張清 胡偉長 張積森
摘 要 蔗糖轉運蛋白(SUT)在植物的生長代謝中調控蔗糖的運輸和分配,并通過蔗糖信號影響其它代謝途徑。植物蔗糖轉運蛋白結構較為保守,屬于12次跨膜的膜蛋白基因家族。對已完成基因組測序的10個單子葉和8個雙子葉植物的蔗糖轉運蛋白聚類分析表明,該基因家族可以分為5個亞族,SUT1、SUT2、SUT3、SUT4、SUT5,其中SUT2和SUT4為單、雙子葉所共有的基因,SUT1為雙子葉特異,而SUT3、SUT5為單子葉特異。單、雙子葉蔗糖轉運蛋白是由2個祖先基因進化而來。SUT的組織分布和遺傳轉化研究表明,SUT參與植物蔗糖運輸與貯存、非生物脅迫響應、胚乳發(fā)育等,且SUT家族成員之間存在功能差異。SUT2的表達受SnRKs調控,而SUT4表達則調控部分生物鐘相關基因,同時篩部移動信號等也調節(jié)SUT的表達。本文綜述了植物蔗糖轉運蛋白基因分類、生理功能及其在不同水平上的調控等方面的研究進展,為更好的理解蔗糖轉運蛋白對植物生長發(fā)育的影響及其分子機制提供參考。
關鍵詞 蔗糖轉運蛋白;單雙子葉植物;基因進化;基因功能;基因家族
中圖分類號 Q946.1 文獻標識碼 A
Abstract Sucrose transporters(SUT)regulate the sugar distributions in tissues and influence several plant metabolic pathways by using sucrose as the signal. Plant sucrose transporters are conservative proteins containing 12 transmembrane protein domains. Phylogenetic analysis of the whole sucrose transporter families from 10 monocotyledon and 8 dicotyledon demonstrates that the gene family could be separated into two groups for five subfamilies(SUT1, SUT2, SUT3, SUT4, SUT5). The results suggested that sucrose transporters of monocotyledon and dicotyledonwere originated from two different ancient genes. In addition, the genes in SUT2 and SUT4 subfamilies exist in both monocotyledon and dicotyledon, and SUT1 specifically exists in the dicotyledon, while, the SUT3 and SUT5 are monocotyledon-specific. SUT families play roles in the process of transportation and storage of sucrose, abiotic stress response and the development of endosperm as well, and the gene members of SUT families present diverse functions in plant. In addition,the expression level of SUT families is proved to regulated by the long-range signal;furthermore, the gene network for two of members, SUT2 and SUT4, have been investigated in the families, showing that the expression level of SUT2 is regulated by SnRKs, while, SUT4 regulated some of biological clock related genes. In this paper,we reviewed the progresses on different aspects of SUT genes, such as classification,physiological function and regulation at different levels,providing details about their the effects on plant growth and development.
Key words Sucrose transporters;Monocotyledonous and dicotyledonous plants;Gene evolution; Gene function;Gene families
doi 10.3969/j.issn.1000-2561.2016.01.031
蔗糖作為一種非還原糖,是大多數(shù)高等植物的主要光合同化產物。光合作用產生的蔗糖除了部分維持光合組織自身的代謝外,大部分通過韌皮部長距離運輸?shù)狡渌M織進行代謝或儲存。在植物中,生產或輸出同化產物的組織通常稱之為“源”,而接收、利用或儲存同化產物的組織稱之為“庫”[1-2]。蔗糖從源到庫的運輸和分配過程中,韌皮部的“裝載”和“卸載”都涉及到兩條途徑:第1條為共質體途徑,蔗糖分子從葉肉細胞進入到篩管分子-伴胞復合體(sieve element-companion cell,SE/CC),需要經過細胞與細胞間的胞間連絲,不需要經過跨膜運輸;第2條為質外體途徑,即蔗糖分子從葉肉細胞進入到篩管分子-伴胞復合體,不是通過胞間連絲而是通過錨定在篩管分子-伴胞復合體上的蔗糖轉運蛋白進行跨膜轉運[3]。質外體途徑在大多數(shù)植物中占有重要的地位,該途徑依賴一種特殊的載體蛋白來介導蔗糖分子的跨膜轉運,這個過程需要能量驅動[4]。最近的研究表明,質外體途徑中,蔗糖分子從韌皮部薄壁細胞流出,進入到篩管伴胞復合體中的過程需要SWEET(Sugars Will Eventually be Exported Transporters)蛋白和蔗糖轉運蛋白共同來完成[5]。蔗糖轉運蛋白(sucrose/H+cotransporter或sucrose transporters,SUCs或SUTs)可以依賴H+2ATPase形成的質膜電化學勢差耦聯(lián)進行蔗糖的跨膜轉運,所以又稱蔗糖-H+共轉運蛋白(sucrose/H+co-transporters,SUCs)。蔗糖轉運蛋白作為一類具有蔗糖轉運活性的載體廣泛地存在于高等植物的各種組織中,介導植物體中蔗糖的輸入和輸出,在多種生理過程中起著非常重要的作用[6]。近年來,基因組領域的研究為SUT基因的分類與基因組演化提供了新的數(shù)據(jù)資源,不同的研究團隊對SUT家族主成員SUT1、SUT2、SUT4表達與分子網絡調控方面均有明顯進展。為此,本文對蔗糖轉運蛋白的生理生化、基因組學、基因功能與分子調控機制進行較為全面的綜述。
1 單雙葉植物中的蔗糖轉運蛋白基因家族分類
蔗糖轉運蛋白是配糖體戊糖苷己糖醛(glycoside-pentoside-hexuronide,GPH)陽離子家族的成員,屬于主要易化子超家族(major facilitator superfamily,MFS)[7],該家族成員顯著的結構特點是具有12個由α-螺旋構成的高疏水性跨膜結構域(圖1),其序列高度保守,存在很多保守的氨基酸。水稻OsSUT1中發(fā)現(xiàn)了6個對蔗糖轉運功能至關重要的氨基酸位點D177、R188、D329、D331、R335和E336[8]。Ricky等在高粱(Sorghum bicolor)中發(fā)現(xiàn)了6個蔗糖轉運蛋白基因,并克隆出了高粱兩個品種(cv.Rio和cv.BTx623)中的蔗糖轉運蛋白基因的cDNA,序列比較發(fā)現(xiàn)只有SbSUT4的N端結構域中包含一個LXXLL結構,可能是液泡膜的靶位點[9],兩個高粱品種中的SbSUT5有9個氨基酸(A32G,G33A,E34G,K35E,G37A,L272V,V355M,T396M,K426R)的差異(圖1),SbSUT1有一個氨基酸(I381V)的差異,SbSUT2在Rio中有T41的插入,SbSUT3、SbSUT4、SbSUT6在兩個品種中無氨基酸差異。盡管ZmSUT4與ShSUT4在結構上存在差異,但是它們的序列的相似度卻達到了88%[10]。在小麥中,研究者通過比較基因組學的方法鑒定了六倍體小麥中的一個新的蔗糖轉運蛋白的3個同系成員(TaSUT2),它的3個同系成員TaSUT2A、TaSUT2B、TaSUT2D的開放讀碼框(Open Reading Frame, ORF)分別為1 518、1 518、1 524 bp,編碼的蛋白分別為506、506、508個氨基酸,分子量約為54 ku,這三者之間的3UTR區(qū)域存在較大差異[11]。
目前對蔗糖轉運蛋白的基因家族的分類先后有兩種,第1種是把植物蔗糖轉運蛋白基因分成3個類型[13],其中第1類型的蔗糖轉運蛋白基因只在雙子葉植物中存在,與菠菜SoSUT1和擬南芥AtSUT2的同源性較高[14],第2、3類型為單雙子葉植物蔗糖轉運蛋白基因共有,第2類型的植物蔗糖轉運蛋白基因與擬南芥中的AtSUT2較為同源,第3類型則與擬南芥中的AtSUT4較為同源,為此推測,第2、3類型的植物蔗糖轉運蛋白可能是蔗糖轉運蛋白的祖先形式,在進化的過程中,它們共同祖先的進化早于單雙子葉植物的分歧[13]。另一種是根據(jù)對更多植物SUT基因序列同源性分析,將植物蔗糖轉運蛋白共分為5個亞族:SUT1、SUT2、SUT3、SUT4和SUT5亞族[6],其中,SUT2和SUT4亞族是單雙子葉植物共有的,而SUT3和SUT5亞族是單子葉植物特有的,SUT1亞族是雙子葉植物特有的,這說明單子葉植物的蔗糖轉運蛋白與雙子葉植物的蔗糖轉運蛋白在進化上可能存在著某種先后進化關系。
在基因演化研究中,對來源于更多有代表性物種的基因家族成員進行聚類分析,更有利于得到可靠的結論。近年來,多種植物的基因組被解析,這為研究植物糖轉運蛋白基因的演化提供了可靠的數(shù)據(jù)。到目前為止,已經至少在11種單子葉植物和30多種雙子葉植物中發(fā)現(xiàn)了蔗糖轉運蛋白基因,除了在擬南芥、水稻中的研究較為深入外,其他物種的蔗糖轉運蛋白基因有待深入研究[6, 12]。為進一步考查上述兩種分類方法的合理性,我們將10種單子葉植物和8種雙子葉植物中找到的78種蔗糖轉運蛋白基因的氨基酸序列進行聚類分析發(fā)現(xiàn),其聚類結果可以將植物蔗糖轉運蛋白共分為5個亞族,這與Kühn等[6]的主張是一致的(圖2)。SUT1和SUT4共存一族,而SUT2、SUT3和SUT5共存一族,這預示單雙子葉植物的蔗糖轉運蛋白起源于2個祖先基因,支持Reinders等[13]認為SUT2和SUT4是單雙子葉植物的蔗糖轉運蛋白共同祖先的假說(見圖2),但這結果進一步推測SUT4的祖先基因在單雙子葉分化后產生雙子葉特異性的SUT1,而SUT2的祖先基因則在單雙子葉分化后產生單子葉特異的SUT3和SUT5。
2 蔗糖轉運蛋白基因的生理功能研究
2.1 單子葉植物蔗糖轉運蛋白基因的生理功能研究
在單子葉的模式植物水稻中,在葉片、葉鞘、圓錐花序和萌發(fā)的種子中都檢測到了OsSUT1的表達[15-16]。在水稻的灌漿階段,OsSUT1在葉片的韌皮部、第一節(jié)間、花莖中表達,為灌漿過程轉運所需要的蔗糖,而抑制OsSUT1的表達會影響谷粒的充實程度[17],此外,OsSUT1的表達水平可以調控響應水稻鹽脅迫的基因[18],在萌發(fā)的胚中,OsSUT1、OsSUT2、OsSUT4的表達量比OsSUT3和OsSUT5高,而且差異顯著[16],用GUS染色分析OsSUT4的啟動子的結果發(fā)現(xiàn)該基因在水稻種子的糊粉層和胚中特異表達,可以推測OsSUT4在介導蔗糖從胚乳到達萌發(fā)的胚中起著非常關鍵的作用[19]。通過反義抑制水稻蔗糖轉運蛋白基因OsSUT5的表達,可以顯著降低其愈傷組織誘導植株再生率,這表明OsSUT5基因影響水稻組織培養(yǎng)過程中外植體對蔗糖的吸收和轉運[20]。
小麥中,研究表明非葉組織包括穎片、外稃對小麥種子光合同化物的貢獻率為10%~44%,抽穗前期與后期都在麥穗的穎片中檢測到了TaSUT1的表達,這說明TaSUT1可能在介導蔗糖從穗狀花序到韌皮部裝載過程中起著非常重要的作用[21-22]。據(jù)最新的研究發(fā)現(xiàn),把大麥的SUT基因遺傳轉化到冬小麥中可以增加產量和微量營養(yǎng)素的含量[23]。而在酵母中表達TaSUT2,結果顯示TaSUT2可以被錯誤定位在細胞質膜上,這種錯誤定位可以功能互補酵母SUSY7/ura3的突變表型[11]。
高粱族(Trib. Andropogoneae)的代表性作物有高粱和糖料作物甘蔗。在高粱中,SbSUT1在“源”和“庫”中都被檢測到,SbSUT2存在于所有的組織中,SbSUT4存在于成熟的葉子中,SbSUT5在莖中表達,SbSUT6在植株生長時期的葉片的“源”和“庫”中表達,但具體的功能還有待進一步研究[12]。在糖料作物甘蔗中,從澳大利亞栽培種中克隆出來的一個蔗糖轉運蛋白基因命名為ShSUT1[24],后來將從夏威夷栽培種中克隆出來的一個比SbSUT1多7個氨基酸殘基的蔗糖轉運蛋白命名為ShSUT2A[24]。用雙極電壓鉗技術對在非洲爪蟾蜍卵母細胞中表達的ShSUT1進行研究發(fā)現(xiàn),ShSUT1對蔗糖具有高選擇性,但是在膜電勢為-137 mV、pH=5.6、K0.5=8.26 mmol/L的條件下ShSUT1對蔗糖的親和性較低,同時發(fā)現(xiàn)蔗糖的類似物三氯蔗糖能競爭性抑制ShSUT1的酶活性[13]。ShSUT2被發(fā)現(xiàn)在維管束鞘周圍的細胞層中表達,ShSUT1和ShSUT1A可能在回收從莖的薄壁細胞滲出蔗糖分子的過程中起到重要作用[3,25]。目前對單子葉植物的SUT5亞族的蔗糖轉運蛋白的功能特征還不是很清楚[26]。
2.2 雙子葉植物中的蔗糖轉運蛋白基因的生理功能研究
編碼基因表達特征和亞細胞定位是研究植物蔗糖轉運蛋白運輸性質的重要手段,而YFP(yellow fluorescent protein,黃色熒光蛋白)、GFP(green fluorescent protein,綠色熒光蛋白)融合表達定位和免疫定位經常被用來研究蔗糖轉運蛋白在植物組織中的定位。茄科植物SUT蛋白主要定位在木質部的薄壁組織細胞和韌皮部的伴胞中[27];馬鈴薯StSUT4-GFP融合蛋白定位在質膜上,StSUT4的mRNA穩(wěn)定性的調控發(fā)生在轉錄后水平上,在遠紅光照射的條件下,其穩(wěn)定性增強[28-29];馬鈴薯、番茄和煙草的SUT1存在于無核的篩管細胞質膜中[30];煙草的NtSUT4在質膜中表達[29];胡蘿卜(Daucuscarota)DoSUT1在葉片中表達,在韌皮部中起到裝載的作用,DoSUT2主要在庫組織韌皮部中表達[31];荷花LjSUT4定位在液泡膜上[32]。有些轉運蛋白在庫器官中特異表達,如葡萄中的VvSUC11、VvSUC12,利用基因工程技術把這兩個基因導入到甜菜的塊根中能有效提高轉基因甜菜的含糖量[33-34];芭蕉(Musa basjooSiebold)的PmSUC1在花粉管和花粉粒中表達[35];在蓖麻種子發(fā)芽的過程中,蓖麻RCSUT1在子葉的表皮細胞以及相鄰的胚乳和韌皮部中表達[5,35-36];擬南芥AtSUT2在葉片的伴細胞和韌皮部中表達,主要在韌皮部起到裝載蔗糖的作用[37]。在擬南芥種子早期萌發(fā)過程中,AtSUT5被認為在胚乳中特異表達,為胚乳提供生物素,從而影響三酰甘油的積累[38-39]。AtSUT3、AtSUT4主要在成熟植株的源葉片的細脈中表達,而AtSUT4還在液泡中表達,可能參與調控蔗糖的運輸和存儲過程[40-41]。桃子PpSUT1在源細胞的質膜中表達,在韌皮部中行使裝載的功能;PpSUT4在液泡中表達,參與調控液泡中蔗糖的流入流出,從而維持細胞代謝[42]。歐洲白蠟樹FeSUT1在葉片細脈的篩管細胞中表達,異源表達FeSUT1發(fā)現(xiàn)該蔗糖轉運蛋白可以回收滲漏到篩管外的蔗糖分子,過表達FeSUT1使歐洲白蠟樹葉片的碳的代謝在春天和深秋發(fā)生異常[43]。SWEET家族基因與蔗糖轉運蛋白家族基因同屬于MFS超家族,研究表明,SWEET也行使介導蔗糖運輸?shù)墓δ?,在植物的韌皮部薄壁組織中表達,可以將葉脈中的蔗糖傳遞給SUT1,為植物中的病原微生物和共生體提供營養(yǎng)[5,44-46]。SWEET9在擬南芥、煙草等植物的花的蜜腺中高度表達,該位置蔗糖的輸出需要大量招募SWEET9[47]。
植物中不同的蔗糖轉運蛋白分布的組織細胞部位不同,行使的功能也不同,如擬南芥AtSUT1在花粉中高度表達,主要在花粉萌發(fā)過程中介導蔗糖的攝取,敲除AtSUT1的突變會導致植株花青素合成減少,而且一些與花青素合成相關的基因的表達也相應會減少[48],AtSUT9幾乎在所有組織中都有表達,AtSUT9基因的缺失會導致植株由于非生物脅迫誘導產生的ABA合成受阻,從而使植株適應脅迫的能力下降[49]。茄屬植物的SUT4在質膜、液泡、內質網中表達,可能參與調控茄科植物的生理節(jié)律,SUT4發(fā)生突變會導致植物中乙烯的合成不再遵守白晝的節(jié)律[29]。但在擬南芥的研究中,AtSUT4和AtSUT2與一些非生物脅迫的耐受性相關,這兩者可以通過蔗糖信號來調控ABA-依賴的途徑,進而來響應非生物脅迫[11,50]。煙草蔗糖轉運蛋白NtSUT1的過表達可以提高煙草細胞對鋁離子的耐受性[51]。蔗糖轉運蛋白除了轉運蔗糖外還具備其他的功能,擬南芥AtSUT2可以轉運麥芽糖和配糖物,如熊果苷、水楊苷等[52]。AtSUT9可以轉運蝸牛素、水楊苷、麥芽糖等[52]。
3 植物蔗糖轉運蛋白的調控
3.1 蔗糖轉運蛋白的轉錄水平調節(jié)
植物蔗糖轉運蛋白受不同的代謝產物和相關基因的調控,是植物能夠適應外界刺激(溫度、光照、光周期、病蟲害等脅迫)的應答機制之一[6]。研究發(fā)現(xiàn),蔗糖能通過一些特異的啟動子對蔗糖轉運蛋白的轉錄水平進行調節(jié),如受蔗糖誘導的patatin啟動子和韌皮部特異表達的rolC啟動子[53]。SnRKs(Sucrose nonfermenting-1(SNF1)-related protein kinases)家族基因被認為與調控代謝和響應脅迫相關,其中SnRK1主要作用于調控碳代謝和能量狀態(tài)的過程[54-55],而SnRK2、SnRK3受脅迫調節(jié),參與ABA介導的信號途徑[56]。SnRK2激酶的負調控因子磷酸酶PP2C在ABA的調控下可以使PYR/PYL/RCAR蛋白結合并抑制PP2C,使SnRK2能自激活,磷酸化下游的轉錄因子(ABF/AREB),促進ABA應答基因的轉錄[57-59]。擬南芥中SnRKs基因的表達受AtSUT2、AtSUT4和AtSUT9的調控[40,49],而SnRKs基因在小麥中參與蔗糖信號調控途徑[60]。AtSUT2和AtSUT4基因在擬南芥中被證明是受脅迫誘導,同時蔗糖轉運蛋白基因家族成員AtSUT3調控AtSUT2和AtSUT4基因的表達[40]。SUT4的表達影響一些生物鐘調控相關的基因(如StFT、StSOC1、StCO)的表達,這些生物鐘相關基因參與調控光周期依賴的塊莖組織器官發(fā)育[29](圖3)。在種子的萌發(fā)和生長過程中,AtSUT9基因受低濃度的蔗糖誘導,該基因的缺失還會抑制一些響應低蔗糖信號相關基因的表達,同時還會抑制一些受ABA誘導的基因(如SnRk2.2/3/6, ABF2/3/4, ABI1/3/4, RD29A, KIN1和KIN2)的表達[49]。黑麥草的LpSUT2被認為是在亞細胞水平上參與調控蔗糖和果糖的信號途徑,影響植物落葉[61]。雙分子熒光互補實驗證明,蕃茄中的SlSUT2參與調控油菜素類固醇信號,影響灌木菌根的形成[62]。
蔗糖轉運蛋白基因的表達除了受相關基因的調節(jié)外,還受某些篩部移動信號的調節(jié),如蔗糖分子、赤霉素、細胞分裂素、miRNA以及其他的一些小分子存在于韌皮部汁液中,構成了篩部長距離運輸?shù)男盘朳63],歐洲油菜的導管滲出液中可以檢測到18個不同家族的32個miRNA[64],其中miR172在許多植物中被認為與調控開花有關[65-66],在馬鈴薯中過表達miR172可以促進開花、加速誘導塊莖形成[67],這與StSUT4在RNAi作用下下調表達產生的結果一樣,可能是因為miRNA參與調控光敏色素B的下游途徑,從而影響GA信號途徑中的BEL5的表達[68]。通過共注射南瓜中的RNA-binding 韌皮部蛋白CmPP16發(fā)現(xiàn)StSUT1 mRNA 可以通過胞間連絲結構在細胞間移動[69]。南瓜的CmSUT1 mRNA可以在菟絲子與其宿主植物南瓜之間進行移動[70]。菠菜SoSUT1、番茄SlSUT1的mRNA都被證實在韌皮部中可以流動[28]。用35S融合表達SoSUT2使其帶有c-myc標簽但不含UTR區(qū)域,仍然能在韌皮部汁液中檢測到SoSUT2的mRNA,說明3′和5′UTR不是SoSUT1 mRNA通過胞間連絲所必須的[28]。迄今為此,人們在用3種不同的方法證明蔗糖轉運蛋白的mRNA至少可以在擬南芥、南瓜、馬鈴薯、番茄、煙草5種植物的韌皮部流動[28,70-71],但韌皮部中蔗糖轉運蛋白mRNA的作用機理到現(xiàn)在為止還不是很清楚,這些mRNA是否會被運回伴細胞中翻譯需要進一步探究。
3.2 蔗糖轉運蛋白的轉錄后調節(jié)
蔗糖轉運蛋白的mRNA半衰期比較短,通常為60~130 min[28,72],受生物鐘節(jié)律和白晝節(jié)律的調控[31,73]。研究認為可以通過調控蔗糖轉運蛋白的mRNA穩(wěn)定性來調節(jié)其表達水平,環(huán)己酰亞胺是一種基因翻譯抑制劑,也可以影響SUT mRNA的穩(wěn)定性,當SUT1的翻譯被抑制而導致其mRNA變得不穩(wěn)定時,SUT2和SUT4 mRNA的積累增加到了原來的四倍,而同時加入放線菌素D和環(huán)己酰亞胺可以增加SUT2和SUT4轉錄本的穩(wěn)定性[28]。SUT4和SUT2的RNA結合蛋白可能在轉錄后水平上參與調控StSUT4 mRNA的穩(wěn)定性(圖4),這可能會影響轉錄本在細胞間或者長距離的運輸[74];在紅光/遠紅光照射減弱或者遮陰的條件下,StSUT4的mRNA在源葉中大量積累,下調StSUT4的表達可以緩解避蔭綜合征[73](這種綜合癥是指在高密度光照條件下,增加紅光/遠紅光比率會促進植株莖的伸長并誘導植株提前開花),而增加遠紅光照射和用放線菌素D處理都會導致StSUT4 mRNA大量積累,這可能是由于增加了轉錄本的穩(wěn)定性,但沒有增加轉錄活性[73]。StSUT4可能參與了光敏色素B依賴的途徑,啟動了避蔭響應機制以至于遠紅光照射可以增加StSUT4轉錄本的半衰期,SUT4的mRNA 在乙烯和赤霉素處理的條件下積累,這說明SUT4可能參與連接光照信號途徑和激素信號途徑[73]。
3.3 蔗糖轉運蛋白的翻譯后調節(jié)
在高等植物中,蛋白質互作在蔗糖轉運蛋白的翻譯后水平調控中起到了決定性的作用[75],比如形成同源寡聚化和異源寡聚化的蛋白[6]。Renders等[76-77]利用分裂泛素化酵母雙雜交系統(tǒng)對SUT1蛋白進行研究發(fā)現(xiàn),SUT1之間可以形成有功能的同源二聚體,并進一步在植物中用分裂的YFP證實了該結論[78]。此外,通過分裂泛素化酵母雙雜交系統(tǒng)、免疫共沉淀和雙分子熒光互補測定發(fā)現(xiàn),蘋果(Maluspumila)蔗糖轉運蛋白MdSUT1與山梨醇轉運蛋白MdSOT6在細胞色素b5(Cyb5)的參與下能發(fā)生特殊的反應,增加蔗糖濃度會抑制MdSUT1與Cyb5的相互作用,但不受葡萄糖濃度變化的影響[79]。擬南芥中AtSUT4/Cyb5-2復合物可能參與蔗糖和葡萄糖的信號途徑[80]。核苷二磷酸葡萄糖焦磷酸化酶是淀粉合成中重要的酶,以變構的四聚體形式存在,其活性受糖和光的調節(jié),主要是通過小亞基氧化還原所依賴的二聚化作用來實現(xiàn)[81-82],用免疫共沉淀的方法鑒定與StSUT1作用的蛋白發(fā)現(xiàn)StSUT1可以與核苷二磷酸葡萄糖焦磷酸化酶四聚體的大亞基--1-磷酸葡萄糖轉乙酰酶相互作用[83],因此,淀粉的合成不僅受可利用的糖和核苷二磷酸葡萄糖焦磷酸化酶小亞基的二聚化作用的調節(jié),同時還受StSUT1與核苷二磷酸葡萄糖焦磷酸化酶大亞基之間互作的調節(jié)。StSUT1可以與具有抗菌功能的細胞壁蛋白SN1相互作用,這種SN1蛋白富含脯氨酸,在馬鈴薯中,SN1抑制的表型與蛋白質二硫鍵異構酶被干擾的表型相似,這種蛋白質二硫鍵異構酶也可以與SUT發(fā)生互作[83]。
蛋白質的磷酸化與去磷酸化是調節(jié)蔗糖轉運蛋白的重要形式。14-3-3蛋白被認為是通過結合磷酸化的蛋白來調控許多胞內的代謝過程,在擬南芥中,AtSUC6可以直接作用14-3-3x蛋白,這說明AtSUC6在行使功能的過程中也被磷酸化[84]。蛋白磷酸化抑制劑岡田酸影響甜菜(Beta vulgaris)BvSUT1的mRNA的表達量、轉錄速率以及轉運蛋白的活性[85],然而,蛋白激酶抑制劑卻不影響B(tài)vSUT1的轉錄和活性[86]。AtSUT5被首次直接證明其N端出現(xiàn)了磷酸化現(xiàn)象[87]。此外,質譜分析發(fā)現(xiàn),擬南芥AtSUT1蛋白的第20位點的絲氨酸和第393位點的蘇氨酸是該蛋白的主要磷酸化位點[88-89]。
4 研究展望
蔗糖轉運蛋白作為植物中重要的功能基因家族,人們對單雙子葉植物進行了系統(tǒng)的基因組學研究,對模式植物擬南芥,研究人員主要集中在亞細胞定位、結構、功能方面,有較為系統(tǒng)的研究。盡管如此,在植物蔗糖轉運蛋白領域的研究依然還存在廣泛的空白,如模式植物的擬南芥,對其AtSUT6、AtSUT7、AtSUT8的基因功能還不清楚;在主要的作物中,蔗糖轉運蛋白基因家族的功能研究均還處于起步階段,蔗糖轉運蛋白領域還有許多科學問題值得我們去探索:(1)蔗糖轉運蛋白在植物的生長代謝中處于什么樣的位置?它又是如何影響其他代謝途徑和如何受調控? (2)單雙子葉植物的蔗糖轉運蛋白家族基因在進化上存在著先后順序,這家族基因的主要成員功能有何分工,單雙子葉植物特異的蔗糖轉運蛋白基因使單雙子葉植物在蔗糖轉運過程中存在哪些差異?(3)蔗糖轉運蛋白在糖料作物的功能和調控是否存在特殊機制?其中典型的例子是甘蔗,蔗糖是甘蔗中最重要的光合同化產物,研究其蔗糖轉運蛋白的分子機制具有實踐意義,但甘蔗遺傳背景高度復雜,這給甘蔗蔗糖轉運蛋白的基因組學和分子生物學研究帶來了巨大的挑戰(zhàn)。筆者課題組正在從事甘蔗蔗糖轉運蛋白基因家族成員之間的基因組學工作,并同步研究它們的功能。
參考文獻
[1] Kuhn C, Franceschi V R, Schulz A, et al. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements[J]. Science, 1997, 275: 1 298-1 300.
[2] Lalonde S, Boles E, Hellmann H, et al. The dual function of sugar carriers. Transport and sugar sensing[J]. Plant Cell, 1999, 11: 707-726.
[3] Rae A L, Grof C P L, Casu R E, et al. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation[J]. Field Crops Research, 2005, 92: 159-168.
[4] Sauer N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Lett, 2007, 581: 2 309-2 317.
[5] Chen L Q, Qu X Q, Hou B H, et al. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport[J]. Science, 2012, 335: 207-211.
[6] Kuhn C, Grof C P L. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13: 287-298.
[7] Chang A B, Lin R, Studley W K, et al. Phylogeny as a guide to structure and function of membrane transport proteins (Review)[J]. Molecular Membrane Biology, 2004, 21: 171-181.
[8] Sun Y, Lin Z, Reinders A, et al. Functionally important amino acids in rice sucrose transporter OsSUT1[J]. Biochemistry,2012, 51: 3 284-3 291.
[9] Yamada K, Osakabe Y, Mizoi J, et al. Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides[J]. Journal of Biological Chemistry, 2010, 285: 1 138-1 146.
[10] ElSayed A I, Boulila M, Rafudeen M S. Investigation into the Expression of Sucrose Transporters and Sucrose Phosphate Synthase mRNA in Different Plant Species[J]. AgriculturalResearch,2013(2): 31-42.
[11] Deol K K, Mukherjee S, Gao F, et al. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat(Triticum aestivum L.)[J]. BMC Plant Biol, 2013, 13: 181.
[12] Milne R J, Byrt C S, Patrick J W, et al. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes[J]. Frontiers in Plant Science, 2013(4).
[13] Reinders A, Sivitz A B, Hsi A, et al. Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose[J]. Plant Cell and Environment, 2006, 29: 1 871-1 880.
[14] Aoki N, Hirose T, Scofield G N, et al. The sucrose transporter gene family in rice[J]. Plant Cell Physiol, 2003, 44:223-232.
[15] Scofield G N, Aoki N, Hirose T, et al. The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants[J]. J Exp Bot, 2007, 58: 483-495.
[16] Chen J Y, Liu S L, Siao W, et al. Hormone and sugar effects on rice sucrose transporter OsSUT1 expression in germinating embryos[J]. Acta Physiologiae Plantarum, 2010, 32: 749-756.
[17] Scofield G N, Hirose T, Gaudron J A, et al. Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis[J]. Functional Plant Biology, 2002, 29: 815-826.
[18] Siahpoosh M R, Sanchez D H, Schlereth A, et al. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309[J]. Plant Science, 2012, 182: 101-111.
[19] Chung P, Hsiao H H, Chen H J, et al. Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen[J]. Acta Physiologiae Plantarum, 2014, 36: 217-229.
[20] 張武君, 管其龍, 付艷萍, 等. 反義抑制水稻蔗糖轉運蛋白基因(OsSUT5)的表達降低其愈傷組織誘導和植株再生頻率[J]. 農業(yè)生物技術學報, 2014: 825-831.
[21] Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear[J]. Photosynthetica, 2001, 39: 239-244.
[22] Aoki N, Whitfeld P, Hoeren F, et al. Three sucrose transporter genes are expressed in the developing grain of hexaploid wheat[J]. Plant Mol Biol,2002, 50: 453-462.
[23] Saalbach I, Mora-Ramirez I, Weichert N, et al. Increased grain yield and micronutrient concentration in transgenic winter wheat by ectopic expression of a barley sucrose transporter[J]. Journal of Cereal Science, 2014, 60: 75-81.
[24] Casu R E, Grof C P L, Rae A L, et al. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis[J]. Plant Molecular Biology, 2003, 52: 371-386.
[25] ElSayed A I, Ramadan M F, Komor E. Expression of sucrose transporter(ShSUT1) in a Hawaiian sugarcane cultivar infected with Sugarcane yellow leaf virus (SCYLV)[J]. Physiological and
Molecular Plant Pathology, 2013, 75: 56-63.
[26] 王利芬, 張虎平, 張紹鈴. 植物蔗糖轉運蛋白及其功能調節(jié)研究進展[J]. 植物研究, 2012(4): 501-507.
[27] Schmitt B, Stadler R, Sauer N. Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport[J]. Plant Physiol,
2008, 148: 187-199.
[28] He H, Chincinska I, Hackel A, et al. Phloem mobility and stability of sucrose transporter transcripts[J]. The Open Plant Science Journal, 2008(2): 15-26.
[29] Chincinska I, Gier K, Krugel U, et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Front Plant Sci, 2013(4): 26.
[30] Stadler R, Wright K M, Lauterbach C, et al. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a
novel post-phloem domain in roots[J]. Plant J, 2005, 41: 319-331.
[31] Shakya R, Sturm A. Characterization of source-and sink-specific sucrose/H+ symporters from carrot[J]. Plant physiology, 1998, 118: 1 473-1 480.
[32] Reinders A, Sivitz A B, Starker C G, et al. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus[J]. Plant Mol Biol, 2008, 68: 289-299.
[33] Davies C, Wolf T, Robinson S P. Three putative sucrose transporters are differentially expressed in grapevine tissues[J]. Plant Science, 1999, 147: 93-100.
[34] 閆甜甜, 郭新勇, 向本春, 等. 蔗糖轉運蛋白VvSUC11和VvSUC12累加作用對提高轉基因甜菜含糖量的影響[J]. 中國農業(yè)科學, 2014: 2 455-2 464.
[35] Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants--a diversity of roles and complex regulation[J]. Trends Plant Sci, 2000(5): 283-290.
[36] Rae A L, Perroux J M, Grof C P. Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter[J]. Planta, 2005, 220: 817-825.
[37] Srivastava A C, Ganesan S, Ismail I O, et al. Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport[J]. Plant Physiol, 2008, 148: 200-211.
[38] Baud S, Wuilleme S, Lemoine R, et al. The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis[J]. Plant Journal, 2005, 43: 824-836.
[39] Pommerrenig B, Popko J, Heilmann M, et al. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation[J]. Plant Journal, 2013, 73: 392-404.
[40] Gong X, Liu M, Zhang L, et al. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway[J]. Physiologia Plantarm, 2015(1): 119-136
[41] Endler A, Meyer S, Schelbert S, et al. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach[J]. Plant Physiol, 2006, 141: 196-207.
[42] Zanon L, Falchi R, Hackel A, et al. Expression of peach sucrose transporters in heterologous systems points out their different physiological role[J]. Plant Science, 2015, 238: 262-272.
[43] Oner-Sieben S, Rappl C, Sauer N, et al. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior[J]. Journal of Experimental Botany, 2015(255): erv255.
[44] Chen L Q, Hou B H, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature 2010, 468: 527-U199.
[45]Xuan Y H, Hu Y B, Chen L Q, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: E3 685-E3 694.
[46] Schroeder J I, Delhaize E, Frommer W B, et al. Using membrane transporters to improve crops for sustainable food production[J]. Nature, 2013, 497: 60-66.
[47] Lin I W, Sosso D, Chen L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508: 1.
[48] Sivitz A B, Reinders A, Ward J M. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation[J]. Plant Physiol 2008, 147: 92-100.
[49] Jia W, Zhang L, Wu D, Liu S, et al. Sucrose transporter AtSUC9 mediated by low Suc level is involved in Arabidopsis abiotic stress resistance by regulating Suc distribution and ABA accumulation[J]. Plant and Cell Physiology, 2015, 56(8): 1 574-1 587.
[50] Barker L, Kuhn C, Weise A, et al. SUT2, a putative sucrose sensor in sieve elements[J]. Plant Cell, 2000(12): 1 153-1 164.
[51] Sameeullah M, Sasaki T, Yamamoto Y. Sucrose transporter NtSUT1 confers aluminum tolerance on cultured cells of tobacco(Nicotiana tabacum L.)[J]. Soil Science and Plant Nutrition, 2013, 59: 756-770.
[52] Chandran D, Reinders A, Ward J M. Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2[J]. Journal of Biological Chemistry, 2003, 278: 44 320-44 325.
[53] Smeekens S. Sugar-Induced Signal Transduction in Plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 49-81.
[54] Halford N G, Hey S J. Snf1-related protein kinases(SnRKs) act within an intricate network that links metabolic and stress signalling in plants[J]. Biochemical Journal, 2009, 419: 247-259.
[55] Smeekens S, Ma J K, Hanson J, et al. Sugar signals and molecular networks controlling plant growth[J]. Current Opinion in Plant Biology, 2000, 13: 274-279.
[56] Hey S J, Byrne E, Halford N G. The interface between metabolic and stress signalling[J]. Annals of Botany, 2010, 105: 197-203.
[57] Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 1 988-1 993.
[58] Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signalling pathway[J]. Nature, 2009, 462: 660-U138.
[59] Park S Y, Fung P, Nishimura N, et al. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins[J]. Science, 2009, 324: 1 068-1 071.
[60] Coello P, Hirano E, Hey S J, et al. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK)1 in wheat and activation of a putative calcium-dependent SnRK2[J]. Journal of Experimental Botany, 2012, 63: 913-924.
[61] Berthier A, Meuriot F, Dedaldechamp F, et al. Identification of a new sucrose transporter in rye-grass(LpSUT2): effect of defoliation and putative fructose sensing[J]. Plant Physiol Biochem,2014, 84: 32-44.
[62] Bitterlich M, Krugel U, Boldt-Burisch K, et al. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza ormation[J]. Plant J, 2014, 78: 877-889.
[63] Suarez-Lopez P Long-range signalling in plant reproductive development[J]. Int J Dev Biol, 2015, 49(5-6): 761-771.
[64] Buhtz A, Springer F, Chappell L, et al. Identification and characterization of small RNAs from the phloem of Brassica napus[J]. Plant Journal, 2008, 53: 739-749.
[65] Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. Plant Cell, 2003, 15: 2 730-2 741.
[66] Jung J H, Seo Y H, Seo P J, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. Plant Cell, 2007, 19: 2 736-2 748.
[67] Martin A, Adam H, Diaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136: 2 873-2 881.
[68] Chen H, Banerjee A K, Hannapel D J. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1[J]. The Plant Journal, 2004, 38: 276-284.
[69] Xoconostle-Cazares B, Xiang Y, Ruiz-Medrano R, et al. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem[J]. Science, 1999, 283: 94-98.
[70] Roney J K, Khatibi P A, Westwood J H. Cross-species translocation of mRNA from host plants into the parasitic plant dodder[J]. Plant Physiol, 2007, 143: 1 037-1 043.
[71] Deeken R, Ache P, Kajahn I, et al. Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments[J]. Plant J, 2008, 55: 746-759.
[72] Vaughn M W, Harrington G N, Bush D R. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. Proceedings of the National Academy of Sciences,2002, 99: 10 876-10 880.
[73] Chincinska I A, Liesche J, Krugel U, et al. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response[J]. Plant Physiol, 2008, 146: 515-528.
[74] Liesche J, Krugel U, He H X, et al. Sucrose transporter, 2011. regulation at the transcriptional, post-transcriptional and post-translational level[J]. Journal of Plant Physiology, 168: 1 426-1 433.
[75] Krugel U, Kuhn C. Post-translational regulation of sucrose transporters by direct protein-protein interactions[J]. Front Plant Sci, 2013(4): 237.
[76] Liesche J, Schulz A, Krugel U, et al. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements[J]. Plant Signal Behav, 2008(3): 1 136-1 137.
[77] Reinders A, Schulze W, Kuhn C, et al. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element[J]. Plant Cell, 2002, 14: 1 567-1 577.
[78] Krugel U, Veenhoff L M, Langbein J, et al. Transport and Sorting of the Solanum tuberosum Sucrose Transporter SUT1 Is Affected by Posttranslational Modification[J]. Plant Cell, 2008,
20: 2 497-2 513.
[79] Fan R C, Peng C C, Xu Y H, et al. Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars[J]. Plant Physiol, 2009, 150: 1 880-1 901.
[80] Li Y, Li L L, Fan R C, et al. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose[J]. Mol Plant,2012(5): 1 029-1 041.
[81] Hendriks J H, Kolbe A, Gibon Y, et al. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species[J]. Plant Physiol, 2003, 133: 838-849.
[82] Geigenberger P, Kolbe A, Tiessen A. Redox regulation of carbon storage and partitioning in response to light and sugars[J]. J Exp Bot, 2005, 56: 1 469-1 479.
[83] Krugel U, He H X, Gier K, et al. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase[J]. Mol Plant, 2012(5): 43-62.
[84] Shin R, Jez J M, Basra A, et al. 14-3-3 proteins fine-tune plant nutrient metabolism[J]. FEBS Lett,2011,585: 143-147.
[85] Roblin G, Sakr S, Bonmort J, et al. Regulation of a plant plasma membrane sucrose transporter by phosphorylation[J]. FEBS Lett, 1998, 424: 165-168.
[86] Ransom-Hodgkins W D, Vaughn M W, Bush D R. Protein phosphorylation plays a key role in sucrose-mediated transcriptional regulation of a phloem-specific proton-sucrose symporter[J]. Planta, 2003, 217: 483-489.
[87] Nuhse T S, Stensballe A, Jensen O N, et al. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database[J]. Plant Cell, 2004, 16: 2 394-2 405.
[88] Niittyla T, Fuglsang A T, Palmgren M G, et al. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis[J]. Mol Cell Proteomics, 2007(6): 1 711-1 726.
[89] Durek P, Schmidt R, Heazlewood J L, et al. PhosPhAt: the Arabidopsis thaliana phosphorylation site database[J]. An update. Nucleic Acids Res, 2010, 38: D828-834.
責任編輯:凌青根