亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Positivity of Fock Toeplitz Operators via the Berezin Transform?

        2016-05-28 09:14:41XianfengZHAO
        關(guān)鍵詞:體系手術(shù)

        Xianfeng ZHAO

        1 Introduction

        Let dμ be the Gaussian measure on the complex plane C.It is well-known that,in terms of the standard area measure dA(z)=dxdy=drdθ on C,we have

        Recall that the Fock space F2is defined to be the subspace

        It is easy to check that the functions zn(n≥0)are orthogonal in F2and their linear span is dense in F2.Using polar coordinates we get that.Thus

        2.1 BMI對肝癌術(shù)后OS的影響 Kaplan-Meier分析顯示,在388例HCC患者中,消瘦組、體質(zhì)量正常組與超重肥胖組的中位生存時(shí)間分別為21、66、81個(gè)月;在208例ICC患者中,消瘦組、體質(zhì)量正常組與超重肥胖組的中位生存時(shí)間分別為8.3、18、26個(gè)月。

        forms an orthonormal basis of the Fock space F2.

        軍隊(duì)行政權(quán)力清單制度,是對行政權(quán)力進(jìn)行標(biāo)準(zhǔn)規(guī)范、制約和監(jiān)督,建立與運(yùn)行涉及關(guān)系十分復(fù)雜。首先,將各級機(jī)關(guān)及其部門的行政權(quán)力詳細(xì)羅列,把各機(jī)關(guān)部門之間的權(quán)力界面劃分清楚,實(shí)現(xiàn)行政權(quán)力在軍隊(duì)內(nèi)部合理優(yōu)化配置。其次,查找本單位本部門行政權(quán)力不夠明晰、存在交叉的地方,減少非軍事權(quán)力事項(xiàng),調(diào)整不合理權(quán)力事項(xiàng),科學(xué)配置部門行政權(quán)力,優(yōu)化權(quán)力運(yùn)行流程。再次,嚴(yán)格按照各級各部門的行政權(quán)力清單和權(quán)力運(yùn)行流程圖來行使權(quán)力,使權(quán)力運(yùn)行的各個(gè)環(huán)節(jié)符合法規(guī)要求,確保權(quán)力運(yùn)行的全過程處于正常狀態(tài)。最后,將制定的行政權(quán)力清單及權(quán)力運(yùn)行流程圖公布出來,接受廣大官兵的監(jiān)督,使權(quán)力置于公開、透明的陽光之下。

        Given ? in L∞(C),the Fock Toeplitz operator with symbol ? is defined by

        which shows that

        For more information on the topics of the Fock space and Fock Toeplitz operators,we refer to[2–3,9].

        近年來,常州市委、市政府高度重視人才工作,深入實(shí)施創(chuàng)新驅(qū)動(dòng)戰(zhàn)略和人才強(qiáng)市戰(zhàn)略,不斷深化“龍城英才計(jì)劃”改革創(chuàng)新,通過優(yōu)化人才政策體系,完善人才創(chuàng)新創(chuàng)業(yè)平臺(tái),營造人才發(fā)展良好生態(tài)環(huán)境,積極助推人才隊(duì)伍建設(shè),尤其是科技人才梯隊(duì)建設(shè)。目前,常州市科技人才隊(duì)伍建設(shè)已取得了一定成效,初步形成了一只高水平、多層次的科技人才隊(duì)伍,為實(shí)現(xiàn)產(chǎn)業(yè)轉(zhuǎn)型升級、扎根常州“幸福樹”、建設(shè)“強(qiáng)富高美”新常州提供了堅(jiān)實(shí)的智力支持。

        As usual,let kzdenote the normalized reproducing kernel for F2.That is,

        For a bounded operator A on the Fock space F2,the Berezin transform of A is the function A on the complex plane defined by

        For ? ∈L∞(C),is called the Berezin transform of ? given by

        The Berezin transform is a very usefultool in studying Toeplitz operators on the Bergman space and the Fock space.For instance,the compactness,boundedness,positivity,invertibility and Fredholmness of the Toeplitz operators are partially or completely characterized by their Berezin transforms(please see[1,4–5,7–8]).

        Recently,the author and Zheng[6]studied the positive Toeplitz operators on the Bergman space via their Berezin transforms.They showed that the positivity of a Toeplitz operator on the Bergman space is not completely determined by the positivity of the Berezin transform of its symbol.Indeed,they constructed a quadratic polynomial of|z|on the unit disk and showed that even if the minimal value of the Berezin transform of the polynomial is positive,the Toeplitz operator with the function as the symbol may not be positive.

        從近些年的案例來看,在互聯(lián)網(wǎng)領(lǐng)域,各商家應(yīng)該遵守廣電總局頒布的法律法規(guī)。2017年6月份,國家對新浪、鳳凰網(wǎng)等下達(dá)了明確的規(guī)定,在這些網(wǎng)絡(luò)新聞平臺(tái)中如不符合相關(guān)的管理?xiàng)l例,就要停頓進(jìn)行整改。2018年1月份,國家約談了花椒直播軟件的負(fù)責(zé)人,責(zé)令其對平臺(tái)中不法行為進(jìn)行全面整改。同年4月份,國家廣播電視總局約談了受社會(huì)輿論關(guān)注的“快手”“今日頭條”兩家網(wǎng)站的主要負(fù)責(zé)人,并責(zé)令“今日頭條”網(wǎng)站關(guān)閉“內(nèi)涵段子”板塊,并且永久不能開啟。

        Motivated by this result,we try to study the positivity of the Toeplitz operators on the Fock space in the present paper.Observe that from the definition of the Berezin transform we see that the function ? is nonnegative on C provided that T?≥0,and T?≥0 if the function ?(z)≥0 for all z∈C.Thus,it is natural to ask the following question.

        Question 1.1Is the positivity of a Fock Toeplitz operator completely determined by the positivity of the Berezin transform of its symbol?If not,then how to construct the “simplest”function ? which satisfies that ? is positive on the complex plane but the Toeplitz operator T?is not positive?

        As we mentioned above,one can find an example from the set

        such that T?is not positive on the Bergman space but ? is strictly positive on the unit disk.So,it is natural to try to use the radial functions(i.e.,?(z)= ?(|z|)for all z∈ C)of the formto construct a suitable example and give a negative answer to the above question.However,these simple radial functions are not bounded on the complex plane C.Our main idea in this paper is to simplify our calculations and estimations by the bounded radial functions e?λ|z|2(λ >0).More precisely,we will consider the bounded radial functions of the following form:

        Question 1.2Is there a function ? in(1.1)such thatbut T?is not positive on F2for all 2α=β>0?

        Based on the answer to Question 1.1,we will give a negative answer to Question 1.2 by taking 2α= β=and showing that T?is positive if and only if its Berezin transform is a nonnegative function in this case.That is,for this type of α and β,there do not exist a,b,c such that ? is positive but T?is not.The proofs will be given in the last section.

        2 Preliminaries

        It is difficult to study the positivity of the Toeplitz operators on function spaces in the general case even if the symbols are continuous functions.However,if ? is a radial function on C,we can find the relationship between the positivity of T?and the Berezin transform ? by its matrix,since the matrix representation of this type of Toeplitz operator is a diagonal matrix under the orthonormal basis.

        Lemma 2.1Suppose that?is a bounded radial function onC.Then the matrix represen-tation of the Toeplitz operatorT?under the basisis

        In particular,if

        withλ >0,then the matrix representation ofT?is given by

        ProofFor each n≥0,we have

        If ?(z)=e?λ|z|2(λ >0)and n≥0,then we have

        Thus,

        This completes the proof of Lemma 2.1.

        Note that for the Bergman space case,the Berezin transforms of the functions|z|l(l≥0)are so complicated even if these functions are very simple(see[6,Lemma 3.3]).However,the Berezin transform of the function e?λ|z|2(λ >0)on C has a good expression,that is the following lemma,which is very usefulfor proving our main results.

        Lemma 2.2Suppose that?is a bounded radial function onC.Then the Berezin transform of?is given by

        for some N>2.However,this is impossible.The contradiction shows that

        In particular,if?(z)=e?λ|z|2withλ >0,then

        for allz∈C.

        For the special case,we have the following simple calculations:

        ProofBy the definition of the Berezin transform,we have

        來旅游的男同學(xué)幾年不見已禿頂成“地中?!蹦J剑约旱摹暗刂泻!鳖^頂自嘲道,自打娶了個(gè)小八歲的萌妹子,又當(dāng)夫又當(dāng)父的,因?yàn)椴賱谶^度,導(dǎo)致提前步入“黃金老年組”。我們幾個(gè)哄堂大笑。傲嬌的萌妹子當(dāng)場撒嬌無極限,拿起手機(jī)向父母告狀,樂極生悲的“地中?!蓖瑢W(xué)趕緊接受手機(jī)里丈母娘的嚴(yán)厲批評,當(dāng)著大家的面沖萌妹子又是鞠躬又是討?zhàn)?,我直覺身邊的喬振宇渾身戰(zhàn)栗了幾下。

        where the last“=”comes from the proof of Lemma 2.1.Therefore,

        This gives that,so(3)? (2).This completes the proof.

        as desired.

        Before studying the answer to Question 1.1,we first consider the function ? in(1.1)with c=0.Combining the above two lemmas,we get the following result.

        Proposition 2.1Let?(z)=a ? e?λ|z|2,wherea ∈ Randλ >0.Then the following conditions are equivalent:

        (1)The Fock Toeplitz operatorT?is positive;

        (2)a

        我和阿花去了中汕廠,直闖總經(jīng)理室。中汕廠的老板江鋒挺友善,非??蜌獾亟哟宋覀?。本以為江老板也像林老板那么老氣橫秋老奸巨滑呢,沒想到江老板才三十來歲,儀表堂堂,高大挺拔,談吐不俗,侃侃道來,講商場上的道理,講做人與做事的道理,哲理性很強(qiáng)。江老板說得冠冕堂皇,中汕廠中止和你們合作,不是懾服于誰,而是出于對合作單位的尊重,我們可以跟你們合作,給你們訂單,但前提是,你們必須修復(fù)和大發(fā)廠的關(guān)系,否則我們只能求大舍小。

        (3)The Berezin transformfor allz∈C.

        圖2中,短期修正在綠色區(qū)域?yàn)檎#簿褪恰?”代表的區(qū)域,一般來說長期和短期修正的疊加值在±15%以內(nèi)。如果處于“5”代表的黃色區(qū)域,則有可能是發(fā)動(dòng)機(jī)存在故障,如發(fā)動(dòng)機(jī)轉(zhuǎn)速不穩(wěn)。從數(shù)值看,長短期修正疊加在+15%~+35%之間和-15%~-35% 之間,或者單獨(dú)的短期修正在+15%~+20%之間和-15%~-20%之間,在這兩個(gè)區(qū)域內(nèi)發(fā)動(dòng)機(jī)的尾氣可以被修正補(bǔ)償?shù)胶细穹秶鷥?nèi)。此時(shí),如果進(jìn)行尾氣檢測,一般會(huì)合格,發(fā)動(dòng)機(jī)抖動(dòng)的原因只能通過數(shù)據(jù)分析才能查明。

        ProofBy Lemma 2.1,we get that the matrix representation of T?is

        Thus,T?is positive if and only iffor all n≥0,which gives thatThis proves(1)?(2).Now Lemma 2.2 implies

        So we obtain thatis nonnegative on C if and only if

        中心數(shù)據(jù)顯示,目前中心日間手術(shù)床位28張,單個(gè)手術(shù)間單日日間手術(shù)最高可達(dá)22臺(tái)。目前,全院共開設(shè)七大??啤?30多種兒科日間手術(shù),80余種婦科日間手術(shù),這些手術(shù)使患者等待時(shí)間縮短了50%以上,住院時(shí)間由原來2~3天縮短為4~6小時(shí)。

        Remarks 2.1The above proposition tells us that there exists a function ? ∈ L∞(C)such that the Fock Toeplitz operatobut ? is not a nonnegative function on C.To see this,we only need to takewith λ >0 in Proposition 2.1.Furthermore,this result also implies that to give a negative answer to Question 1.1,we only need to consider the case ofandin(1.1).

        3 A Negative Answer to Question 1.1

        In this section,we construct a function ? such that the Berezin transform of ? is positive on the complex plane but the corresponding Fock Toeplitz operator is not positive.To do so,we first consider the case 2α=β=1.Without loss of generality,we may assume c=1.Then we have the following theorem.

        Theorem 3.1Suppose that,wherea,b∈ R.Then

        艾瑞克眉毛處戴的金屬環(huán)反射出刺眼的光。我似乎明白了他們的關(guān)系,艾瑞克把老四視為他職位的潛在威脅。我想起父親說過:奢望權(quán)力并達(dá)到目的的人,整天提心吊膽,生活在對失去權(quán)力的恐懼中,這就是為什么權(quán)力應(yīng)賦予不奢望權(quán)力的人。

        (1)ifb?orb≤0,thenT?is positive if and only ifis a nonnegative function on the complex plane;

        (2)for eachb∈(?,?],there exists a real numberasuch thatfor allz∈C,butT?is not a positive Toeplitz operator.

        ProofUse Lemmas 2.1–2.2 and let λ =,1,respectively.Then we obtain that the matrix representation of T?is given by

        and the Berezin transform of ? is

        由表2可見,孵育45 min時(shí),在NADPH啟動(dòng)的Ⅰ相孵育體系和UDPGA啟動(dòng)的Ⅱ相孵育體系中,ZG02的剩余百分比分別為(73.33±1.53)%、(50.63±3.42)%,t1/2分別為67.28、30.26 min,表明其在單相孵育體系中的代謝穩(wěn)定性中等,且在Ⅱ相中的代謝穩(wěn)定性較Ⅰ相差;在NADPH和UDPGA聯(lián)合啟動(dòng)的兩相孵育體系中,ZG02的剩余百分比為(45.81±2.56)%,t1/2為25.57 min,提示其在兩相孵育體系中的代謝穩(wěn)定性差。

        ProofBy Lemma 2.1,we see that the matrix representation of T?is

        for all,andif and only if

        for all z∈C.Therefore,is equivalent to

        Letting∈[0,1],thenis equivalent to

        First,we prove part(1)of the above theorem.Now we are going to determine the minimal value of the functionand the minimal term of the sequenceTo do this,we consider the following two cases.

        Case ISuppose that b≥0.It is easy to see that f(t)is increasing on[0,1]andis decreasing for n>1.So we have

        and

        Case IISupposeA simple calculation gives that f(t)is decreasing ifand f(t)is increasing ifNote that,so

        陜西省中小河流分布廣、戰(zhàn)線長、數(shù)量多,不僅直接關(guān)系到廣大人民群眾的生命財(cái)產(chǎn)安全,而且關(guān)系到全面建設(shè)小康,構(gòu)建社會(huì)主義和諧社會(huì)、建設(shè)社會(huì)主義新農(nóng)村等重大戰(zhàn)略目標(biāo)的順利實(shí)現(xiàn)。

        精確液體管理組1周內(nèi)停用呼吸機(jī)的比率明顯高于對照組,分析主要是因?yàn)橥ㄟ^PiCCO監(jiān)測能更合理制定液體治療方案,及時(shí)糾正休克和心衰,縮短液體正平衡時(shí)間,減輕因組織器官水腫、微循環(huán)障礙等繼發(fā)的MODS[16],實(shí)現(xiàn)早脫機(jī)的目標(biāo)。

        To find the minimal term of the sequence,observe thatand we claim thatis the minimal term.Indeed,if there exists some N>1 such that

        then we obtain

        where P:L2(C,dμ)→ F2is the orthogonal projection.Using the reproducing kernel Kz(w)=,we express the Toeplitz operator as an integral operator:

        有機(jī)農(nóng)業(yè)(Organic Agriculture)是遵照一定的有機(jī)農(nóng)業(yè)生產(chǎn)標(biāo)準(zhǔn),在生產(chǎn)中不采用基因工程獲得的生物及其產(chǎn)物,不使用化學(xué)合成的農(nóng)藥、化肥、生長調(diào)節(jié)劑、飼料添加劑等物質(zhì),遵循自然規(guī)律和生態(tài)學(xué)原理,協(xié)調(diào)種植業(yè)和養(yǎng)殖業(yè)的平衡,采用一系列可持續(xù)發(fā)展的農(nóng)業(yè)技術(shù)以維持持續(xù)穩(wěn)定的農(nóng)業(yè)生產(chǎn)體系的一種農(nóng)業(yè)生產(chǎn)方式。

        Combining the above two cases gives the conclusion in part(1).

        For the second part,we turn to consider b ∈ (?,?].First,observe that T?is not positive if and only if

        To finish the proof,it suffices to show that for each b ∈ (?,?],there exists a real constant a such that

        and T?is not positive.As shown above,we need the following inequality:

        Indeed,we will show that

        for each b∈ (?,?].To do this,we first find the minimal value of f(t).Note thatifUsing the monotonicity of the function f(see the argument in Case II),we get that

        On the other hand,we have the following inequality:

        for eachIndeed,if we consider the function

        then the first inequality follows immediately from the mean value theorem.This finishes the proof of Theorem 3.1.

        One may ask that if we remove the condition 2α = β,can we easily construct an example from(1.1)to give a negative answer to Question 1.1?Actually,we will show that the answer is yes by the following corollary,which can be proved by the same method as the one in the above theorem,so we omit its proof here.

        Corollary 3.1Letwherea,b∈ R.Then for eachthere exists a real numberasuch thatfor allz∈C,butT?is not a positive Toeplitz operator onF2.

        4 A Negative Answer to Question 1.2

        In Section 3,we study the radial function ?(z)=a+be?α|z|2+ce?β|z|2(a,b,c∈ R,α,β >0)and choose real numbers a,b and c such thatis nonnegative on C and T?is not positive under the assumption 2α= β=1.In the final section,we will show that this is not true for all 2α=β>0.More precisely,we have the following theorem,which gives a negative answer to Question 1.2 with the condition 2α=β=

        Theorem 4.1Suppose thatwherea,b∈ R.ThenT?is positiveif and only if?(z)is a nonnegative function onC.

        These imply thatif and only if

        So,T??0 if and only if

        On the other hand,using Lemma 2.2 we obtain thatfor all z∈C if and only if for all z∈C.

        Letting[0,1]andwe see that the above condition on the positivity of ? is equivalent to

        Using the same idea as the one in the proof of Theorem 3.1,we divide the proof into the following four cases.

        Case IWe first consider the case.It is easy to see that

        which shows that T?is positive if and only if ? is a nonnegative function on C.

        Case IISuppose thatIt is easy to check that g(t)is increasing ifand decreasing ifObserve thatso we have

        On the other hand,we have

        for allprovided thatThis implies that the sequenceis decreasing,so the minimal term isas desired.

        Case IIIIn this case,we considerNote thatand

        It follows from the argument in Case II that

        Also,it is easy to see thatfor allThis gives that

        Case IVFinally,we deal with the caseThenandIt follows that

        Now using the same techniques as the one in Case II of Theorem 3.1,we see that the minimal term of the above sequence is the first term.We conclude that

        for all b∈R.This completes the whole proof.

        AcknowledgementThe author thanks the referees for their many suggestions.

        [1]Axler,S.and Zheng,D.C.,Compact operators via the Berezin transform,Indiana Univ.Math.J.,47(2),1998,387–400.

        [2]Isralowitz,J.and Zhu,K.H.,Toeplitz operators on the Fock space,Integral Equations and Operator Theory,66(4),2010,593–611.

        [3]Stroetho ff,K.,Hankel and Toeplitz operators on the Fock space,The Michigan Mathematical Journal,39(1),1992,3–16.

        [4]Stroetho ff,K.,The Berezin Transform and Operators on Spaces of Analytic Functions,Banach Center Publications,38,Polish Academy of Sciences,Warsaw,1997,361–380.

        [5]Stroetho ff,K.and Zheng,D.C.,Products of Hankel and Toeplitz operators on the Bergman space,Journal of Functional Analysis,169(1),1999,289–313.

        [6]Zhao,X.F.and Zheng,D.C.,Positivity of Toeplitz operators via Berezin transform,Journal of Mathematical Analysis and Applications,416(2),2014,881–900.

        [7]Zhao,X.F.and Zheng,D.C.,Invertibility of Toeplitz operators via Berezin transforms,Journal of Operator Theory,to appear.

        [8]Zhu,K.H.,Operator Theory in Function Spaces,2nd edition,Mathematical Surveys and Monographs,138,American Mathematical Society,Providence,2007.

        [9]Zhu,K.H.,Analysis on Fock Spaces,Graduate Texts in Mathematics,263,Springer-Verlag,New York,2012.

        猜你喜歡
        體系手術(shù)
        改良Beger手術(shù)的臨床應(yīng)用
        構(gòu)建體系,舉一反三
        手術(shù)之后
        探索自由貿(mào)易賬戶體系創(chuàng)新應(yīng)用
        中國外匯(2019年17期)2019-11-16 09:31:14
        顱腦損傷手術(shù)治療圍手術(shù)處理
        如何建立長期有效的培訓(xùn)體系
        “曲線運(yùn)動(dòng)”知識(shí)體系和方法指導(dǎo)
        淺談新型手術(shù)敷料包與手術(shù)感染的控制
        中西醫(yī)干預(yù)治療腹膜透析置管手術(shù)圍手術(shù)期106例
        手術(shù)
        国产成年人毛片在线99| 欧美理论在线| 日本特黄a级高清免费大片| 成人性生交大片免费看i| 中文字幕一区二区三区视频| 人妻有码中文字幕| 午夜高清福利| 国产一区二区毛片视频| 亚洲高清三区二区一区| 亚洲av福利无码无一区二区| 日日摸夜夜欧美一区二区| av男人操美女一区二区三区| 色佬精品免费在线视频| 久久国内精品自在自线图片| 午夜亚洲国产理论片亚洲2020| 熟妇人妻丰满少妇一区| 国产亚洲精品久久午夜玫瑰园| 中文字幕一区二区三区人妻少妇| 亚洲偷自拍另类图片二区| av高清视频在线麻豆免费观看| 久久无码高潮喷水抽搐| 久久综合九色综合网站| av免费在线播放视频| 男人进去女人爽免费视频| 国产精品欧美日韩在线一区| av资源在线永久免费观看| 亚洲精品国产第一区二区| 四川老熟妇乱子xx性bbw| 亚洲福利天堂网福利在线观看| 偷拍视频这里只有精品| 少妇做爰免费视频了| 欧美精品一区二区性色a+v| 精品午夜一区二区三区| 一区二区三区四区日韩亚洲| 日韩在线不卡一区三区av| 日韩人妻ol丝袜av一二区| 婷婷四房播播| 日韩一区二区三区天堂| 免费a级毛片又大又粗又黑| 日韩无套内射视频6| 91精品亚洲一区二区三区|