,制備組織工程膽管。文中綜述了現(xiàn)存各類支架材料的研究狀況,簡單介紹了制備工藝、表面修飾等影響支架性能的因素,力求探索組織工程支架材料的選擇策略。
關(guān)鍵詞:組織工程,支架材料,生物可降解材料,緩釋微球,制備工藝
Received: May 15, 2015; Accepted: August 3, 2015
Supported by: National Natural Science Foundation of China (No. 81170455), Science and Technology Co-Ordinating Innovative Engineering Projects of Shaanxi Province of China (No. 2011KJCL03-13).
國家自然科學(xué)基金 (No. 81170455), 陜西省科技統(tǒng)籌創(chuàng)新工程項(xiàng)目 (No. 2011KJCL03-13) 資助。
網(wǎng)絡(luò)出版時(shí)間:2015-08-20網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20150820.0953.001.html
對于器官衰竭或特殊部位的組織損傷,器官或組織移植是唯一長期有效的治療手段,然而供體器官來源有限,使得移植治療不能廣泛地開展[1]。組織工程的發(fā)展給這一醫(yī)學(xué)難題帶來了希望,美國科學(xué)基金會1987年提出“組織工程”的概念,1993年又有學(xué)者對其進(jìn)行了系統(tǒng)地闡述:組織工程是應(yīng)用生物學(xué)和工程學(xué)的原理技術(shù),利用種子細(xì)胞和支架的復(fù)合,構(gòu)建有活力的支架,對病損組織器官進(jìn)行修復(fù)、重建,甚至永久替代,達(dá)到組織器官結(jié)構(gòu)甚至功能上的理想修復(fù),即構(gòu)建了功能化的替代物[2]。目前組織工程技術(shù)已廣泛應(yīng)用于心臟瓣膜、氣管、皮膚、軟骨、骨、肌腱、血管、角膜、神經(jīng)、肝臟和胰腺等各種器官組織的研究當(dāng)中[3]。組織工程三大基本要素是種子細(xì)胞、支架材料及促進(jìn)種子細(xì)胞定向分化的信號分子[4]。支架為細(xì)胞的粘附生長提供支撐和微環(huán)境,植入后與機(jī)體直接接觸[5-6],其重要性不言而喻。支架的高孔隙率及連通率有利于細(xì)胞在支架上的生長,提供良好的細(xì)胞營養(yǎng)環(huán)境[7]。而支架材料的選擇決定了支架的基本性能,適合細(xì)胞生長的支架材料可以充當(dāng)細(xì)胞外基質(zhì)的角色,為種子細(xì)胞提供了粘附、生長以及分化的場所。隨著材料科學(xué)日新月異的發(fā)展,各種適合細(xì)胞生長的材料層出不窮。雖然人體不同組織器官所需的支架性能不盡相同,但總的來說,理想的支架材料應(yīng)具備:1) 良好的生物相容性,即對種子細(xì)胞及機(jī)體無毒,不會帶來傳染病、排斥反應(yīng)等不良影響;2) 生物活性和可降解性,即攜帶有相應(yīng)的信號分子、蛋白配體或受體,支架可降解,且降解速率與不同組織細(xì)胞再生的速度相匹配;3) 足夠的機(jī)械強(qiáng)度和柔韌性;4) 適合的三維空間多孔結(jié)構(gòu),具有一定的孔隙率及良好的孔連通性,孔徑大小適宜病損組織器官細(xì)胞生長,支架材料的界面良好,適宜細(xì)胞生長;5)批量生產(chǎn)性,保證材料來源充足、支架易加工成型、易消毒、可批量生產(chǎn)。
組織工程支架材料按其來源可分為天然及其改性修飾材料、人工合成與復(fù)合支架材料3種。滌綸、聚四氟乙烯以及各種合金等不可降解材料,雖然有力學(xué)性能良好、易于消毒等優(yōu)點(diǎn),但會不同程度地引起機(jī)體纖維增生反應(yīng),形成堅(jiān)固的生物被膜,阻礙了細(xì)胞間營養(yǎng)物質(zhì)的交換,不利于細(xì)胞生長。因此本文重點(diǎn)關(guān)注生物可降解材料,從材料學(xué)的角度列舉了近年來適合細(xì)胞貼附生長的可降解支架,并簡單介紹了制備工藝、預(yù)處理等影響其性能的因素,以期對組織工程支架材料的選取提供思路。
天然支架材料按其構(gòu)成主要分為多糖類和蛋白質(zhì)類兩大類,包括膠原、明膠、纖維蛋白、纖維素、海藻酸鹽、殼聚糖、膠原蛋白、透明質(zhì)酸及其衍生物等。這類材料自身能夠促進(jìn)細(xì)胞的粘附、分化,利于細(xì)胞生長,且具有良好的生物相容性;缺點(diǎn)也很明顯,如不能批量生產(chǎn),力學(xué)性能不佳,降解速率不易控制,性能變化與結(jié)構(gòu)變化不成比例,還有可能帶來異種生物免疫相關(guān)的問題。
殼聚糖是甲殼素脫乙酰后的陽離子衍生物,而甲殼素大量存在于昆蟲、甲殼綱動物的外殼及真菌的細(xì)胞壁中,是僅次于纖維素的第二大可再生資源。這類材料無毒、無免疫原性,加之來源充足、體內(nèi)可降解以及具有良好的可塑性,已被開發(fā)成多種組織工程支架。將殼聚糖作為神經(jīng)組織工程支架,與神經(jīng)細(xì)胞體外共培養(yǎng),結(jié)果顯示神經(jīng)細(xì)胞能夠較好地在其表面生長[8]。對殼聚糖進(jìn)行預(yù)處理后會獲得更利于組織再生修復(fù)的一些性能。Liu等[9]將全氟磺酸涂層的殼聚糖支架植入大鼠皮下,組織學(xué)觀察100 d后,周圍僅有少數(shù)巨噬細(xì)胞浸潤,而主要促進(jìn)血管新生,證明涂層后支架的生物相容性得到進(jìn)一步提高。
膠原蛋白廣泛存在于細(xì)胞外基質(zhì)和結(jié)締組織中,是動物體內(nèi)含量最豐富的蛋白質(zhì)。膠原蛋白適合多種細(xì)胞貼附生長,能夠促進(jìn)細(xì)胞增殖和分化[10]。但其力學(xué)性能較差,須與其他材料復(fù)合來提高機(jī)械強(qiáng)度,如復(fù)合生物活性玻璃的膠原蛋白支架,不僅提高了支架的機(jī)械強(qiáng)度,而且利于羥基磷灰石生成,可以較好地應(yīng)用于骨組織工程領(lǐng)域[11]。膽總管損傷時(shí)膽管上皮細(xì)胞再生速率約為1個(gè)月左右,Li等[12]把結(jié)合堿性成纖維細(xì)胞生長因子 (bFGF) 的膠原薄膜制備成膽管補(bǔ)片并植入豬的體內(nèi),觀察4周時(shí)已有散在的膽管上皮細(xì)胞新生;12周時(shí)再生膽管已與自體組織很好地集成 (圖1)。Li團(tuán)隊(duì)[13]制備的絲素蛋白/明膠復(fù)合支架作為肝臟組織工程支架,其仿生微血管網(wǎng)狀結(jié)構(gòu)滿足了肝臟組織細(xì)胞的生長代謝,植入大鼠體內(nèi)發(fā)現(xiàn)細(xì)胞在支架表面生長良好。Yin等[14]運(yùn)用冷凍干燥技術(shù)制備絲素/明膠支架,初期實(shí)驗(yàn)測定了支架的孔隙率、結(jié)構(gòu)穩(wěn)定性等參數(shù),指出絲素的加入增加了支架的結(jié)構(gòu)穩(wěn)定性,有望運(yùn)用于牙周膜組織工程。
透明質(zhì)酸是一種高分子多糖,是細(xì)胞外基質(zhì)的主要成分,有營養(yǎng)細(xì)胞、促進(jìn)細(xì)胞分化的生理作用。Tan等[15]制備了注射型透明質(zhì)酸脂肪組織工程支架,支架與脂肪干細(xì)胞復(fù)合后植入動物體內(nèi),觀察細(xì)胞的存活情況,發(fā)現(xiàn)細(xì)胞與支架表現(xiàn)出良好的交互作用。透明質(zhì)酸還可以激活某些特異性受體,如CD44、ICAM-l,調(diào)節(jié)細(xì)胞粘附生長,但其結(jié)構(gòu)疏松,力學(xué)性能不佳,且可加工性較差,很大程度上限制了它的使用。如對透明質(zhì)酸進(jìn)行改性修飾,或與其他材料復(fù)合,將是改善其材料力學(xué)性能的有效方法。
圖1 膠原膽管補(bǔ)片長2.0 cm,寬0.6 cm,厚度為1.0 mm[12]Fig. 1 The collagen patch used in extrahepatic bile duct regeneration was 2.0 cm×0.6 cm, and 1.0 mm thick[12].
人工合成材料包括聚乳酸 (PLA)、聚羥基乙酸 (又名聚乙醇酸,PGA)、聚己內(nèi)酯 (PCL)以及它們相互之間的聚合物等。這類材料具有力學(xué)性能佳、可加工性好、降解速率可控、可批量生產(chǎn)、結(jié)構(gòu)性能可修飾等優(yōu)點(diǎn)[16],缺點(diǎn)是缺乏與種子細(xì)胞相互作用的信號轉(zhuǎn)導(dǎo)蛋白及其受體或配體。
PLA、PGA及PLA/PGA共聚物 (PLGA) 等人工合成材料具有較好的生物相容性和可降解性。PLA無毒、生物相容性良好、強(qiáng)度高、易于加工,在體內(nèi)3–6個(gè)月降解完全,被認(rèn)為是最具前景的醫(yī)用材料[17]。2001年有國外醫(yī)生將PLA支架用于治療臨床惡性梗阻性黃疸患者,膽管維持通暢達(dá)9個(gè)月,但部分患者出現(xiàn)支架移位、支架表面細(xì)菌沉積堵塞等問題[18]。整形醫(yī)師認(rèn)為,接種脂肪干細(xì)胞的PGA支架能夠聚積脂質(zhì),可用于脂肪移植等工作。Fu等[19]將脂肪干細(xì)胞來源的輸尿管上皮細(xì)胞接種到PGA支架表面,細(xì)胞生長狀況良好,并成功用于實(shí)驗(yàn)犬的輸尿管修復(fù)。PLGA由PLA和PGA共聚得到,共聚物的降解速率取決于PLA和PGA的混合比例。PLA 與PGA的比例為50∶50時(shí)PLGA降解速率最快,其余比例則PGA含量越高降解越快。PLGA是FDA批準(zhǔn)了的一種人體植入性材料,其機(jī)械性能良好,加工過程易受控制,已經(jīng)有可吸收縫線、生物骨水泥等多種制品應(yīng)用于臨床[20-21]。
PCL是ε-己內(nèi)酯單體開環(huán)聚合形成的產(chǎn)物,在人體中可自行降解,終產(chǎn)物為二氧化碳和水;且有無毒、理化性質(zhì)穩(wěn)定、生物相容性良好及較好的柔韌性等優(yōu)點(diǎn)[22],但體內(nèi)完全降解約需2–3年之久。左旋聚乳酸/PCL共聚物 (PLCL),平衡了材料的支撐性能和柔韌性,體內(nèi)降解時(shí)間可縮短為6–12個(gè)月。Larranaga等[23]將PLCL支架復(fù)合生物活性玻璃,浸泡于代血漿溶液,28 d時(shí)觀察到支架上的鈣磷沉積多于對照組,指出它可能是較好的骨組織工程支架,但有待后續(xù)體內(nèi)實(shí)驗(yàn)研究。Miyazawa團(tuán)隊(duì)致力于人工膽管的研究,利用PGA加強(qiáng)的PLA/PCL共聚物制成膽管補(bǔ)片或支架,修復(fù)豬的膽道缺損,并分別從血清學(xué)、影像學(xué)和組織學(xué)檢驗(yàn)了修復(fù)效果。結(jié)果顯示,實(shí)驗(yàn)豬的肝功能較術(shù)前無明顯變化,膽道造影未見狹窄、堵塞,4–6個(gè)月出現(xiàn)新生膽管上皮細(xì)胞以及腺體樣結(jié)構(gòu),6個(gè)月后支架完全降解。隨后,他們又將豬的自體骨髓細(xì)胞接種于支架內(nèi)表面,間置修復(fù)膽道,修復(fù)結(jié)果與未接種細(xì)胞的對照組無明顯差異,可能是由于細(xì)胞接種于支架前未經(jīng)過純化、擴(kuò)增,造血細(xì)胞占多數(shù),間充質(zhì)干細(xì)胞含量較少[24-29]。
由于天然材料和人工合成材料各具特點(diǎn),如果取長補(bǔ)短,組合成復(fù)合材料,則可能表現(xiàn)出優(yōu)越的性能,兼?zhèn)涮烊徊牧系挠H細(xì)胞性與人工合成材料良好的力學(xué)性能。此類材料復(fù)合形式多樣,可以將多種天然材料復(fù)合,也可以是多種人工合成材料復(fù)合,總的來說各具優(yōu)點(diǎn)。日本研究者將PLA/PCL或聚丙烯/網(wǎng)狀膠原用于制備可降解膽管假體,間置修復(fù)膽管缺損,實(shí)驗(yàn)動物經(jīng)過6個(gè)月的觀察,膽道通暢,無狹窄、膽漏,組織再生良好[30-31]。Tian等[32]通過乳液靜電紡絲技術(shù)制備PLCL/明膠復(fù)合支架,并添加血管生成因子,接種間充質(zhì)干細(xì)胞體外培養(yǎng)20 d顯示支架與細(xì)胞有良好的交互作用;利用其修復(fù)大鼠的室壁心肌組織,免疫染色結(jié)果提示復(fù)合支架較單純PLCL支架表達(dá)更多的肌動蛋白和肌球蛋白表型。Fu等[33]對比了膠原/PLCL與明膠/PCL復(fù)合支架,MTT及掃描電鏡結(jié)果顯示人臍動脈平滑肌細(xì)胞在兩種支架上均能良好地粘附生長,大鼠體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)種子細(xì)胞在膠原/PLCL復(fù)合支架的存活情況優(yōu)于明膠/PCL復(fù)合支架,推測可能是PCL降解過于緩慢導(dǎo)致殘留物質(zhì)影響了細(xì)胞的生長。Jin等[34]采用電紡工藝制備PLCL/膠原蛋白/透明質(zhì)酸復(fù)合支架,并添加神經(jīng)生長因子,大鼠實(shí)驗(yàn)顯示其可以促進(jìn)神經(jīng)細(xì)胞感覺功能的恢復(fù)。Pan等[35]制備PLCL/明膠/右旋糖酐復(fù)合支架,支架內(nèi)添加波洛沙姆微球,將脂肪干細(xì)胞接種于支架表面,體外培養(yǎng)14 d,細(xì)胞生長良好,存活數(shù)量與平面培養(yǎng)無統(tǒng)計(jì)學(xué)差異。
礦化膠原即膠原/羥基磷灰石復(fù)合材料,以膠原纖維蛋白分子為模板,調(diào)制鈣磷鹽沉積到有序排列的膠原纖維上。此類材料具有類似骨細(xì)胞外基質(zhì)的分層結(jié)構(gòu),可降解、生物相容性好[36],廣泛應(yīng)用于骨組織工程;但是這種材料具有不可塑性,無法依據(jù)骨缺損形狀進(jìn)行充填重塑,亦即單純礦化膠原材料無法制備出注射型支架。我國學(xué)者[37]早在2002年就制備出礦化膠原材料,并研究了其基本特性。兩年后,Lian 等[36]制備出礦化膠原/PLA復(fù)合支架,包含有重組人骨形成蛋白-2,并且接種了大鼠成骨細(xì)胞,用于修復(fù)實(shí)驗(yàn)兔前肢骨缺損。接種1周后細(xì)胞遷移、生長入支架內(nèi),12周時(shí)缺損被完整修復(fù),部分支架被再生骨組織替代。Chen等[38]設(shè)計(jì)了注射型殼聚糖/礦化膠原復(fù)合材料,接種小鼠成骨細(xì)胞,用于修復(fù)不規(guī)則骨缺損。相比于單純的殼聚糖組,雖然復(fù)合材料的細(xì)胞存活數(shù)目并無差異,但細(xì)胞的成骨基因表達(dá)水平較高,證明復(fù)合材料能夠更好地促進(jìn)成骨細(xì)胞分化、成熟及礦化。Li等[39]制備了不同組分比的礦化膠原支架,并與小鼠間充質(zhì)干細(xì)胞體外共培養(yǎng),發(fā)現(xiàn)膠原與羥基磷灰石的比例為80∶20或50∶50時(shí)細(xì)胞增殖能力最強(qiáng)。
圖2 掃描電鏡觀察[40](A:細(xì)胞在純膠原支架上的生長情況;B:細(xì)胞在碳納米管涂層的膠原支架上的生長情況)Fig. 2 SEM observation[40]. (A) The growth of cells in the pure collagen scaffold. (B) The growth of cells in the carbon nanotube-coated collagen scaffold.
4.1材料的預(yù)處理
材料的預(yù)處理指材料植入人體前,為了進(jìn)一步提高其性能預(yù)先所做的處理,包括涂層處理、表面修飾及包被細(xì)胞因子等。表面涂層是最常見的預(yù)處理方法,如用天然材料涂層處理PLGA支架能提高種子細(xì)胞在其表面的粘附生長能力。納米級別的材料涂層由于其高比表面積更是有明顯的促細(xì)胞粘附生長的作用,Hirata 等[40]在膠原支架表面作碳納米管涂層修飾,結(jié)果其表面細(xì)胞的粘附增殖能力明顯優(yōu)于無涂層的支架 (圖2)。表面修飾又叫表面改性、表面生物功能化,目的是引入具有細(xì)胞識別功能的物質(zhì),提高支架的促細(xì)胞粘附生長作用,其方法包括化學(xué)改性法、等離子體法、自組裝單分子層法、雜化改性法等。如引入膠原、殼聚糖、海藻酸鹽等天然材料,可以提供其包含的細(xì)胞識別信號;引入氨基酸聚合物,其側(cè)鏈的氨基酸序列可供細(xì)胞識別。Boccafoschi等[41]用多肽對左旋聚乳酸支架進(jìn)行表面修飾,觀察到其表面接種的大鼠室壁肌細(xì)胞C2C12生長良好,細(xì)胞能夠較好表達(dá)收縮蛋白,表明心肌細(xì)胞保留了正常的收縮功能。利用氧等離子體進(jìn)行表面修飾可以增加材料的親水性,Andreas等[42]用氧等離子體處理電紡PCL支架,與小鼠成纖維細(xì)胞系NIH 3T3細(xì)胞共培養(yǎng),觀察了5 d,細(xì)胞數(shù)量平穩(wěn)上升并保持了較好的活性。支架的預(yù)處理還包括將一些細(xì)胞因子如vEGF、HGF等,包被于可降解材料或制成微球,將微球與支架材料相混合,隨著支架的降解,細(xì)胞因子被逐漸釋放出來,可以促進(jìn)工程組織或細(xì)胞的存活、成熟或分化。大腦局部缺血時(shí),由于閉塞動脈無法營養(yǎng)其范圍內(nèi)的神經(jīng)細(xì)胞,致使神經(jīng)細(xì)胞功能受損難以恢復(fù)。Ju等[43]制備了一種復(fù)合人臍動脈上皮細(xì)胞和神經(jīng)干細(xì)胞的透明質(zhì)酸支架,支架內(nèi)包含血管內(nèi)皮生長因子和血管生成素-1兩種緩釋微球。將該支架植入腦缺血大鼠模型 (即大腦中動脈閉塞模型) 腦內(nèi)缺血區(qū)域,與對照組(支架不包含血管內(nèi)皮生長因子和血管生成素-1兩種緩釋微球) 相比,組織學(xué)檢查發(fā)現(xiàn)實(shí)驗(yàn)組支架周圍有更多新生血管形成,且種子細(xì)胞在該支架上生長更旺盛、數(shù)量更多,間接達(dá)到了修復(fù)神經(jīng)細(xì)胞功能的目的。本課題組將包含EGF、HGF的納米緩釋微球與PLCL復(fù)合制成膽道支架 (支架內(nèi)表面涂有基質(zhì)膠/膠原混合層,膠內(nèi)加入bFGF、EGF,提供誘導(dǎo)因子的早期釋放),隨著支架的降解可以保證生長因子較長時(shí)間的貫續(xù)釋放 (圖3)。
圖3 包埋生長因子納米緩釋微球的PLCL支架Fig. 3 PLCL scaffold that embeddinged growth factors sustained-release nano-microspheres.
4.2支架的制備工藝
支架的制備工藝直接影響其形態(tài)結(jié)構(gòu)、機(jī)械性能、孔隙率及孔隙貫通率,間接影響了種子細(xì)胞在支架上的粘附增殖[44]。支架制備技術(shù)目前呈現(xiàn)出較為多元化的局面,傳統(tǒng)技術(shù)包含微球堆積法、溶液澆鑄/粒子瀝濾法、熱致相分離法、靜電紡絲法及快速成型法等;新興的超臨界技術(shù)包括超臨界CO2發(fā)泡法、超臨界CO2靜電紡絲法、離子液體聚合物混合干燥法等。超臨界流體性質(zhì)介于液體和氣體之間,通過改變流體溫度和壓力就可以控制支架的一些性能。
熱致相分離技術(shù)能夠制備出納米級纖維模仿細(xì)胞外基質(zhì) (ECM) 的結(jié)構(gòu)和功能 (ECM中膠原蛋白纖維直徑為50–500 nm)[45],并且可以通過使用不同致孔劑如糖、無機(jī)鹽、石蠟微球等形成適合細(xì)胞遷移生長及營養(yǎng)交換的多孔結(jié)構(gòu)[46]。Wang等[47]通過熱致相分離技術(shù)制備了左旋聚乳酸和PLCL不同質(zhì)量比的小血管支架(血管直徑小于6 mm),接種豬的血管內(nèi)皮細(xì)胞體外培養(yǎng),細(xì)胞保持良好的黏附增殖能力,將其埋植入新西蘭兔皮下,1月后組織切片未發(fā)現(xiàn)炎性細(xì)胞浸潤,支架周圍有新生血管形成。靜電紡絲 (電紡) 技術(shù)能夠簡單且可控地將多種材料混合,制備的納米級纖維支架具有極高的接觸面積,能夠極大地模擬細(xì)胞外環(huán)境,利于細(xì)胞-支架的交互作用[48-49]。Zhao等[50]運(yùn)用電紡技術(shù)制備了 (重組蛛絲蛋白/PCL/明膠)/(重組蛛絲蛋白/PCL/殼聚糖) 雙層小血管支架,與大鼠骨髓間充質(zhì)干細(xì)胞體外共培養(yǎng),5 d后在顯微鏡下觀察到細(xì)胞生長良好,形態(tài)均勻。然而,一些研究者指出電紡技術(shù)制備的支架體積穩(wěn)定性欠佳,可導(dǎo)致支架收縮變小,支架內(nèi)部纖維排列錯(cuò)綜復(fù)雜,孔徑大小不一,制備出的支架之間的一致性較差[51-52]。快速成型技術(shù)最早產(chǎn)生于1987年,使用計(jì)算機(jī)建模,通過逐層添加材料制備出多個(gè)層次,而后再粘結(jié)成型制備出支架。此技術(shù)包括3D打印法、三維生物描繪法及選擇性激光燒結(jié)法等。由于其簡便易行的操作,無需可能有毒的溶劑,精確控制纖維尺寸大小等優(yōu)點(diǎn)引起人們的廣泛關(guān)注[53]。Lee等[54]用快速成型技術(shù)制備了殼聚糖/PCL血管支架,體外實(shí)驗(yàn)證明拉伸強(qiáng)度達(dá)到了正常血管組織的要求。但是,這種技術(shù)設(shè)備要求高,且不易控制孔徑和孔隙率。
此外,Antebi等[55]利用創(chuàng)新的仿生礦化技術(shù)制備礦化膠原支架,這種支架相比于傳統(tǒng)方法制備的支架有著更好的支架-細(xì)胞交互界面和力學(xué)強(qiáng)度。將支架與人的骨髓間充質(zhì)干細(xì)胞共培養(yǎng),26 d時(shí)發(fā)現(xiàn)實(shí)驗(yàn)組細(xì)胞均勻廣泛地生長,對照組細(xì)胞數(shù)量少,且僅生長于塌陷膠原外圍。Wang等[56]應(yīng)用微波輔助原位共沉淀技術(shù)制備礦化膠原支架,指出高濃度膠原和高降溫速率會導(dǎo)致支架孔徑減小、孔隙率降低,希望未來能夠通過改進(jìn)制備方法得到配比參數(shù)更精確的材料,以更好地適應(yīng)各種骨缺損修復(fù)問題。
實(shí)際應(yīng)用中通常是兩種或者多種制備工藝結(jié)合,這樣不同制備工藝之間可以相互補(bǔ)充,能制備出滿足需要的組織工程支架。李好義等[57]將電紡技術(shù)和快速成型技術(shù)相結(jié)合,期望能夠?qū)崟r(shí)動態(tài)監(jiān)測制備過程中支架的孔徑、孔隙率及孔隙貫通情況,后續(xù)實(shí)驗(yàn)有待進(jìn)行。相信隨著將來制備工藝的成熟,組織工程支架的性狀可以高度可控,并愈加接近臨床需要。
生物工程與組織工程結(jié)合,或許能擦出耀眼火花。Maximilian等[58]運(yùn)用細(xì)菌工程及特殊裝置制備了醋酸桿菌纖維素血管支架 (圖4),置換山羊的一側(cè)頸動脈,達(dá)到了50%的遠(yuǎn)期通暢率。雖然結(jié)果遠(yuǎn)達(dá)不到治療標(biāo)準(zhǔn),但卻是一種創(chuàng)新的思路,給組織工程材料領(lǐng)域帶來一抹別樣的色彩。
圖4 醋酸桿菌纖維素血管支架肉眼觀[58]Fig. 4 Macro?scopic view of the vascular scaffold which preparated by using Gluconacetobacter xylinus cellulose[58].
一些新型材料也展示出各自的獨(dú)特性能。可降解聚丙烯延胡索酸酯支架力學(xué)性能優(yōu)異,但是其具有生物惰性,有團(tuán)隊(duì)將彈性蛋白復(fù)合其中,制備了血管支架,實(shí)驗(yàn)結(jié)果顯示其獲得了良好的促細(xì)胞生長作用[59]。有研究者采用靜電紡絲技術(shù)制備了可降解聚丙三醇-十二烷酸酯支架用于神經(jīng)組織工程,這種支架材料特點(diǎn)是具有與神經(jīng)組織相符的力學(xué)強(qiáng)度。將其體外復(fù)合大鼠胚胎干細(xì)胞誘導(dǎo)的神經(jīng)細(xì)胞進(jìn)行培養(yǎng),組織學(xué)觀察顯示細(xì)胞在支架上生長良好[60]。
大多數(shù)生命過程發(fā)生于納米尺度上或者介于納米與微米尺度之間,細(xì)胞在納米級纖維上的分化率明顯高于微米級纖維。納米無機(jī)剛性顆粒與可降解材料復(fù)合,能夠增加大量的界面,使支架力學(xué)性能的剛性與韌性達(dá)到較完美的統(tǒng)一,其高比表面積和孔隙率,有利于細(xì)胞接種、遷移和增殖[61]。具有中空管狀結(jié)構(gòu)的超親水性的二氧化鈦納米管已被用于藥物載體、骨缺損的修復(fù)以及其他生物工程領(lǐng)域。Nuffer等[62]將納米材料制備的支架與成骨細(xì)胞復(fù)合,與非納米材料支架相比,納米材料支架的高表面效應(yīng)使蛋白更好的吸附,促進(jìn)了細(xì)胞粘附增殖。然而有研究指出,用于醫(yī)學(xué)領(lǐng)域的納米材料作為種植體具有潛在不良反應(yīng),并提出“納米毒理學(xué)”的概念,引起了較大的爭議。有人反駁指出作為納米材料的碳納米管本身無細(xì)胞毒性,而是其純度不足所致,因?yàn)轶w外實(shí)驗(yàn)證明細(xì)胞在碳納米管上粘附、生長良好,接種神經(jīng)細(xì)胞后還可以觀察到神經(jīng)樹突的延伸[63]。
理想的組織工程支架材料應(yīng)當(dāng)模擬細(xì)胞生長的微環(huán)境,釋放相應(yīng)的生長因子,促進(jìn)細(xì)胞粘附、增殖及分化,促進(jìn)新生血管的形成,給再生細(xì)胞提供足夠的營養(yǎng)。材料仿生化即模仿ECM的組分、結(jié)構(gòu)以達(dá)到類似的功能,這有賴于對ECM結(jié)構(gòu)、功能及機(jī)制的深入研究。未來支架材料的制備必須要參考材料科學(xué)、分子生物學(xué)、生命科學(xué)、工程學(xué)等多領(lǐng)域的知識,學(xué)科之間互相滲透、借鑒,取長補(bǔ)短,優(yōu)化組合,使支架更接近機(jī)體自身組織的生物學(xué)特性。更加注重細(xì)胞與支架的復(fù)合,提高支架的生物相容性,使其更好地為細(xì)胞服務(wù)。通過聯(lián)合種植多種細(xì)胞,建立細(xì)胞層次,依靠實(shí)質(zhì)與間質(zhì)細(xì)胞之間的相互作用,建立高度仿生化組織工程器官,最大限度貼近組織生理結(jié)構(gòu),貼近臨床實(shí)際[64]。還要關(guān)注支架的生物安全性,如降解產(chǎn)物的毒性問題[65],支架置入的可操作性以及其應(yīng)用的方便程度等問題。
圖5 將骨髓間充質(zhì)干細(xì)胞誘導(dǎo)成為膽管上皮樣細(xì)胞 (A: CK7; B: CK19; C: Merge)[67]Fig. 5 Bone marrow mesenchymal stem cells were differentiated into bile canaliculi like cells (A: CK7; B: CK19; C: Merge)[67].
圖6 將誘導(dǎo)細(xì)胞接種于支架內(nèi)表面體外培養(yǎng)Fig. 6 Inoculated the induced cells to the scaffold internal surface and co-cultured in vitro.
圖7 復(fù)合細(xì)胞的PLCL膽管支架的細(xì)胞活性染色[67]Fig. 7 Cell activity test: bone marrow mesenchymal stem cells that were seeded in the PLCL bile duct scaffold[67].
本課題組致力于組織工程膽管的研究[66],力求將PLCL與骨髓間充質(zhì)干細(xì)胞相復(fù)合。另外,課題組在PLCL膽道支架內(nèi)部混有包含生長因子的納米緩釋微球,支架內(nèi)表面涂有基質(zhì)膠/膠原混合層,膠內(nèi)加入bFGF、EGF,提供誘導(dǎo)因子的早期釋放。在前期工作中,我們已經(jīng)將骨髓間充質(zhì)干細(xì)胞體外誘導(dǎo)分化為膽管上皮樣細(xì)胞[67](圖5)。將誘導(dǎo)細(xì)胞接種于膽管支架內(nèi)表面進(jìn)行培養(yǎng),于培養(yǎng)的1、3、7 d對細(xì)胞進(jìn)行死活染色,活細(xì)胞平均比例分別為87.3%、87.6%、85.3% (圖6、7),表明細(xì)胞在支架上生長基本能夠保持活性以及必要的營養(yǎng)交換。動態(tài)培養(yǎng)14 d,將材料進(jìn)行冰凍切片,免疫熒光檢測表明細(xì)胞陽性染色CK7、CK19,陰性染色ALB、AFP、CK18,表明細(xì)胞在三維培養(yǎng)過程中進(jìn)一步成熟。Ki67染色發(fā)現(xiàn),5.5%的細(xì)胞陽性染色,證明細(xì)胞仍保留了一定的增殖功能。
REFERENCES
[1] Clark DC. Esophageal atresia and tracheoesophageal fistula. Am Fam Physician, 1999, 59(4): 910–916.
[2] Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110): 920–926.
[3] Wu L, Zhang H, Zhang J, et a1. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compreession molding based on flexible-rigid combined mould. Tissue Eng, 2005, 11(7/8): 1105–1114.
[4] Sundaram S, Niklason LE. Smooth muscle and other cell sources for human blood vessel engineering. Cell Tissues Organs, 2012, 195(1/2): 15–25.
[5] Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010, 28(3): 325–347.
[6] Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 2012, 33(10): 2843–2857.
[7] Yan LP, Oliveira JM, Oliveira AL, et al. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomat, 2012, 8(1): 289–301.
[8] Freier T, Montenegro R, Koh HS, et a1. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials, 2005, 26(22): 4624–4632.
[9] Liu BJ, Ma LN, Su J, et al. Biocompatibility assessment of porous chitosan-nafion and chitosan-PTFE composites in vivo. J Biomed Mater Res A, 2014, 102(6): 2055–2060.
[10] Chomchalao P, Pongcharoen S, Sutheerawattananonda M, et al. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng on line, 2013, 12: 28.
[11] Sarker B, Hum J, Nazhat SN, et al. Combining collagen and bioactive glasses for bone tissue engineering: a review. Adv Healthc Mater, 2015, 4(2): 176–194.
[12] Li Q, Tao L, Chen B, et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF. Biomaterials, 2012, 33(17): 4298–4308.
[13] Li X, He JK, Liu YX, et al. Biomaterial scaffolds with biomimetic fluidic channels for hepatocyte culture. J Bionic Eng, 2013, 10(1): 57–64.
[14] Yin LH, Peng P, Mu X, et al. Preparation and characterization of three dimensional porous silk fibroin/gelatin composite scaffolds. J Funct Materials, 2013, 44(23): 3388–3391 (in Chinese).
超磁透析保護(hù)及原位生態(tài)修復(fù)技術(shù)是四川環(huán)能德美股份有限公司提出的一種全新的湖泊和城市河道等景觀水體污染治理的方法。超磁透析技術(shù)可以高效去除水體中懸浮物、磷、藻類和非溶解性COD,大幅度改善水體的透明度,快速削減富營養(yǎng)鹽,恢復(fù)景觀水質(zhì);再與原位生態(tài)修復(fù)技術(shù)相結(jié)合,使河湖水生態(tài)系統(tǒng)的功能得到有效恢復(fù)。根據(jù)技術(shù)的特點(diǎn),可在水污染應(yīng)急處理、河流水質(zhì)凈化處理、河流“雙提”工程(提水位、提水質(zhì)、促流動)、湖泊水體透析凈化、生態(tài)濕地公園水質(zhì)改善與保持等五個(gè)領(lǐng)域得到廣泛應(yīng)用。
殷麗華, 彭鵬, 牟星, 等. 絲素/明膠三維多孔支架的構(gòu)建及其結(jié)構(gòu)和性能表征. 功能材料, 2013, 23(44): 3388–3391.
[15] Tan HP, Ramirez CM, Miljkovic N, et al. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 2009, 30(36): 6844–6853.
[16] Li J, Stayshich RM, Meyer TY. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J Amer Chem Soc, 2011, 133(18): 6910–6913.
[17] L?w K, Knobloch T, Wagner S, et al. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells. Nanotechnology, 2011, 22(24): 245102–245114.
[18] Haber GB, Freeman ML, Bedford R, et al. A prospective multi-center study of a bioabsorbable biliary wallstent (BAS) in 50 patients with malignant obstructive jaundice (MOJ). Gastrointest Endosc, 2001, 53(5): AB121.
[19] Fu Q, Deng CL, Zhao RY, et al. The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras. Biomaterials, 2014, 35(1): 105–112.
[20] Meyer F, Wardale J, Best S, et al. Effects of lacticacid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure. J Orthopaedic Res, 2012, 30(6): 864–871.
[21] Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci, 2014, 15(3): 3640–3659.
[23] Larranaga A, Aldazabal P, Martin FJ, et al. Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polym Degradat Stabil, 2014, 110: 121–128.
[24] Miyazawa M, Torii T, Toshimitsu Y, et al. A tissue engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant, 2005, 5(6): 1541–1547.
[25] Aikawa M, Miyazawa M, Okada K, et al. Regeneration of extrahepatic bile duct possibility to clinical application by recognition of the regenerative process. J Smooth Muscle Res, 2007, 43(6): 211–218.
[26] Aikawa M, Miyazawa M, Okada K, et al. Development of an artificial bile duct made of bioabsorbable polymer to be used for treatment of biliary stenosis. Gastroenterology, 2008, 134(4): A805.
[27] Aikawa M, Miyazawa M, Okamoto K, et al. A novel treatment for bile duct injury with a tissue-engineered bioabsorbable polymer patch. Surgery, 2010, 147(4): 575–580.
[28] Aikawa M, Miyazawa M, Okamoto K, et al. An extrahepatic bile duct grafting using a bioabsorbable polymer tube. J Gastrointest Surg, 2012, 16(3): 529–534.
[29] Miyazawa M, Aikawa M, Okada K, et al. Regeneration of extrahepatic bile ducts of tissue engineering with a bioabsorbable polymer. J Artif Organs, 2012, 15(1): 26–31.
[30] Nakashima S, Nakamura T, Miyagawa K, et al. Insitutissue engineering of the bile duct using polypropylene mesh-collagen tubes. Int J Artific Org, 2007, 30(1): 75–85.
[31] Tashiro H, Ogawa T, Itamoto T, et al. Synthetic bioabsorbable stent material for duct-to-duct biliary reconstruction. J Surgical Res, 2009, 151(1): 85–88.
[32] Tian LL, Prabhakaran MP, Ding X, et al. Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells. J Mater Sci: Mater Med, 2013, 24(11): 2577–2587.
[33] Fu W, Liu ZL, Feng B, et al. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomed, 2014, 9(1): 2335–2344.
[34] Jin J, Limburg S, Joshi SK, et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor. Tissue Eng: Part A, 2013, 19(20): 2138–2164.
[35] Pan JF, Liu NH, Sun H, et al. Preparation and characterization of electrospun PLCL/poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS ONE, 2014, 9(11): e112885.
[36] Liao SS, Cui FZ, Zhang W, et al. Hierarehieally biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res Part B: APPl Biomater, 2004, 69(2): 158–165.
[37] Feng QL, Cui FZ, Zhang W. Nano-hydroxyapatite/ collagen composite for bone repair. Acta Acad Med Sin, 2002, 24(2): 124–128 (in Chinese).
馮慶玲, 崔福齋, 張偉. 納米羚基磷灰石/膠原骨修復(fù)材料. 中國醫(yī)學(xué)科學(xué)院學(xué)報(bào), 2002, 24(2): 124–128.
[38] Chen Y, Huang Z, Li XM, et al. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagenscaffold. J Nanomaterials, 2012, 2012: 40108.
[39] Li N, Hans M, Ren YF. Porous collagen-hydroxyatite scaffolds with mesenchymal stem cells for bone regeneration. J Oral Implantol, 2015, 41(1): 45–49.
[40] Hirata E, Uo M, Nodasaka Y, et al. 3D collagen scaffolds coated with multiwalled carbon nanotubes: initial cell attachment to internal surface. J Biomed Mater Res B: Appl Biomater, 2010, 93B(2): 544–550.
[41] Boccafoschi F, Fusaro L, Botta M, et al. Arginine-glycine-glutamine and serine-isoleucinelysine-valine-alanine-valine modified poly (L-lactide) films: bioactive molecules used for surface grafting to guide cellular contractile phenotype. Bionterphases, 2014, 9(2): 029002.
[42] Haukas A. Electrospun polycaprolactone nanofiber scaffolds for tissue engineering [D]. Arkansas: University of Arkansas, 2012.
[43] Ju RK, Wen YJ, Gou RB, et al. The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse. Cell Transplantat, 2014, 23(S1): S83–S95.
[44] Jeon H, Simon CG, Kim G. A mini-review: cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Materials Res Part B: Appl Biomater, 2014, 102(7): 1580–1594.
[45] Xie CQ, Hu J, Ma HY, et al. Three-dimensional growth of iPS cell-derived smooth muscle cells on nanofibrous scaffolds. Biomaterials, 2011, 32(19): 4369–4375.
[46] Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem, 2011, 21(28): 10243–10251.
[47] Wang WZ, Hu JW, He CL, et al. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. J Biomed Materials Res Part A, 2015, 103(5): 1784–1797.
[48] Giusca CE, Perrozzi F, Melios C, et al. Electrostatic transparency of graphene oxide sheets. Carbon, 2015, 86(4): 188–196.
[49] Shuakat MN, Lin T. Recent developments in electrospinning of nanofiber yarns. J Nanosci Nanotechnol, 2014, 14(2): 1389–1408.
[50] Zhao L, Xu YL, He M, et al. Preparation of spider silk protein bilayer small-diameter vascular scaffold and its biocompatibility and mechanism research. Comp Interf, 2014, 21(9): 869–884.
[51] Huang C, Geng XH, Ke QF, et al. Preparation of composite tubular grafts for vascular repair via electrospinning. Progr Nat Sci: Mater Int, 2012, 22(2): 108–114.
[52] Ahmed M, Ghanbari H, Cousins BG, et al. Small caliber polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: influence of porosity on the structure, haemocompatibility and mechanical properties. Acta Biomater, 2011, 7(11): 3857–3867.
[53] Tu TY, Wang Z, Bai J, et al. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Adv Healthc Mater, 2014, 3(4): 609–616.
[54] Lee SJ, Heo DN, Park JS, et al. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys, 2015, 17(5): 2996–2999.
[55] Antebi B, Cheng XG, Harris JN, et al. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng: Part C, 2013, 19(7): 487–496.
[56] Wang JC, Liu CZ. Biomimetic collagen/hydroxyapatite composite scaffolds: fabrication and characterizations. J Bionic Eng, 2014, 11(4): 600–609.
[57] Li HY, Liu Y, He XT, et al. Electrospinning technology in tissue engineering scaffolds. Chin J Biotech, 2012, 28(1): 15–25 (in Chinese).
李好義, 劉勇, 何雪濤, 等. 應(yīng)用于組織工程支架制備的電紡技術(shù). 生物工程學(xué)報(bào), 2012, 28(1): 15–25.
[58] Scherner M, Reutter S, Klemm D, et al. In vivoapplication of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res, 2014, 189(2): 340–347.
[59] Barenghi R, Beke S, Romano I, et al. Elastin-coated biodegradable photopolymer scaffolds for tissue engineering applications. Biomed Res Int, 2014, 2014: 624645.
[60] Dai XZ, Huang YC. Electrospun fibrous scaffolds of poly (glycerol-dodecanedioate) for engineering neural tissues from mouse embryonic stem cells. J Vis Exp, 2014, 18(88): e51587.
[61] Park S, Im GI. Stem cell responses to nanotopography. J Biomed Mater Res Part A, 2015, 103(3): 1238–1245.
[62] Nuffer JH, Siegel RW. Nanostructure-biomolecule interactions: implications for tissue regeneration and nanomedicine. Tissue Eng: Part A, 2010, 16(2): 423–430.
[63] Galvan-Garcia P, Keefer EW, Yang F, et al. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym Ed, 2007, 18(10): 1245–1261.
[64] Del Gaudio C, Baiguera S, Ajalloueian F, et al. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs? J Biomed Mater Res Part A, 2014, 102(7): 2427–2447.
[65] Yildirimer L, Seifalian AM. Three-dimensional biomaterial degradation-material choice, design and extrinsic factor considerations. Biotechnol Adv, 2014, 32(5): 984–999.
[66] Zhu XL, Yan T, Lü Y, et al. Repairing bile duct defects while preserving the sphincter of oddi. Chin J Hepat Surg, 2014, 20(1): 74–78 (in Chinese).
祝旭龍, 顏?zhàn)T, 呂毅, 等. 保留Oddi括約肌的膽管修復(fù)策略. 中華肝膽外科雜志, 2014, 20(1): 74–78.
[67] Zhu XL, Yan T, Yao WJ, et al. Optimization of the method for isolating and culturing rat mesenchymal stem cells. J South Med Univ, 2014, 34(11): 1621–1626 (in Chinese).
祝旭龍, 顏?zhàn)T, 姚維杰, 等. 大鼠骨髓間充質(zhì)干細(xì)胞的分離與培養(yǎng)方法優(yōu)化. 南方醫(yī)科大學(xué)學(xué)報(bào), 2014, 34(11): 1621–1626.
(本文責(zé)編郝麗芳)
工業(yè)生物技術(shù)
Strategies to choose scaffold materials for tissue engineering
Qingdong Gao1,2, Xulong Zhu1,2, Junxi Xiang3, Yi Lü3, and Jianhui Li1
1 Department of Surgical Oncology, Shaanxi Provincial People’s Hospital/Third Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710068, Shaanxi, China
2 School of Medicine, Yan’an University, Yan’an 716000, Shaanxi, China
3 Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiao tong University, Xi’an 710061, Shaanxi, China
Abstract:Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it “organic scaffold” and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold’s internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What’s more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.
Keywords:tissue engineering, scaffold, biodegradable scaffold, sustained-release microsphere, preparation technology
Corresponding author:Jianhui Li. Tel: +86-29-85251331-3143; Fax: +86-29-85251331-3192; E-mail: lijhmd@163.com