馮馳 俞溪 王德玲
摘要:分析建筑圍護(hù)結(jié)構(gòu)的熱濕過(guò)程有著重要意義,而材料的物理性質(zhì)是完成分析必不可少的參數(shù)。對(duì)中國(guó)常用多孔建筑材料而言,其濕物理性質(zhì)并不完備。在20~25 ℃下,依據(jù)ISO和ASTM標(biāo)準(zhǔn),通過(guò)平衡吸放濕實(shí)驗(yàn)、壓力平板實(shí)驗(yàn)、蒸汽滲透實(shí)驗(yàn)、毛細(xì)吸水實(shí)驗(yàn)和真空飽和實(shí)驗(yàn),對(duì)中國(guó)產(chǎn)B07級(jí)加氣混凝土進(jìn)行了測(cè)試,得到了包括等溫吸放濕曲線(xiàn)、保水曲線(xiàn)、蒸汽滲透系數(shù)、液態(tài)水?dāng)U散系數(shù)、吸水系數(shù)、毛細(xì)飽和含濕量和真空飽和含濕量在內(nèi)的所有濕物理性質(zhì)。
關(guān)鍵詞:加氣混凝土;水分;儲(chǔ)存函數(shù);傳遞系數(shù)
中圖分類(lèi)號(hào):TU111.2
文獻(xiàn)標(biāo)志碼:A 文章編號(hào):16744764(2016)02012507
Abstract: It is important to analyze the hygrothermal processes of building envelopes and the material properties are critical in the analysis. The hygric properties of the commonly used porous building materials in China are insufficient. Measurements on the B07level autoclaved aerated concrete are carried out at 20~25 ℃ based on ISO and ASTM standards of static gravimetric tests, pressure plate tests, cup tests, capillary absorption tests and vacuum saturation tests. All the hygric properties have been obtained, including sorption isotherms, the water retention curve, the vapor permeability, the liquid diffusivity, the capillary absorption coefficient, as well as the capillary and vacuum saturated moisture content.
Keywords:autoclaved aerated concrete; moisture; storage function; transport coefficient
建筑圍護(hù)結(jié)構(gòu)的熱濕過(guò)程對(duì)建筑的耐久、能耗和室內(nèi)環(huán)境有著非常重要的影響[13]。在分析建筑圍護(hù)結(jié)構(gòu)的熱濕過(guò)程時(shí),目前世界上較為先進(jìn)的分析方法是將熱量、空氣和濕分(HeatAirMoisture,HAM)的儲(chǔ)存與傳遞進(jìn)行綜合而非孤立的分析。歐美學(xué)者對(duì)此提出了多種數(shù)學(xué)模型,并已開(kāi)發(fā)出了較為方便易用的軟件,如WUFI和Delphin等。
無(wú)論采用何種模型來(lái)進(jìn)行HAM分析,材料的物理性質(zhì)都是必不可少的參數(shù)。在HAM分析中涉及到的物理性質(zhì)可以分為3類(lèi)[4]:基本物理性質(zhì)(如密度、孔隙率等)、熱物理性質(zhì)(如導(dǎo)熱系數(shù)、比熱等)和濕物理性質(zhì)(如蒸汽滲透系數(shù)、等溫吸放濕曲線(xiàn)等)。在20世紀(jì)90年代到本世紀(jì)初,歐美國(guó)家通過(guò)IEA Annex 14[5]、IEA Annex 24[6]和ASHRAE 1018RP[7]等大型國(guó)際或地區(qū)項(xiàng)目,對(duì)大量常用建筑材料進(jìn)行了測(cè)試,建立了包括上述各類(lèi)物理性質(zhì)的較為全面的基礎(chǔ)數(shù)據(jù)庫(kù)。
中國(guó)的常用建筑材料物理性質(zhì)基礎(chǔ)數(shù)據(jù)庫(kù)主要由《民用建筑熱工設(shè)計(jì)規(guī)范》GB 50176[8]和《建筑材料熱物理性能與數(shù)據(jù)手冊(cè)》[9]構(gòu)成。其涵蓋范圍主要是基本物理性質(zhì)和熱物理性質(zhì),而濕物理性質(zhì)只有蒸汽滲透系數(shù)一項(xiàng),缺失了等溫吸放濕曲線(xiàn)、保水曲線(xiàn)、液態(tài)水?dāng)U散系數(shù)、吸水系數(shù)、毛細(xì)飽和含濕量和真空飽和含濕量等大量重要的濕物理性質(zhì)。此外,在中國(guó)數(shù)據(jù)庫(kù)中,蒸汽滲透系數(shù)被設(shè)定為常數(shù),但事實(shí)上其值是材料含濕量的函數(shù)[10]。由此可見(jiàn),在常用建筑材料的濕物理性質(zhì)方面,中國(guó)尚有欠缺,有待進(jìn)一步完善。
20世紀(jì)80年代、90年代,中國(guó)就有學(xué)者對(duì)建筑材料濕傳遞系數(shù)進(jìn)行了研究[1113]。后續(xù)又不斷有學(xué)者對(duì)材料的蒸汽滲透系數(shù)和等溫吸放濕曲線(xiàn)進(jìn)行實(shí)驗(yàn)研究[1417]。這些成果為中國(guó)基礎(chǔ)數(shù)據(jù)庫(kù)的完善增磚添瓦,但仍存在三方面的問(wèn)題:一是測(cè)試的方法不夠統(tǒng)一;二是測(cè)試材料的種類(lèi)和數(shù)量仍相當(dāng)有限;三是對(duì)針對(duì)每種材料測(cè)試的物理性質(zhì)不全面。就測(cè)試方法而言,可通過(guò)重復(fù)性實(shí)驗(yàn)[18]和再現(xiàn)性實(shí)驗(yàn)[19]進(jìn)行研究,并制定標(biāo)準(zhǔn)加以統(tǒng)一。就材料的種類(lèi)和數(shù)量而言,需要不斷積累,無(wú)法一蹴而就。對(duì)于第3個(gè)問(wèn)題,則要求對(duì)同一批次的材料一次性測(cè)試完其所有濕物理性質(zhì),以保證各性質(zhì)之間的融合性。近年來(lái),中國(guó)已有學(xué)者開(kāi)始全面、系統(tǒng)地研究各種濕物理性質(zhì)的測(cè)試方法[4]。
本文以一種加氣混凝土為例,參照國(guó)際標(biāo)準(zhǔn)和歐美國(guó)家的經(jīng)驗(yàn),首次測(cè)試了中國(guó)產(chǎn)建筑材料的全部濕物理性質(zhì)。其方法和結(jié)果將為完善中國(guó)常用建筑材料物理性質(zhì)基礎(chǔ)數(shù)據(jù)庫(kù)奠定重要基礎(chǔ)。
1 材料與方法
所用材料為加氣混凝土。根據(jù)GB 11968—2006《蒸壓加氣混凝土砌塊》標(biāo)準(zhǔn),其密度為B07級(jí),強(qiáng)度為A5.0級(jí)。測(cè)試溫度為20~25 ℃,具體溫度因各實(shí)驗(yàn)而異,波動(dòng)不超過(guò)1 ℃。
試件干重的確定方法參考ISO 12570[20]標(biāo)準(zhǔn)。在70 ℃的電熱鼓風(fēng)干燥箱中將試件加熱1周后用電子天平稱(chēng)量。每次稱(chēng)量完成后,將試件放回干燥箱,待2~3 d后再次稱(chēng)量。當(dāng)連續(xù)3次稱(chēng)量結(jié)果的相對(duì)波動(dòng)不超過(guò)0.1%時(shí),取3次的平均值作為干重。
使用數(shù)顯游標(biāo)卡尺測(cè)量試件尺寸,讀數(shù)精確至0.01 mm。每個(gè)方向上至少測(cè)量2次后取平均值。
各實(shí)驗(yàn)的基本信息如表1所示。具體的實(shí)驗(yàn)原理和方法可參考相關(guān)標(biāo)準(zhǔn)和作者之前的研究[4, 18]。下面簡(jiǎn)單介紹各實(shí)驗(yàn)的步驟。
1.1 平衡吸放濕實(shí)驗(yàn)
將8種飽和鹽溶液置于8個(gè)干燥器中,以營(yíng)造干燥器內(nèi)穩(wěn)定的相對(duì)濕度環(huán)境。具體的鹽溶液和對(duì)應(yīng)的環(huán)境相對(duì)濕度見(jiàn)表2。將烘干的試件放入干燥器中進(jìn)行吸濕實(shí)驗(yàn),每個(gè)干燥器中各有4個(gè)試件。待試件吸濕達(dá)到平衡后,稱(chēng)量得到各自的濕重。再將試件放入較低相對(duì)濕度下的干燥器進(jìn)行放濕實(shí)驗(yàn),獲得平衡時(shí)的濕重。
根據(jù)試件的干重和濕重,計(jì)算得到在吸濕和放濕過(guò)程中,各相對(duì)濕度下的質(zhì)量比含濕量u(kg·kg-1)。再分別對(duì)吸濕過(guò)程和放濕過(guò)程的數(shù)據(jù)進(jìn)行擬合,得到等溫吸濕曲線(xiàn)和等溫放濕曲線(xiàn)。
1.2 壓力平板實(shí)驗(yàn)
將浸水24 h的微孔瓷盤(pán)置于壓力容器中,瓷盤(pán)上覆蓋高嶺土與蒸餾水的混合物(質(zhì)量比1∶1)約2~3 mm。用1層致密綢布覆蓋高嶺土后,將5個(gè)毛細(xì)飽和(詳見(jiàn)2.4節(jié))的試件平放于綢布上,輕壓試件使其略微陷下。連接好微孔瓷盤(pán)的出水口,密封好壓力容器,緩慢向內(nèi)施壓,直到壓力穩(wěn)定在100 kPa。待不再有水從壓力導(dǎo)管中流出后(耗時(shí)約1周),恢復(fù)容器內(nèi)的氣壓,迅速取出試件稱(chēng)重并密封。更換高嶺土和綢布,再將試件放回,進(jìn)行更高壓力下的測(cè)試。重復(fù)上述過(guò)程,直到完成200、300、500、1 000和1 200 kPa下的測(cè)試。
根據(jù)試件的干重和濕重,計(jì)算得到不同壓力下的質(zhì)量比含濕量u(kg·kg-1),再進(jìn)一步擬合,得到材料的保水曲線(xiàn)。
1.3 蒸汽滲透試驗(yàn)
將試件用蠟密封在碗狀玻璃容器的口處,內(nèi)裝干燥劑或飽和鹽溶液以控制內(nèi)部的相對(duì)濕度。再將容器連同試件置于乘有飽和鹽溶液的干燥器內(nèi),每個(gè)干燥器中放置3個(gè)容器進(jìn)行平行測(cè)試。具體的工況設(shè)置參見(jiàn)表3。經(jīng)過(guò)一段初始時(shí)間(約1周)后,每3~4 d將密封容器及試件取出稱(chēng)重,然后放回干燥器繼續(xù)實(shí)驗(yàn)。當(dāng)連續(xù)稱(chēng)重7次后,結(jié)束實(shí)驗(yàn)。迅速?gòu)拿芊馊萜鞯目谔幦〕鲈嚰宜椴y(cè)定中央處的質(zhì)量比含濕量u(kg·kg-1)。
根據(jù)試件尺寸、兩側(cè)的相對(duì)濕度以及測(cè)得的濕流密度,計(jì)算得到試件在該工況下的蒸汽滲透系數(shù)δv(g·m-1·h-1·Pa-1)。再根據(jù)試件的含濕量,擬合得到蒸汽滲透系數(shù)隨含濕量變化的函數(shù)。
1.4 毛細(xì)吸水實(shí)驗(yàn)
在盛水的密封箱內(nèi)安置一個(gè)淺水槽,水槽中放入金屬托架后再注入蒸餾水。調(diào)節(jié)注入的水量,使水面高度高于托架上緣約3~5 mm。將干燥試件除底面(8 cm×4 cm的一個(gè)面)外的其余各面用不透氣的薄膜包裹,頂部開(kāi)兩個(gè)小孔以平衡氣壓。將包裹好的試件逐一放入托架上,使其通過(guò)毛細(xì)作用吸水。蓋上密封箱的蓋子,以減弱內(nèi)部的水分蒸發(fā),方便控制水溫。每隔一段時(shí)間,打開(kāi)密封箱的蓋子,從托架上取出試件,用濕潤(rùn)的毛巾拭去表面的游離水后稱(chēng)重,再放回使其繼續(xù)吸濕,直到采集到足夠多的數(shù)據(jù)點(diǎn)。
根據(jù)試件的尺寸、干重及各稱(chēng)量時(shí)刻的濕重,計(jì)算得到試件底面毛細(xì)吸水的量與時(shí)間平方根的關(guān)系,進(jìn)而求取吸水系數(shù)Aw(kg·m-2·s-0.5)、毛細(xì)飽和含濕量wcap(kg·m-3)和液態(tài)水?dāng)U散系數(shù)Dl(m2·s-1)。
1.5 真空飽和實(shí)驗(yàn)
將試件直立放入真空干燥器中。開(kāi)啟真空泵,使得干燥器內(nèi)的氣壓小于2 kPa。持續(xù)3 h以徹底排出空氣。保持真空泵開(kāi)啟,通過(guò)導(dǎo)管往干燥器內(nèi)緩慢注入蒸餾水,直到淹沒(méi)試件并高于其上緣5 cm。關(guān)閉真空泵,讓試件浸水24 h后將其取出,分別在水下和空氣中稱(chēng)重。
根據(jù)試件的干重及其在水下和空氣中的濕重,計(jì)算得到其真空飽和含濕量wvac(kg·m-3)。
2 結(jié)果與討論
2.1 平衡吸放濕實(shí)驗(yàn)
平衡吸放濕實(shí)驗(yàn)所得結(jié)果如圖1所示。根據(jù)實(shí)測(cè)結(jié)果擬合得到的等溫吸濕曲線(xiàn)和等溫放濕曲線(xiàn)分別為式(1)和式(2)。
2.4 毛細(xì)吸水實(shí)驗(yàn)
毛細(xì)吸水實(shí)驗(yàn)的結(jié)果如圖4所示。對(duì)第1階段(快速吸水階段)的數(shù)據(jù)進(jìn)行線(xiàn)性擬合,所得直線(xiàn)的斜率即為吸水系數(shù)Aw,其平均值為0.086 kg·m-2·s-0.5,標(biāo)準(zhǔn)差為0.009 kg·m-2·s-0.5。再對(duì)第2階段(緩慢吸水階段)的數(shù)據(jù)進(jìn)行線(xiàn)性擬合,該直線(xiàn)與第1階段擬合直線(xiàn)的交點(diǎn)所對(duì)應(yīng)的含濕量即為毛細(xì)飽和含濕量wcap,其平均值為335.7 kg·m-3,標(biāo)準(zhǔn)差為5.5 kg·m-3。
2.5 真空飽和實(shí)驗(yàn)
在真空飽和實(shí)驗(yàn)中,試件在空氣中稱(chēng)得的濕重與干重之差即為水分質(zhì)量;而試件在空氣中和水中稱(chēng)得的濕重之差即為試件所受浮力,進(jìn)而可知試件體積。用試件中的水分質(zhì)量除以體積,即為真空飽和含濕量wvac,結(jié)果平均值為732.1 kg·m-3,標(biāo)準(zhǔn)差為1.8 kg·m-3。
需要指出的是,通過(guò)真空飽和實(shí)驗(yàn),還可獲得(開(kāi)孔)孔隙率Φ、表觀(guān)密度ρbulk及骨架密度ρmatrix。用真空飽和含濕量除以水的密度,即為孔隙率,平均值為73.4%,標(biāo)準(zhǔn)差為0.2%。表觀(guān)密度可用試件的干重除以試件體積得到,平均值為687.0 kg·m-3,標(biāo)準(zhǔn)差為4.0 kg·m-3。骨架密度可用表觀(guān)密度除以孔隙率得到,平均值為2 583.4 kg·m-3,標(biāo)準(zhǔn)差為7.3 kg·m-3。孔隙率、表觀(guān)密度及骨架密度雖不屬于材料的濕物理性質(zhì),但也是重要的基本參數(shù),因此一并涵蓋到本文中。
3 結(jié) 論
在20~25 ℃下,首次通過(guò)平衡吸放濕實(shí)驗(yàn)、壓力平板實(shí)驗(yàn)、蒸汽滲透實(shí)驗(yàn)、毛細(xì)吸水實(shí)驗(yàn)和真空飽和實(shí)驗(yàn),測(cè)試了中國(guó)產(chǎn)B07級(jí)加氣混凝土的所有濕物理性質(zhì)。
參考文獻(xiàn):
[1] HUIJBREGTS Z,SCHELLEN H,VAN SCHIJNDEL J,et al.Modelling of heat and moisture induced strain to assess the impact of present and historical indoor climate conditions on mechanical degradation of a wooden cabinet [J].Journal of Cultural Heritage,2015,16(4):419427.
[2] HARRESTRUP M,SVENDSEN S.Fullscale test of an old heritage multistorey building undergoing energy retrofitting with focus on internal insulation and moisture [J].Building and Environment,2015,85:123133.
[3] PIETRZYK K.A systemic approach to moisture problems in buildings for mould safety modelling [J].Building and Environment,2015,86:5060.
[4] 馮馳.多孔建筑材料濕物理性質(zhì)的測(cè)試方法研究[D].廣州:華南理工大學(xué),2014.
FENG C.Study on the test methods for the hygric properties of porous building materials [D].Guangzhou:South China University of Technology,2014. (in Chinese)
[5] HENS H.IEA Annex 14:Condensation and energy,Volume 3:Catalogue of material properties [R].1991.
[6] KUMARAN M K.IEA Annex 24:Heat,air and moisture transfer in insulated envelope parts.Final Report,Volume 3,Task 3:Material Properties [R].1996.
[7] KUMARAN M K.A thermal and moisture transport property database for common building and insulating materials,final report from ASHRAE research project 1018RP [R].2002.
[8] 民用建筑熱工設(shè)計(jì)規(guī)范:GB 50176—93[S].
Thermal design code for cicil building: GB 50176—93[S]. (in Chinese)
[9] 周輝,錢(qián)美麗,馮金秋,等.建筑材料熱物理性能與數(shù)據(jù)手冊(cè)[M].北京:中國(guó)建筑工業(yè)出版社,2010.
ZHOU H,QIAN M L,F(xiàn)ENG J Q,et al.Handbook of thermal properties and data for building materials [M].Beijing:China Architecture & Building Press,2010. (in Chinese)
[10] 馮馳,馮雅,孟慶林.加氣混凝土蒸汽滲透系數(shù)的變物性取值方法[J].土木建筑與環(huán)境工程,2013,35(5):132136.
FENG C,F(xiàn)ENG Y,MENG Q L.Approach to determine value of variable vapor permeability of autoclaved aerated concrete [J].Journal of Civil,Architectural & Environmental Engineering,2013,35(5):132136. (in Chinese)
[11] 歸柯庭,韓吉田.用恒熱流法測(cè)定多孔介質(zhì)的熱質(zhì)遷移特性參數(shù)[J].計(jì)量學(xué)報(bào),1995,16(4):252256.
GUI K T,HAN J T.Measurement of heat and mass transport properties of porous media with the constant heat flux [J].Acta Metrologica Sinica,1995,16(4):252256. (in Chinese)
[12] 韓吉田,施明恒,虞維平,等.同時(shí)測(cè)定含濕多孔介質(zhì)熱濕遷移特性的參數(shù)估計(jì)法[J].計(jì)量學(xué)報(bào),1995,16(2):153160.
HAN J T,SHI M H,YU W P,et al.A parameter estimation method for simutaneously measuring heat and mass transport properties of moist porous media [J].Acta Metrologica Sinica,1995,16(2):153160. (in Chinese)
[13] 付豐,孔祥謙,王金忠.借助反問(wèn)題方法實(shí)現(xiàn)質(zhì)擴(kuò)散系數(shù)的快速測(cè)量[J].上海機(jī)械學(xué)院學(xué)報(bào),1988,10(2):6366,80.
FU F,KONG X Q,WANG J Z.An inverse problem method for the transient measurement of mass diffusivity [J].Jouranl of Shanghai Institute of Mechanical Engineering,1988,10(2):6366,80. (in Chinese)
[14] 閆增峰,劉加平,王潤(rùn)山.生土圍護(hù)結(jié)構(gòu)的等溫吸濕性能的實(shí)驗(yàn)研究[J].西安建筑科技大學(xué)學(xué)報(bào):自然科學(xué)版,2003,35(4):347349,353.
YAN Z F,LIU J P,WANG R S.Experimental study of moisture absorption isotherms of adobe building materials [J].Journal of Xian University of Architecture & Technology:Natural Science Edition,2003,35(4):347349,353. (in Chinese)
[15] 李魁山,張旭,韓星,等.建筑材料等溫吸放濕曲線(xiàn)性能實(shí)驗(yàn)研究[J].建筑材料學(xué)報(bào),2009,12(1):8184.
LI K S,ZHANG X,HAN X,et al.Experimental research of isothermal sorption curve of building materials [J].Journal of Building Materials,2009,12(1):8184. (in Chinese)
[16] 裴清清,陳在康.幾種常用建材的等溫吸放濕線(xiàn)試驗(yàn)研究[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,1999,26(4):9699.
PEI Q Q,CHEN Z K.An experimental study on isothermal moisture absorption and desorption processes of some commonused building materials [J].Journal of Hunan University:Natural Sciences Edition,1999,26(4):9699. (in Chinese)
[17] FENG C,JANSSEN H,WU C,et al.Validating various measures to accelerate the static gravimetric sorption isotherm determination [J].Building and Environment,2013,69:6471.
[18] FENG C,JANSSEN H,F(xiàn)ENG Y,et al.Hygric properties of porous building materials: Analysis of measurement repeatability and reproducibility [J].Building and Environment,2015,85:160172.
[19] ROELS S,CARMELIET J,HENS H,et al.HAMSTAD work package 1:final reportmoisture transfer properties and materials characterisation,EU Contract GRD1199920007 [R].2003.
[20] 2000(E) Hygrothermal performance of building materials and productsdetermination of moisture content by drying at elevated temperature: ISO 12570[S].
[21] 2000(E) Hygrothermal performance of building materials and productsdetermination of hygroscopic sorption properties: ISO 12571[S].
[22] Standard test method for hygroscopic sorption isotherms of building materials: ASTM C149804a[S].
[23] 1998(E) Soil qualitydetermination of the water retention characteristiclaboratory methods: ISO 11274[S].
[24] Standard test method for moisture retention curves of porous building materials using pressure plates: ASTM C169909[S].
[25] 2001(E) Hygrothermal performance of building materials and productsdetermination of water vapour transmission properties: ISO 12572[S].
[26] Standard test method for water vapor transmission of materials: ASTM E9600[S].
[27] 2002(E) Hygrothermal performance of building materials and productsdetermination of water absorption coefficient by partial immersion: ISO 15148[S].
[28] Standard test method for density,absorption,and voids in hardened concrete: ASTM C64213[S].
[29] MACMILLAN B,VELIYULIN E,LAMASON C,et al.Quantitative magnetic resonance measurements of low moisture content wood [J].Canadian Journal of Forest Research,2011,41(11):21582162.
[30] HEIJDEN G V D.NMR imaging of moisture inside heated porous building materials [D].Eindhoven University of Technology,2011.
[31] ROELS S,CARMELIET J.Analysis of moisture flow in porous materials using microfocus Xray radiography [J].International Journal of Heat and Mass Transfer,2006,49(25):47624772.
[32] UTAKA Y,HIROSE I,TASAKI Y.Characteristics of oxygen diffusivity and water distribution by Xray radiography in microporous media in alternate porous layers of different wettability for moisture control in gas diffusion layer of PEFC [J].International Journal of Hydrogen Energy,2011,36(15):91289138.
[33] MEDHAT M E.Application of gammaray transmission method for study the properties of cultivated soil [J].Annals of Nuclear Energy,2012,40(1):5359.
[34] PRIYADA P,RAMAR R,SHIVARAMU.Determining the water content in concrete by gamma scattering method [J].Annals of Nuclear Energy,2014,63:565570.
[35] KNZEL H M.Simultaneous heat and moisture transport in building components [R].Fraunhofer IRB Verlag Suttgart,1995.
(編輯 王秀玲)