張曉寧,趙玉霞,王建海,苗緒紅,李克秋,李光
?
5-Azac誘導(dǎo)急性移植物抗宿主病免疫低反應(yīng)的甲基化研究
張曉寧,趙玉霞,王建海,苗緒紅,李克秋,李光△
摘要:目的建立小鼠急性移植物抗宿主病(aGVHD)模型,檢測(cè)DNA甲基化轉(zhuǎn)移酶抑制劑5-氮雜胞苷(5-aza?cytidine,5-Azac)誘導(dǎo)aGVHD免疫低反應(yīng)后的甲基化變化,探討5-Azac對(duì)小鼠aGVHD的免疫調(diào)節(jié)作用。方法選擇雄性C57BL/6(H-2b)與雌性BALB/c(H-2d)小鼠分別作為異基因移植供、受體建立移植物抗宿主病小鼠模型。BABL/c受體按照體質(zhì)量相近進(jìn)行配對(duì),分為移植對(duì)照組和5-Azac實(shí)驗(yàn)組。5-Azac實(shí)驗(yàn)組于移植后1~7、14、21、28 d尾靜脈注射5-Azac 0.25 mg/kg(0.3 mL/只);移植對(duì)照組尾靜脈注射生理鹽水0.3 mL/只。提取3只移植對(duì)照組和3 只5-Azac實(shí)驗(yàn)組小鼠的外周血DNA,分別等量混勻,采用甲基化DNA免疫共沉淀測(cè)序(MeDIP-seq)的方法檢測(cè)甲基化變化,篩選差異甲基化基因,并對(duì)其功能及生物學(xué)通路進(jìn)行分析。結(jié)果5-Azac實(shí)驗(yàn)組小鼠的生存時(shí)間延長(zhǎng),排斥反應(yīng)減弱,成功誘導(dǎo)移植物抗宿主病免疫低反應(yīng)狀態(tài)。2組小鼠DNA MeDIP-seq結(jié)果對(duì)比顯示:5-Azac實(shí)驗(yàn)組啟動(dòng)子區(qū)存在369個(gè)差異甲基化基因,其中上調(diào)239個(gè)、下調(diào)130個(gè);外顯子區(qū)存在184個(gè)差異甲基化基因,其中上調(diào)113個(gè)、下調(diào)71個(gè)。利用KEGG(Kyoto Encyclopedia of Genes and Genomes)數(shù)據(jù)庫(kù)對(duì)差異甲基化基因分析,結(jié)果顯示其主要參與10個(gè)免疫學(xué)信號(hào)通路,其中TGF-β、GSK-3β、SYK、PI3K、NFAT、CD28、α4β7與aGVHD的發(fā)生發(fā)展密切相關(guān)。結(jié)論5-Azac可以通過(guò)改變基因的甲基化狀態(tài)有效誘導(dǎo)aGVHD的免疫低反應(yīng)。
關(guān)鍵詞:移植物抗宿主?。患谆?;5-氮雜胞苷;MeDIP-seq;免疫低反應(yīng)
△通訊作者E-mail:lig@tmu.edu.cn
異基因造血干細(xì)胞移植(HSCT)被廣泛應(yīng)用于各種惡性血液性疾病的治療,但是移植手術(shù)會(huì)伴隨急性移植物抗宿主?。╝cute graft-versus-host dis?ease,aGVHD)的發(fā)生,是異基因骨髓移植的主要障礙[1]。因此如何克服aGVHD成為醫(yī)學(xué)研究的熱點(diǎn)課題之一。隨著基因甲基化修飾所致表達(dá)水平變化研究的深入,DNA甲基化轉(zhuǎn)移酶抑制劑(DNA meth?yltransferase inhibitors,DNMTIs)可調(diào)節(jié)基因的轉(zhuǎn)錄過(guò)程,為疾病治療提供了新思路。因此,從甲基化水平探究DNMTIs對(duì)aGVHD的影響,能夠深入地了解DNMTIs的免疫抑制功能,從表觀遺傳學(xué)的角度為DNMTIs治療aGVHD,甚至應(yīng)用于器官移植帶來(lái)希望。DNA甲基化轉(zhuǎn)移酶抑制劑5-氮雜胞苷(5-aza?cytidine,5-Azac)是一種脫氧胞嘧啶類似物,它能激活核苷三磷酸反應(yīng)并插入到DNA和RNA分子中,從而抑制DNA、RNA和蛋白質(zhì)的合成[2]。研究發(fā)現(xiàn)5-Azac具有免疫調(diào)節(jié)作用,可抑制T淋巴細(xì)胞的活化、增殖及炎性細(xì)胞因子的分泌[3]。因此,本研究采用甲基化DNA免疫共沉淀測(cè)序(MeDIP-seq)的方法檢測(cè)5-Azac誘導(dǎo)小鼠異基因造血干細(xì)胞移植aGVHD免疫低反應(yīng)后的基因甲基化變化,探討5-Azac對(duì)小鼠aGVHD的免疫調(diào)節(jié)作用。
1.1材料
1.1.1實(shí)驗(yàn)動(dòng)物健康SPF級(jí)雄性C57BL/6(H-2b)小鼠和雌性BALB/c(H-2d)小鼠,8~12周齡,體質(zhì)量19~22 g,購(gòu)于北京軍事醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動(dòng)物中心,飼養(yǎng)于中國(guó)醫(yī)學(xué)科學(xué)院放射醫(yī)學(xué)研究所IVC級(jí)實(shí)驗(yàn)動(dòng)物房。
1.1.2主要試劑5-Azac(美國(guó)Sigma公司);小鼠脾臟淋巴細(xì)胞分離液試劑盒(天津?yàn)蠊荆?;胎牛血清(以色列Bio?Ind公司);RPMI-1640培養(yǎng)基(美國(guó)Hyclone公司);NEXT?flex Methyl-Seq 1 KIT、NEXTflex DNA Barcode-6(美國(guó)Bioo公司);Methylated DNA IP KIT(美國(guó)Zymo公司);Agencourt AMPure XP 60 mL KIT(美國(guó)Beckman公司);Agilent High Sensitivity DNA KIT(美國(guó)Agilent公司);QUBIT DNA BR AS?SAY KIT、QUBIT DNA HS ASSAY KIT(美國(guó)Invitrogen公司);Qiagen PCR Quick KIT(美國(guó)Qiagen公司);KAPA SYBR FAST Master Mix Universal 2×qPCR Master Mix、DNA Quantifi?cation Standards and Primer Premix KIT(美國(guó)Kapa公司)。
1.2實(shí)驗(yàn)方法
1.2.1aGVHD模型的建立移植前4 h給予40只BALB/c (H-2d)受體小鼠137Cs射線全身照射(total body irradiation,TBI),照射劑量6.5 Gy。斷頸處死供體C57BL/6(H-2b)小鼠,于超凈臺(tái)內(nèi)無(wú)菌分離供體小鼠股骨和脾臟,制備骨髓細(xì)胞懸液與脾細(xì)胞混合懸液(混合比例1∶1),調(diào)整細(xì)胞濃度為2×107/mL,經(jīng)尾靜脈注射受體小鼠(0.5 mL/只),并飼養(yǎng)于IVC實(shí)驗(yàn)動(dòng)物房。
1.2.2實(shí)驗(yàn)分組將受體小鼠根據(jù)體質(zhì)量進(jìn)行配對(duì),分別歸入移植對(duì)照組和5-Azac實(shí)驗(yàn)組,每組20只。5-Aza實(shí)驗(yàn)組于移植后1~7、14、21、28 d尾靜脈注射5-Azac 0.25 mg/kg,0.3 mL/只;移植對(duì)照組則尾靜脈注射生理鹽水,0.3 mL/只。
1.2.3實(shí)驗(yàn)觀察每日觀察記錄2組小鼠的體質(zhì)量、毛發(fā)、有無(wú)腹瀉、弓背、精神萎靡、皮膚潰瘍等aGVHD表現(xiàn),統(tǒng)計(jì)其生存率及體質(zhì)量變化。2組小鼠分別于瀕死狀態(tài)及移植后30 d取外周血及肝臟、小腸組織。
1.2.4病理學(xué)檢查4%多聚甲醛溶液固定2組小鼠肝臟及小腸組織,石蠟切片、蘇木素-伊紅(hematoxylin-eosin,H-E)染色,光鏡下觀察各組織病理學(xué)改變。
1.2.5小鼠外周血DNA甲基化的檢測(cè)2組分別提取3只小鼠的外周血DNA,分別等量混勻,用NanoDrop和瓊脂糖凝膠電泳檢測(cè)基因組DNA的純度及完整性,采用Covaris超聲儀對(duì)基因組DNA進(jìn)行超聲隨機(jī)片段化,片段化后對(duì)其末端進(jìn)行修復(fù),在3′端加A,連接接頭,連接產(chǎn)物用Qubit DNABR ASSAY KIT進(jìn)行定量,用DNA甲基化特異抗體對(duì)連接純化產(chǎn)物(400 ng)進(jìn)行甲基化位點(diǎn)富集,37℃0.5~1 h孵育反應(yīng),然后清洗收集抗體富集的DNA,用于后續(xù)PCR;PCR產(chǎn)物切膠純化,建立文庫(kù),上機(jī)測(cè)序,完成MeDIP-seq。
1.2.6差異甲基化基因篩選根據(jù)MeDIP-seq測(cè)序結(jié)果,計(jì)算差異甲基化基因的差異倍數(shù)Fold Change,利用統(tǒng)計(jì)學(xué)分析檢驗(yàn)P值(Fold Change > 2,P < 0.01為甲基化水平上調(diào);Fold Change < 0.5,P < 0.01為甲基化水平下調(diào))。
1.2.7生物信息學(xué)分析應(yīng)用InterProScan軟件對(duì)差異甲基化基因進(jìn)行GO(gene ontology)基因注釋和GO功能分類分析,利用KEGG(Kyoto Encyclopedia of Genes and Genomes)數(shù)據(jù)庫(kù)對(duì)差異甲基化基因進(jìn)行信號(hào)通路分析。
2.1成功建立aGVHD小鼠模型(1)移植對(duì)照組小鼠于移植后3~4 d即出現(xiàn)體質(zhì)量減輕、弓背、腹瀉、毛發(fā)雜亂等aGVHD表現(xiàn),13 d內(nèi)全部死亡;5-Azac實(shí)驗(yàn)組小鼠于移植后7 d出現(xiàn)弓背、腹瀉、脫毛等aGVHD表現(xiàn),但癥狀較輕,移植后第12天體質(zhì)量逐漸回升,部分小鼠生存期已達(dá)30 d,生存時(shí)間顯著延長(zhǎng),其生存率和平均體質(zhì)量變化見圖1、2。(2)移植組對(duì)照組肝臟表現(xiàn)為肝細(xì)胞腫脹變性,淋巴細(xì)胞浸潤(rùn)并伴有局部性壞死,呈現(xiàn)嚴(yán)重的排斥反應(yīng),見圖3A;小腸表現(xiàn)為腸黏膜上皮細(xì)胞壞死,間質(zhì)水腫,滲出液明顯,見圖4A。而5-Azac實(shí)驗(yàn)組小鼠組織病理切片H-E染色顯示該組小鼠免疫排斥反應(yīng)較輕,見圖3B、4B。
Fig. 1 Comparison of survival time of mice between two groups圖1 2組小鼠生存時(shí)間比較
Fig. 2 Comparison of average body weight of mice between two groups圖2 2組小鼠平均體質(zhì)量的變化
Fig. 3 Pathological changes of livers in two groups(×400)圖3 2組肝臟組織病理表現(xiàn)(×400)
Fig. 4 Pathological changes of small intestines in two groups(×200)圖4 2組小腸組織病理表現(xiàn)(×200)
2.2差異甲基化基因的篩選及通路分析根據(jù)Fold Change>2或<0.5,P < 0.01的篩選標(biāo)準(zhǔn),5-Azac實(shí)驗(yàn)組和移植對(duì)照組比較啟動(dòng)子區(qū)存在369個(gè)差異甲基化基因,其中上調(diào)239個(gè)、下調(diào)130個(gè);外顯子區(qū)存在184個(gè)差異甲基化基因,其中上調(diào)113個(gè)、下調(diào)71個(gè)。利用KEGG數(shù)據(jù)庫(kù)對(duì)差異甲基化基因進(jìn)行分析發(fā)現(xiàn),它們參與了B細(xì)胞受體等10個(gè)免疫學(xué)相關(guān)的信號(hào)通路,見表1。其中差異甲基化基因TGF-β、GSK-3β、SYK、PI3K、NFAT、CD28、α4β7與aGVHD的發(fā)生發(fā)展密切相關(guān),見圖5。
Tab. 1 Differentially methylated gene involved immune signaling pathways表1 差異甲基化基因參與的免疫反應(yīng)通路
Fig. 5 The ratio and function of differential methylation gene圖5 aGVHD相關(guān)基因的甲基化差異倍數(shù)及其功能
3.15-Azac在aGVHD中的作用異基因造血干細(xì)胞移植是目前治療白血病的重要手段,但術(shù)后aGVHD是導(dǎo)致移植失敗和死亡的主要原因[4]。aGVHD是一種特異的免疫現(xiàn)象,免疫學(xué)反應(yīng)在同種異體造血干細(xì)胞移植中起關(guān)鍵作用[5]。文獻(xiàn)報(bào)道基于非基因序列改變所致基因表達(dá)水平變化的表觀遺傳學(xué)修飾作用可有效調(diào)節(jié)機(jī)體免疫功能,減輕aGVHD癥狀,誘導(dǎo)機(jī)體免疫低反應(yīng)。5-Azac作為一種調(diào)節(jié)基因轉(zhuǎn)錄水平的藥物,可以使DNA甲基化轉(zhuǎn)移酶(DNA methyltransferase,DNMT)共價(jià)結(jié)合到DNA上,形成廣泛的蛋白-DNA交聯(lián)體,導(dǎo)致DNMT蛋白水平降低,最終導(dǎo)致基因組廣泛去甲基化和基因的再活化。研究發(fā)現(xiàn)5-Azac具有免疫調(diào)節(jié)作用,成為治療aGVHD的新靶點(diǎn)[6]。本研究結(jié)果顯示,5-Azac可有效延長(zhǎng)小鼠的生存時(shí)間,減輕排斥反應(yīng),成功誘導(dǎo)小鼠免疫低反應(yīng)狀態(tài)。
3.25-Azac對(duì)基因甲基化水平的影響2組小鼠DNA MeDIP-seq測(cè)序結(jié)果對(duì)比顯示,5-Azac實(shí)驗(yàn)組啟動(dòng)子區(qū)與外顯子區(qū)分別存在有369和184個(gè)差異甲基化基因,其中TGF-β、GSK-3β、SYK、PI3K、NFAT、CD28、α4β7等基因與aGVHD密切相關(guān),TGF-β、GSK- 3β甲基化水平下調(diào),SYK、PI3K、NFAT、CD28、α4β7上調(diào)。利用KEGG數(shù)據(jù)庫(kù)對(duì)差異甲基化基因的生物學(xué)通路分析發(fā)現(xiàn)其參與了B細(xì)胞受體信號(hào)通路等10個(gè)免疫反應(yīng)相關(guān)信號(hào)過(guò)程。這些信號(hào)通路的變化與移植排斥反應(yīng)、哮喘、移植物抗宿主病、先天性免疫缺陷等免疫相關(guān)性疾病的發(fā)生發(fā)展緊密相關(guān)。
3.3差異甲基化基因與免疫耐受的關(guān)系轉(zhuǎn)化生長(zhǎng)因子(TGF)-β作為一種免疫抑制因子,參與天然免疫和獲得性免疫細(xì)胞的增殖、活化與分化過(guò)程。TGF-β可能通過(guò)其強(qiáng)大的免疫調(diào)節(jié)作用對(duì)aGVHD發(fā)生過(guò)程中的多個(gè)重要環(huán)節(jié)進(jìn)行綜合調(diào)控。實(shí)驗(yàn)證明藥物誘導(dǎo)或增強(qiáng)TGF-β信號(hào)通路可以增加調(diào)節(jié)性T細(xì)胞(Tregs)的細(xì)胞數(shù)量[7]。也有研究發(fā)現(xiàn)人類臍帶血來(lái)源的干細(xì)胞可以通過(guò)TGF-β/Smad3信號(hào)通路誘導(dǎo)免疫耐受[8]。因此增強(qiáng)TGF-β可有效減輕或抑制aGVHD的發(fā)生。糖原合成激酶(GSK)-3β是一種多功能的絲氨酸/蘇氨酸蛋白激酶,可調(diào)控炎癥過(guò)程,參與白細(xì)胞介素(IL)-10和腫瘤壞死因子(TNF)等多種細(xì)胞因子和炎癥介質(zhì)表達(dá)的調(diào)節(jié),在aGVHD的過(guò)程中GSK-3β蛋白表達(dá)水平降低,可以作為診斷aGVHD的生物標(biāo)志物[9],而本實(shí)驗(yàn)結(jié)果顯示5-Azac可以使GSK-3β DNA甲基化水平降低,有利于促進(jìn)其蛋白的表達(dá),誘導(dǎo)aGVHD免疫低反應(yīng)。TGF-β、GSK-3β對(duì)aGVHD起正向調(diào)控作用,其甲基化水平降低,會(huì)導(dǎo)致其表達(dá)水平升高,利于誘導(dǎo)aGVHD免疫低反應(yīng)。
酪氨酸激酶(SYK)在T細(xì)胞和B細(xì)胞的成熟過(guò)程中起重要作用。Flynn等[10]證實(shí)使用SYK基因抑制劑可以有效誘導(dǎo)人類慢性移植物抗宿主病cGVHD患者B淋巴細(xì)胞凋亡,阻斷B細(xì)胞的SYK基因信號(hào)通路是治療cGVHD的潛在新靶點(diǎn)。磷脂酰肌醇-3激酶(PI3K)是一種與細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)有關(guān)的脂類第二信使,PI3K-AKT信號(hào)轉(zhuǎn)導(dǎo)通路對(duì)炎癥介質(zhì)的釋放過(guò)程和炎癥細(xì)胞的增生過(guò)程發(fā)揮重要的調(diào)節(jié)作用。Lai等[11]通過(guò)基因表達(dá)譜分析鑒定出PI3K可以作為cGVHD的新的生物學(xué)標(biāo)志物。Berges等[12]證實(shí)同時(shí)抑制PI3K/AKT信號(hào)途徑和熱休克蛋白Hsp90可以抑制T細(xì)胞的功能,增加Tregs數(shù)量,是預(yù)防和治療aGVHD的理想選擇?;罨疶細(xì)胞核因子(NFAT)是一類轉(zhuǎn)錄因子家族,在免疫反應(yīng)中對(duì)誘導(dǎo)基因轉(zhuǎn)錄起重要作用。抑制T細(xì)胞NFAT基因不僅可以減輕aGVHD,還可以維持抗腫瘤活性[13]。α4β7又名整合素,在免疫系統(tǒng)介導(dǎo)的炎癥中起重要作用,可以介導(dǎo)炎癥細(xì)胞向病灶部位遷移和聚集[14]。在aGVHD患者的記憶性CD8+T淋巴細(xì)胞上α4β7表達(dá)水平明顯升高,可以作為aGVHD治療的新靶點(diǎn)[15]。CD28是一種參與T細(xì)胞活化的共刺激分子,它參與T細(xì)胞活化信號(hào)的轉(zhuǎn)導(dǎo),使T細(xì)胞活化、增殖、啟動(dòng)和維持免疫應(yīng)答。由CD28介導(dǎo)的共刺激通路在引起同種異體抗原應(yīng)答的免疫反應(yīng)中起關(guān)鍵作用。文獻(xiàn)報(bào)道藥物阻斷CD28可以減輕aGVHD反應(yīng)[16-17]。SYK、PI3K、NFAT、CD28、α4β7基因?qū)GVHD起負(fù)向調(diào)控作用,其甲基化水平升高會(huì)導(dǎo)致其表達(dá)水平降低,利于誘導(dǎo)aGVHD免疫低反應(yīng)。
綜上所述,5-Azac可以通過(guò)改變基因的甲基化狀態(tài)誘導(dǎo)aGVHD的免疫低反應(yīng),為臨床應(yīng)用表觀遺傳學(xué)藥物減輕aGVHD提供理論依據(jù),為aGVHD的治療提供新的思路和見解。另外,5-Azac實(shí)驗(yàn)組出現(xiàn)了基因甲基化上調(diào)的現(xiàn)象,其上調(diào)的分子機(jī)制有待進(jìn)一步研究。
[1] Brennan TV, Rendell VR, Yang Y. Innate immune activation by tis?sue injury and cell death in the setting of hematopoietic stem cell transplantation [J]. Front Immunol, 2015, 6: 101. doi: 10.3389/fim?mu.2015.00101.
[2] Breccia M, Molica M, Zacheo I, et al. Azacitidine for myelodysplas?tic patients aged > 65 years: a review of clinical efficacy [J]. Expert Opin Pharmacother, 2014, 15(11): 1621- 1630. doi: 10.1517/ 14656566.2014.936849.
[3] Bontkes HJ, Ruben JM, Alhan C, et al. Azacitidine differentially af?fects CD4+T-cell polarization in vitro and in vivo in high risk my?elodysplastic syndromes [J]. Leuk Res, 2012, 36(7): 921-930. doi: 10.1016/j.leukres.2012.03.026.
[4] Levine JE, Hogan WJ, Harris AC, et al. Improved accuracy of acute graft-versus-host disease staging among multiple centers [J]. Best Pract Res Clin Haematol, 2014, 27(3-4): 283-287. doi: 10.1016/j. beha.2014.10.011.
[5] Mosaad YM. Immunology of hematopoietic stem cell transplant [J]. Immunol Invest, 2014, 43(8): 858-887. doi: 10.3109/08820139.2014. 942460.
[6] Goodyear OC, Dennis M, Jilani NY, et al. Azacitidineaugments ex?pansion of regulatory T cells after allogeneic stem cell transplanta?tionin patients with acute myeloid leukemia (AML) [J]. Blood, 2012, 119(14): 3361-3369. doi: 10.1182/blood-2011-09-377044.
[7] Sawamukai N, Satake A, Schmidt AM, et al. Cell-autonomous role of TGF-β and IL-2 receptors in CD4+and CD8+inducible regulato?ry T-cell generation during GVHD [J]. Blood, 2012, 119(23): 5575-5583. doi: 10.1182/blood-2011-07-367987.
[8] Zhang C, Zhang X, Chen XH. Hypothesis: human umbilical cord blood-derived stromal cells regulate the foxp3 expression of regula?tory T cells through the TGF-β1/Smad3 pathway [J]. Cell Biochem Biophys, 2012, 62(3): 463-466. doi: 10.1007/s12013-011-9328-8.
[9] Orbach A, Bassan-Levin T, Dan P, et al. Utilizing glycogen syn?thase kinase-3β as a marker for the diagnosis of graft-versus-host disease[J]. Transplant Proc, 2013, 45(5): 2051-2055. doi: 10.1016/j. transproceed.2012.11.026.
[10] Flynn R, Allen JL, Luznik L, et al. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease [J]. Blood, 2015, 125(26): 4085-4094. doi:10.1182/blood-2014-08-595470.
[11] Lai P, Weng J, Lu Z, et al. Gene expression profiling-based identifi?cation of CD28 and PI3K as new biomarkers for chronic graft-ver?sus-host disease [J]. DNA Cell Biol, 2011, 30(12): 1019-1025. doi: 10.1089/dna.2011.1284.
[12] Berges C, Bedke T, Stuehler C, et al. Combined PI3K/Akt and Hsp90 targeting synergistically suppresses essential functions of al?loreactive T cells and increases Tregs [J]. J Leukoc Biol, 2015, 98 (6):1091-1105. doi:10.1189/jlb.5A0814-413R.
[13] Vaeth M, B?uerlein CA, Pusch T, et al. Selectiven NFAT targeting in T cells ameliorates GVHD while maintaining antitumor activity [J]. Proc Natl Acad Sci U S A, 2015, 112(4) 1125- 1130. doi: 10.1073/pnas.1409290112.
[14] Evans-Marin HL, Cong Y. Gut homing molecule regulation of the pathogenesis and treatment of inflammatory bowel diseases [J]. In?flamm Allergy Drug Targets, 2015, 14(1):4-12.
[15] Chen YB, McDonough S, Chen H, et al. Expression of α4β7 integ?rin on memory CD8+T cells at the presentation of acute intestinal GVHD [J]. Bone Marrow Transplant, 2013, 48(4): 598- 603. doi: 10.1038/bmt.2012.191.
[16] Akieda Y, Wakamatsu E, Nakamura T, et al. Defects in regulatory T cells due to CD28 deficiency induce a qualitative change of alloge?neic immune response inchronic graft-versus-host disease [J]. J Im?munol, 2015, 194(9): 4162-4174. doi: 10.4049/jimmunol.1402591.
[17] Li J, Semple K, Suh WK, et al. Roles of CD28, CTLA4, and induc?ible costimulator in acute graft-versus-host disease in mice [J]. Bi?ol Blood Marrow Transplant, 2011, 17(7): 962-969. doi: 10.1016/j. bbmt.2011.01.018.
(2015-09-09收稿2015-09-24修回)
(本文編輯李鵬)
作者單位:天津醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生物學(xué)教研室(郵編300070)
Analysis of DNA methylation with 5-Azac induced immune hyporesponsiveness following acute graft-versus-host disease
ZHANG Xiaoning,ZHAO Yuxia,WANG Jianhai,MIAO Xuhong,LI Keqiu,LI Guang△
Department of Biology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
△Corresponding Author E-mail:lig@tmu.edu.cn
Abstract:Objective To analyse the change of DNA methylation with 5-Azac injection in acute graft-versus-host dis?book=174,ebook=51ease (aGVHD) mouse model, which received allogeneic bone marrow transplantation, and explore the immunomodulatory ef?fects of 5-Azac. Methods Male C57BL/6 (H-2b)and female BALB/c (H-2d) mice were selected as donor and recipient of complete allotransplantation. BABL/c mice were divided into two groups, transplantation control group and 5-Azac experi?mental group. At 1-7, 14, 21 and 28-day after transplantion, 5-Azac 0.25 mg/kg (0.3 mL/time) was injected by tail vein in experimental group, while the control group were injected with sterile water 0.3 mL/time. Peripheral blood DNA samples were collected from three control mice and three experimental mice, then mixed with equal amount respectively. The MeDIP-seq method was selected to detect methylation changes in mice, and the differential DNA methylation in the biological path?ways was analyzed. Results The survival time was prolonged, and the rejection reaction was decreased in 5-Azac experi?mental group, which suggested immune hyporesponsiveness post aGVHD. The MeDIP-seq result showed that 369 different DNA methylation located in the promoter regions, including 239 up-regulated genes and 130 down-regulated genes. There were 184 differential DNA methylation genes located in the exon regions, including 113 up-regulated genes and 71 downregulated genes. Differential DNA methylation genes involved in 10 immunological signaling pathways, respectively. Among them, TGF-β, GSK-3β, SYK, PI3K, NFAT, CD28 and α4β7 were closely related to the development of aGVHD. Conclu?sion 5-Azac can effectively induce immune hyporesponsiveness post aGVHD by changing the gene methylation status.
Key words:graft vs host disease;methylation;5-azacytidine;MeDIP-seq;immune hyporesponsiveness
中圖分類號(hào):R318.06
文獻(xiàn)標(biāo)志碼:A
DOI:10.11958/20150153
基金項(xiàng)目:國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2012AA021003);國(guó)家自然科學(xué)基金資助項(xiàng)目(21177091)
作者簡(jiǎn)介:張曉寧(1990),男,碩士在讀,主要從事免疫耐受方面研究