于曉惠,孫 敏(蘇州科技學(xué)院土木工程學(xué)院,江蘇蘇州215011)
?
基于A(yíng)BAQUS高強(qiáng)輕骨料混凝土損傷塑性模型應(yīng)用研究
于曉惠,孫敏
(蘇州科技學(xué)院土木工程學(xué)院,江蘇蘇州215011)
摘要:運(yùn)用ABAQUS中損傷塑性模型進(jìn)行輕骨料混凝土的數(shù)值分析,選取合適的輕骨料混凝土材料本構(gòu)曲線(xiàn),并分析推導(dǎo)了損傷因子計(jì)算公式,然后對(duì)比本構(gòu)關(guān)系參數(shù)模擬結(jié)果和所選取輕骨料混凝土本構(gòu)曲線(xiàn),驗(yàn)證損傷塑性模型參數(shù)選用的正確性。建立鋼筋輕骨料混凝土簡(jiǎn)支梁有限元模型,對(duì)鋼筋輕骨料混凝土試件進(jìn)行模擬分析,有限元分析結(jié)果與試驗(yàn)數(shù)據(jù)吻合得較好,驗(yàn)證了本構(gòu)關(guān)系及參數(shù)用于結(jié)構(gòu)分析情況下的可靠性。
關(guān)鍵詞:ABAQUS;損傷塑性模型;高強(qiáng)輕骨料混凝土;有限元分析
隨著橋梁跨徑的進(jìn)一步增大,橋梁自重占總載荷的比例越來(lái)越大,因此橋梁上部結(jié)構(gòu)的輕型化成為現(xiàn)代橋梁發(fā)展的新趨勢(shì)。輕骨料混凝土克服了普通混凝土自重大的缺點(diǎn),而且具有抗震抗裂性能好、耐久性好等諸多優(yōu)點(diǎn)。輕骨料混凝土用于橋梁時(shí),可以增大橋梁的跨度,減少橋墩的數(shù)量,降低處理橋梁基礎(chǔ)的費(fèi)用,因此在大跨度橋梁的建設(shè)中,高強(qiáng)輕骨料具有廣闊的應(yīng)用前景,但輕骨料混凝土結(jié)構(gòu)設(shè)計(jì)的軟件尚未開(kāi)發(fā)出來(lái),而且關(guān)于高強(qiáng)輕骨料混凝土有限元數(shù)值分析方面的研究很少,限制了高強(qiáng)輕骨料混凝土的推廣應(yīng)用[1-2]。
文中利用有限元軟件ABAQUS中損傷塑性模型來(lái)進(jìn)行輕骨料混凝土數(shù)值分析,在輕骨料混凝土材料本構(gòu)曲線(xiàn)的基礎(chǔ)上,引入損傷因子計(jì)算方法,并驗(yàn)證材料本構(gòu)關(guān)系及損傷因子等參數(shù)的正確性。通過(guò)對(duì)比分析一根鋼筋輕骨料混凝土試驗(yàn)梁的有限元模擬結(jié)果與試驗(yàn)數(shù)據(jù)驗(yàn)證損傷塑性模型用于結(jié)構(gòu)分析的適用性,為鋼筋輕骨料混凝土結(jié)構(gòu)非線(xiàn)性有限元分析提供參考[3-5]。
有限元分析軟件ABAQUS中混凝土損傷塑性模型是依據(jù)Lubliner、Lee和Fenves提出的損傷塑性模型確定的,可以模擬混凝土材料拉裂壓碎等力學(xué)現(xiàn)象。該模型通過(guò)使用各向同性損傷彈性結(jié)合各向同性拉伸和壓縮損傷塑性的模式來(lái)描述混凝土的非彈性行為。由于基于各向同性破壞的假設(shè),同時(shí)考慮由于拉伸和壓縮塑性應(yīng)變導(dǎo)致的剛度退化,模型具有良好的收斂性[6-7]。
1.1應(yīng)變率表達(dá)式
總的應(yīng)變率分為彈性應(yīng)變率和塑性應(yīng)變率,表達(dá)式
X=Xel+Xpl(1)
其中,X是總應(yīng)變率;Xel是彈性應(yīng)變率;Xpl是塑性應(yīng)變率。
1.2本構(gòu)方程
ABAQUS中應(yīng)力-應(yīng)變采用式(2)
σ=(1-d)D0el:(ε-εpl)=Del:(ε-εpl)(2)
其中,σ為應(yīng)力張量;ε為應(yīng)變張量;d為損傷因子(0≤d≤1),材料未損壞時(shí),d=0,材料完全損壞時(shí),d=1;為初始(未受損傷)的材料彈性剛度;Del為受損傷之后的彈性剛度。
1.3屈服準(zhǔn)則
ABAQUS中混凝土損傷塑性模型采用的屈服準(zhǔn)則是基于Lubliner等人建議的屈服函數(shù),它綜合了Lee 和Fenves的修正以考慮拉壓不同時(shí)強(qiáng)度的不同演化規(guī)律。用有效應(yīng)力表達(dá)式的屈服函數(shù)為
1.4流動(dòng)法則
ABAQUS中混凝土塑性損傷模型采用的是非關(guān)聯(lián)流動(dòng)法則,其塑性勢(shì)的數(shù)學(xué)表達(dá)式取為Drucker-Prager雙曲面函數(shù)
式中,ψ為膨脹角;σt0是單軸抗拉強(qiáng)度;∈為函數(shù)偏心率。
根據(jù)歸強(qiáng)[8]進(jìn)行的輕骨料混凝土受彎梁試驗(yàn)建立輕骨料混凝土梁有限元模型,對(duì)比有限元模擬結(jié)果與試驗(yàn)數(shù)據(jù)以驗(yàn)證損傷塑性模型參數(shù)選用的正確性。
2.1建立三維模型
通過(guò)分離式建模建立ABAQUS有限元模型,鋼筋網(wǎng)通過(guò)EMBED命令嵌入到輕骨料混凝土中,忽略鋼筋與輕骨料混凝土之間粘結(jié)滑移的影響。為防止加載過(guò)程中梁上加載面及支座處產(chǎn)生應(yīng)力集中,在梁上加載面及支座處設(shè)置鋼墊片,墊片與輕骨料混凝土之間約束關(guān)系選擇Tie方式。在鋼墊片上創(chuàng)建參考點(diǎn),并將參考點(diǎn)與鋼墊片定義耦合,通過(guò)參考點(diǎn)施加作用力。有限元模型劃分網(wǎng)格后如圖1所示。
圖1 輕骨料混凝土梁有限元模型
2.2材料本構(gòu)關(guān)系
ABAQUS損傷塑性模型需要用戶(hù)輸入的材料信息包括混凝土材料的單軸受壓、受拉應(yīng)力-應(yīng)變曲線(xiàn)以及受壓、受拉時(shí)的損傷因子-非彈性應(yīng)變曲線(xiàn)。材料本構(gòu)曲線(xiàn)和損傷因子曲線(xiàn)可通過(guò)試驗(yàn)確定,當(dāng)缺少試驗(yàn)數(shù)據(jù)時(shí),可根據(jù)規(guī)范提供的應(yīng)力-應(yīng)變曲線(xiàn)利用能量等價(jià)原理計(jì)算所得參數(shù)。
(1)輕骨料混凝土受壓應(yīng)力-應(yīng)變曲線(xiàn)?!遁p骨料混凝土結(jié)構(gòu)技術(shù)規(guī)程》中規(guī)定的LAWC受壓應(yīng)力-應(yīng)變關(guān)系曲線(xiàn)分為上升段和水平直線(xiàn)段,雖然規(guī)程模型可用于實(shí)際工程構(gòu)件承載力計(jì)算,但水平直線(xiàn)段不能真實(shí)反映應(yīng)力隨應(yīng)變?cè)黾佣@著下降這一現(xiàn)象[9]。選取張建文[10]提出的分段式方程。LC40的輕骨料混凝土受壓時(shí)的應(yīng)力-應(yīng)變關(guān)系式如下
其中,X=ε/ε0,Y=f/f0,ε0取值由峰值應(yīng)力而定;上升段曲線(xiàn)與規(guī)程上升段一致。
(2)輕骨料混凝土受拉應(yīng)力-應(yīng)變曲線(xiàn)。輕骨料混凝土受拉應(yīng)力-應(yīng)變?nèi)€(xiàn)與普通混凝土的相似,采用葉列平等[11]人建議的在峰值點(diǎn)連續(xù)的兩個(gè)方程來(lái)描述上升段和下降段曲線(xiàn)。LC40輕骨料混凝土受拉應(yīng)力-應(yīng)變曲線(xiàn)如下所示
(3)輕骨料混凝土損傷因子取值。根據(jù)Sidiroff能量等價(jià)原理,應(yīng)力作用在受損材料產(chǎn)生的彈性余能與作用在無(wú)損材料產(chǎn)生的彈性余能在形式上是相同的。只要將應(yīng)力改為等效應(yīng)力,或?qū)椥阅A扛臑閾p傷時(shí)的等效彈性模量即可[13-14]。
無(wú)損傷材料彈性余能W0e=σ2/(2Ed),等效有損傷材料彈性余能Wde=σˉ2/(2E0),。其中,σˉ=σ/(1-d),為有效應(yīng)力;于是Ed=E0(1-d)2,進(jìn)一步可得σ=E0(1-d)2ε,歸一化得到Y(jié)=(1-d)2X/ρt。其中ρc=f0/(E0ε0)。將上式與輕骨料混凝土受壓應(yīng)力-應(yīng)變曲線(xiàn)對(duì)應(yīng),可得到單軸受壓應(yīng)力損傷因子計(jì)算公式
同理,得到單軸受拉應(yīng)力損傷因子計(jì)算公式
(4)模型參數(shù)驗(yàn)證。為驗(yàn)證輕骨料混凝土材料本構(gòu)關(guān)系參數(shù)的正確性,取一個(gè)單元進(jìn)行分析,單元尺寸為200 mm×200 mm×200 mm,分析模型如圖2所示。單元類(lèi)型為C3D8R,邊界條件:底面與相互垂直的兩個(gè)側(cè)面受到與其垂直的鏈桿約束,頂面受到與該面法向相同的拉伸位移,位移量為10 mm。CL40輕骨料混凝土彈性模量為21.3 GPa,泊松比為0.2;材料進(jìn)入塑形后,由所選取的材料本構(gòu)曲線(xiàn)和推導(dǎo)的損傷因子計(jì)算公式確定的應(yīng)力-非彈性應(yīng)變關(guān)系及損傷因子-非彈性應(yīng)變關(guān)系,取值見(jiàn)表1。模型其它參數(shù)取值見(jiàn)表2,其中膨脹角φ一般認(rèn)為取30°較為合理,粘性系數(shù)μ的取值太大時(shí)結(jié)構(gòu)有變剛的趨勢(shì),太小時(shí)不容易收斂,經(jīng)試算建議取0.000 2。
圖2 單元分析模型示意圖
表1 CL40輕骨料混凝土計(jì)算參數(shù)
表2 模型其它參數(shù)
圖3為拉伸應(yīng)力與開(kāi)裂應(yīng)變的理論曲線(xiàn)和數(shù)值模擬結(jié)果曲線(xiàn)的對(duì)比,理論曲線(xiàn)為模型中選用的輕骨料混凝土受拉應(yīng)力-應(yīng)變曲線(xiàn),可以看出兩者吻合較好,這說(shuō)明采用以上參數(shù)得到的結(jié)果與理論值相符合。
2.3單元選取及網(wǎng)格劃分
混凝土采用八節(jié)點(diǎn)減縮積分實(shí)體單元(C3D8R),鋼筋采用2節(jié)點(diǎn)桁架單元(T3D2)。建立有限元模型后對(duì)混凝土梁和鋼筋骨架獨(dú)立的部件進(jìn)行劃分網(wǎng)格。
圖3 模擬結(jié)果與理論計(jì)算對(duì)比
2.4邊界條件及荷載條件
在輕骨料混凝土梁的支座處設(shè)置鋼墊片,在梁兩端鋼墊片上設(shè)置鉸接約束,完成邊界條件的定義。用位移加載方式對(duì)輕骨料混凝土梁進(jìn)行加載,通過(guò)參考點(diǎn)耦合加載面進(jìn)行集中加載。
3.1試驗(yàn)概況
在文獻(xiàn)[8]進(jìn)行的輕骨料混凝土受彎梁力學(xué)性能試驗(yàn)中,簡(jiǎn)支梁長(zhǎng)4 400 mm,截面尺寸為400 mm×600 mm,截面底部為4根C22的受拉鋼筋,上部為4根C16的構(gòu)造鋼筋,中部2根C12的腰筋,為防止剪切破壞,間隔250 mm配置A8的矩形箍筋,縱筋及箍筋具體布置情況見(jiàn)圖4。輕骨料混凝土設(shè)計(jì)等級(jí)為L(zhǎng)C40,混凝土保護(hù)層為50 mm。
圖4 試驗(yàn)梁形狀及尺寸
3.2結(jié)果對(duì)比及分析
圖5是進(jìn)行的輕骨料混凝土受彎梁試驗(yàn)的裂縫分布圖[8],試驗(yàn)梁跨中純彎段出現(xiàn)豎直彎曲裂縫,剪跨段出現(xiàn)從支座墊板處向加載點(diǎn)處延伸的斜裂縫。圖6為有限元分析的輕骨料混凝土變形的Mises應(yīng)力云圖。從圖中可見(jiàn),Mises應(yīng)力最大值出現(xiàn)在支座墊板及加載點(diǎn)處,并從加載點(diǎn)處向支座墊板處由大變小再變大規(guī)律延伸,從而在兩支座之間形成應(yīng)力拱體,形成傳力途徑。這與傳統(tǒng)理論中有腹筋梁拱形桁架受力模型相似。由于梁中受拉鋼筋的作用,梁底部應(yīng)力值較小。梁的肩部由于受力小,應(yīng)力值也小。
圖5 輕骨料混凝土試驗(yàn)梁的裂縫分布[8]
圖6 鋼筋輕骨料混凝土梁Mises應(yīng)力云圖
試驗(yàn)梁的開(kāi)裂荷載和破壞荷載對(duì)比值見(jiàn)表5。有限元模擬和試驗(yàn)得到荷載位移曲線(xiàn)對(duì)比如圖7所示。從曲線(xiàn)上可以看出梁開(kāi)始處于彈性階段,荷載-位移曲線(xiàn)呈線(xiàn)性,隨著輕骨料混凝土的開(kāi)裂,開(kāi)始出現(xiàn)曲線(xiàn)段,最終由于鋼筋的屈服梁發(fā)生破壞[15]。從圖7中看出,有限元模擬初次開(kāi)裂荷載為168 kN,比試驗(yàn)值130 kN多出29%,分析原因,是由于混凝土材料組成的不均勻性,試驗(yàn)試件存在初始微裂縫,因此試驗(yàn)中梁過(guò)早達(dá)到開(kāi)裂狀態(tài)。有限元模擬得到的輕骨料混凝土梁的極限荷載為563 kN,經(jīng)過(guò)理論[12,15]計(jì)算所得極限荷載為533 kN,相差5.6%,而試驗(yàn)結(jié)果為490.7 kN,試驗(yàn)值與模擬結(jié)果相差14%。雖然模擬結(jié)果和試驗(yàn)結(jié)果之間存在一定的偏差,但荷載-位移曲線(xiàn)的規(guī)律性是一致的,偏差也在合理的范圍之內(nèi)。因此,用ABAQUS中損傷塑性模型來(lái)進(jìn)行輕骨料混凝土結(jié)構(gòu)非線(xiàn)性分析是切實(shí)可行的。
表5 試驗(yàn)梁開(kāi)裂荷載和破壞荷載值
圖7 荷載-位移曲線(xiàn)
ABAQUS模擬結(jié)果可以取得與試驗(yàn)基本符合的結(jié)果,兩者之間存在偏差的原因,經(jīng)過(guò)分析有以下幾點(diǎn):
(1)有限元模型中各單元都是均勻、各向同性的材料,而且單元之間的接觸都是統(tǒng)一的。但實(shí)際情況下,混凝土材料是由粒徑不同的砂石、骨料、水泥拌合而成,成分復(fù)雜,而且相互之間的接觸作用大不相同。因此采用統(tǒng)一的標(biāo)準(zhǔn)進(jìn)行模擬本身與實(shí)際就有較大差異。
(2)混凝土材料本身存在初始微裂縫,而且實(shí)際模擬過(guò)程中未考慮鋼筋與混凝土粘結(jié)滑移的影響導(dǎo)致分析結(jié)果與試驗(yàn)結(jié)果存在一定的誤差,如何選取合適的參數(shù)進(jìn)行更精確的模擬還有待進(jìn)一步研究。
(3)有限元建模過(guò)程中其他的因素也會(huì)導(dǎo)致偏差,比如單元的劃分形式與數(shù)量、膨脹角、粘性系數(shù)等其他參數(shù)的取值等。另外,試驗(yàn)試件澆筑質(zhì)量及加載情況也會(huì)對(duì)結(jié)果產(chǎn)生影響。
通過(guò)對(duì)大型非線(xiàn)性有限元軟件ABAQUS中損傷塑性模型應(yīng)用于輕骨料混凝土結(jié)構(gòu)分析時(shí)所需本構(gòu)關(guān)系參數(shù)進(jìn)行研究,得出以下結(jié)論:
(1)用ABAQUS提供的損傷塑性模型來(lái)進(jìn)行輕骨料混凝土結(jié)構(gòu)全過(guò)程分析、極限承載力計(jì)算等非線(xiàn)性分析是行之有效的。
(2)在選取合適的輕骨料混凝土受壓及受拉應(yīng)力-應(yīng)變?nèi)€(xiàn)的基礎(chǔ)上,依據(jù)能量等價(jià)原理推導(dǎo)出損傷因子計(jì)算公式,并且用一個(gè)單元單向受拉的算例,驗(yàn)證了所采用的本構(gòu)關(guān)系參數(shù)的有效性。
(3)對(duì)一根鋼筋高強(qiáng)輕骨料混凝土簡(jiǎn)支梁進(jìn)行試驗(yàn)和有限元模擬的對(duì)比分析,模擬結(jié)果和試驗(yàn)數(shù)據(jù)規(guī)律性一致,偏差在合理范圍內(nèi),驗(yàn)證了所選用本構(gòu)關(guān)系及參數(shù)的有效性,為鋼筋輕骨料混凝土結(jié)構(gòu)非線(xiàn)性有限元分析提供參考。
參考文獻(xiàn):
[1]任志剛,王發(fā)洲.高強(qiáng)輕骨料混凝土大跨徑橋梁結(jié)構(gòu)設(shè)計(jì)參數(shù)分析[J].國(guó)外建材科技,2005,26(3):105-107.
[2]楊昆.輕骨料混凝土在公路橋梁施工中的應(yīng)用[J].橋梁隧道,2013,13:296-297.
[3]方秦,還毅,張亞棟,等.ABAQUS混凝土損傷塑性模型的靜力性能分析[J].解放軍理工大學(xué)學(xué)報(bào),2007,8(3):254-260.
[4]劉巍,徐明,陳忠范.ABAQUS混凝土損傷塑性模型參數(shù)標(biāo)定及驗(yàn)證[J].工業(yè)建筑,2014,44:167-171.
[5]雷拓,錢(qián)江,劉成清.混凝土損傷塑性模型應(yīng)用研究[J].結(jié)構(gòu)工程師,2008,24(2):22-27.
[6] LEE J, Fenves G L.Plastic-damage model for cyclic loading of concrete structures[J].Journal of Engineering Mechanics,1998,124(8):892-900.
[7] LUBLINER J, OLIVER J, OLLER S, et al.A Plastic-damage model for concrete [J].International Journal of Solids and Structures,1989,25(3):299-329.
[8]歸強(qiáng).輕骨料混凝土受彎梁力學(xué)性能試驗(yàn)研究[D].天津:天津大學(xué),2008.
[9]邵永健,朱聘儒.輕骨料混凝土應(yīng)力-應(yīng)變曲線(xiàn)的研究[J].混凝土與水泥制品,2005(1):19-21.
[10]張建文,曹雙寅.結(jié)構(gòu)輕骨料混凝土應(yīng)力-應(yīng)變曲線(xiàn)研究[J].建筑科學(xué),2008,24(11):83-85.
[11]葉列平,孫海林,陸新征.高強(qiáng)輕骨料混凝土結(jié)構(gòu)-性能、分析與計(jì)算[M].北京:科學(xué)出版社,2009.
[12]中國(guó)建筑科學(xué)研究院.JGJ12-2006輕骨料混凝土結(jié)構(gòu)技術(shù)規(guī)程[S].北京:中國(guó)建筑工業(yè)出版社,2006.
[13]孫慶昭.ABAQUS混凝土塑性損傷模型概述[J].建筑結(jié)構(gòu),2014,133(13):70-72.
[14]曹明.ABAQUS損傷塑性模型損傷因子計(jì)算方法研究[J].道路工程,2012(2):51-54.
[15]邵永健,朱天志,段紅霞.混凝土結(jié)構(gòu)設(shè)計(jì)原理[M].北京:北京大學(xué)出版社,2010.
通信聯(lián)系人:孫敏(1970-),女,安徽蚌埠人,副教授,博士,從事混凝土橋梁結(jié)構(gòu)研究;E-mail:sunmin@mail.usts.edu.cn。
(責(zé)任編輯:秦中悅)
Application of plastic-damage model for high-strength lightweight aggregate concrete based on ABAQUS
YU Xiaohui, SUN Min
(School of Civil Engineering, SUTS, Suzhou 215011, China)
Abstract:In the construction of long-span bridges, the high-strength lightweight aggregate concrete has broad application prospects.However, there was less research on the high strength lightweight aggregate concrete by finite element numerical method, thus the use of lightweight aggregate concrete was limited.The plastic-damage model in the ABAQUS was used for the numerical analysis of lightweight aggregate concrete in this paper.The formula of damage factor was derived on the basis of selecting suitable constitutive curves of lightweight aggregate concrete.To prove the validity of the plastic-damage model parameter, the simulation results on calculating parameters and material constitutive curves were compared.The nonlinear finite element analysis models of a beam of reinforced lightweight aggregate concrete was established by using the plastic-damage model, and the results of the finite element analysis were in good agreement with the experiment results.It has been proved that lightweight aggregate concrete constitutive curves and damage factor are valid.
Key words:ABAQUS; plastic-damage model; high-strength lightweight aggregate concrete; the finite element analysis
中圖分類(lèi)號(hào):TU377.1
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1672-0679(2016)01-0042-06
[收稿日期]2015-09-29
[基金項(xiàng)目]江蘇省結(jié)構(gòu)工程重點(diǎn)實(shí)驗(yàn)室課題(ZD1205)
[作者簡(jiǎn)介]于曉惠(1988-),女,山東淄博人,碩士研究生。