陶長元,曾 強(qiáng),劉作華,杜 軍,范 興,劉仁龍
(重慶大學(xué) 化學(xué)化工學(xué)院,重慶 400030)
?
黃鈉鐵礬渣制備鎳鋅鐵氧體及其表征*
陶長元,曾強(qiáng),劉作華,杜軍,范興,劉仁龍
(重慶大學(xué) 化學(xué)化工學(xué)院,重慶 400030)
摘要:利用化學(xué)共沉淀法,以黃鈉鐵礬渣為原料制備鎳鋅鐵氧體。以正丁胺為沉淀劑,在室溫條件下,通過共沉淀鐵、鎳、鋅(鎳、鋅由硫酸鋅、硫酸鎳按Ni0. 5Zn0. 5Fe2O4比例補(bǔ)加)制備鎳鋅鐵氧體樣品。采用SEM、XRD和FT-IR對該樣品進(jìn)行表征。結(jié)果表明,制備所得的樣品為鎳鋅鐵氧體。同時,通過磁滯回線顯示,鎳鋅鐵氧體比飽和磁化強(qiáng)度為9.04 A·m2/kg,比剩余磁化強(qiáng)度為0.65 A·m2/kg,矯頑力為2.47 kA/m,具有軟磁材料的低比剩余磁化強(qiáng)度和低矯頑力的特性。
關(guān)鍵詞:化學(xué)共沉淀法;黃鈉鐵礬;鎳鋅鐵氧體;制備
1引言
鎳鋅鐵氧體具有高頻、寬頻、高阻抗、低損耗等特點,成為在高頻范圍(1~100 MHz)內(nèi)性能優(yōu)異、應(yīng)用最廣的軟磁鐵氧體材料,近年越來越受到重視[1-12]。
目前,國內(nèi)外報道有關(guān)鎳鋅鐵氧體的制備方法主要有高溫煅燒法、自蔓延高溫合成法、低熱固相化學(xué)反應(yīng)法、水熱法、化學(xué)共沉淀法和溶膠-凝膠法等[13-21]。其中化學(xué)共沉淀法因其工藝簡單、產(chǎn)品純度高、反應(yīng)溫度低、顆粒均勻且粒徑小等優(yōu)點得到格外重視。周小兵等[22]對化學(xué)共沉淀法制備鎳-銅-鋅鐵氧體前驅(qū)體的熱力學(xué)行為進(jìn)行了研究,結(jié)果表明,在Me-NaOH-H2O體系中,當(dāng)pH值=10~11時,各金屬離子可完全共沉淀;在Me-NH4HCO3-NH3-H2O體系中,由于NH3與Zn2+、Ni2+、Cu2+這3種離子絡(luò)合能力很強(qiáng),很難使各金屬離子共沉淀。所以,在化學(xué)共沉淀法中,以正丁胺為共沉淀劑,不僅可以避免引入雜質(zhì)鈉離子,而且可以避免因氨與鋅形成可溶性配合物而不參與共沉淀。另外,過濾后濾液中的正丁胺亦可通過蒸餾回收再利用。為此,本文以正丁胺為沉淀劑,黃鈉鐵礬渣為原料,在室溫條件下通過化學(xué)共沉淀法制備鎳鋅鐵氧體,并對樣品進(jìn)行SEM、XRD和FT-IR等表征,測定樣品在外加磁場下的磁滯回線。該工藝不僅操作簡單、成本低廉,而且對黃鈉鐵礬渣進(jìn)行了資源化利用。
2實驗
2.1實驗材料
2.1.1原料
黃鈉鐵礬渣,取自某含鎳廢水處理廠,主要含金屬鐵、鎳。
2.1.2試劑
硫酸、硫酸鋅、硫酸鎳、正丁胺,均為分析純試劑。
2.2鎳鋅鐵氧體的制備
稱取1 g干燥后的黃鈉鐵礬渣,按 Ni0. 5Zn0. 5Fe2O4計量補(bǔ)加硫酸鋅、硫酸鎳,加入80 mL 1 moL/L硫酸溶液在80 ℃水浴攪拌溶解,過濾;用正丁胺將濾液調(diào)節(jié)pH值至10~11,攪拌反應(yīng)30 min,陳化1 h;抽濾,用蒸餾水洗沉淀物至無氨味,將沉淀物于80 ℃下烘干,在一定溫度下焙燒2 h,冷卻,得鎳鋅鐵氧體粉末樣品。圖1為黃鈉鐵礬渣制備鎳鋅鐵氧體的流程圖。
圖1 黃鈉鐵礬渣制備鎳鋅鐵氧體實驗流程
Fig 1 Flow sheet for preparation of Ni-Zn ferrite from sodium jarosite residue
2.3樣品的性能及表征
采用JSM-7800F型發(fā)射場掃描電子顯微鏡(FESEM)分析樣品微觀形態(tài);采用IR Prestige 21紅外儀分析樣品的結(jié)構(gòu)變化,用KBr壓片法,測試范圍400~4 000 cm-1;利用XRD衍射儀分析樣品的晶型,掃描速度2°/min,掃描范圍5~90°;采用南京大學(xué)儀器廠的HH-15型振動樣品磁強(qiáng)計(vibrating sample magnetometer,VSM) 在室溫下測定樣品的磁性能。
3結(jié)果與討論
3.1樣品的XRD分析
圖2為共沉淀物經(jīng)過600 ℃煅燒2和4 h的樣品X射線衍射分析結(jié)果。從圖2中可以看出,樣品在600 ℃煅燒時,在2θ為18.25,30.07,35.41,37.01,43.04,56.90,62.48和73.89°處呈現(xiàn)出一定銳峰,分別對應(yīng)(111)、(220)、(311)、(222)、(400)、(511)、(440)和(620)晶面的衍射角,即所得產(chǎn)物與標(biāo)準(zhǔn)鎳鋅鐵氧體的X射線衍射卡的衍射峰相同,可以確認(rèn)有立方晶系尖晶石結(jié)構(gòu)的鎳鋅鐵氧體晶相生成[11]。且隨著煅燒時間的延長,樣品晶面間的相對強(qiáng)度并未明顯改變,只是所有晶面的X射線衍射強(qiáng)度都增強(qiáng),衍射峰升高。說明煅燒溫度相同時,樣品晶粒尺寸隨熱處理時間延長而增大,生成的晶體結(jié)構(gòu)較完整,并且無其它雜峰出現(xiàn)。
圖2 樣品在600 ℃煅燒不同時間后的XRD圖譜
Fig 2 XRD patterns of simple calcined at 600 ℃ for 2 and 4 h
3.2樣品的FT-IR表征
圖3(a)為共沉淀后產(chǎn)物的IR圖,圖3(b)為600 ℃焙燒后所得固體粉末的IR圖。圖3(a)和(b)在1 620 cm-1附近出現(xiàn)H-O-H的特征峰。由圖3(b)可見,在1 377,1 485 cm-1處正丁胺中N-H的特征峰已消失,表明600 ℃時有機(jī)物已完全分解。位于574 cm-1(ν1)和437 cm-1(ν2)附近的吸收峰是尖晶石型鐵氧體中八面體位和四面體位的特征伸縮振動,說明本文的共沉淀法能得到尖晶石型的鐵氧體粉末,與XRD分析結(jié)果一致。
圖3 樣品的紅外譜圖
Fig 3 FT-IR spectra of co-precipitation of powder and precursor material calcined at 600 ℃ for 2 h
3.3樣品的SEM表征
圖4為共沉淀粉末焙燒前后的SEM圖。從圖4中可以看出,用該方法制備所得的共沉淀粉末在焙燒前粉末成團(tuán)、結(jié)塊,粒徑較小,但是結(jié)構(gòu)不易分辨,說明在共沉淀過程固體顆粒開始結(jié)塊。在600 ℃焙燒2 h后,顆粒變大,成塊狀,且結(jié)塊現(xiàn)象嚴(yán)重。此外,焙燒后的粉體本身具有一定的磁性,導(dǎo)致了顆粒團(tuán)聚加劇。從圖4(b)中可以看出,塊狀出現(xiàn)斷層,斷層處可以看出焙燒后的顆粒高度致密化。
圖4 樣品焙燒前后的SEM圖
Fig 4 SEM photograph of co-precipitation of powder, precursor material obtained at 600 ℃ for 2 h
3.4樣品的磁性能表征
圖5所示為鎳鋅鐵氧體的磁滯回線。如圖5可見,由黃鈉鐵礬渣制備得到的鎳鋅鐵氧體的磁滯回線為狹窄的閉合曲線,具備軟磁材料磁滯回線的特征。從圖5中可知,通過以正丁胺為沉淀劑制得的鎳鋅鐵氧體比飽和磁化強(qiáng)度為9.04 A·m2/kg,比剩余磁化強(qiáng)度為0.65 A·m2/kg,矯頑力為2.47 kA/m。相比于水熱法制備出的納米鎳鋅鐵氧體[9]的比剩余磁化強(qiáng)度17.32 A·m2/kg,矯頑力29.28 kA/m,本文制備出的鎳鋅鐵氧體具有更低的比剩余磁化強(qiáng)度和低矯頑力的特征,具備很好的磁性能,應(yīng)用更廣泛。
圖5 樣品的磁滯回線圖
4結(jié)論
(1)以正丁胺為沉淀劑,黃鈉鐵礬渣為原料,在室溫條件下,通過化學(xué)共沉淀法制備得到樣品。通過對樣品進(jìn)行SEM、XRD、FT-IR及磁性能表征可知,樣品為鎳鋅鐵氧體,并具有良好的磁性能。
(2)通過磁滯回線顯示,制備的鎳鋅鐵氧體的比飽和磁化強(qiáng)度為9.04 A·m2/kg,比剩余磁化強(qiáng)度為0.65 A·m2/kg,矯頑力為2.47 kA/m。相比于水熱法制備出的鎳鋅鐵氧體,具有更低的比剩余磁化強(qiáng)度和低矯頑力。樣品也符合典型的軟磁材料低比剩余磁化強(qiáng)度和低矯頑力的特征,應(yīng)用更廣泛。
參考文獻(xiàn):
[1]Wu K H, Huang W C, Wang G P,et al. Effect of pH on the magnetic and dielectric properties of SiO2/Ni-Zn ferrite nanocomposites [J]. Mater Res Bull, 2005, 40: 1822-1831.
[2]Costa A C F M, Tortella E, Morelli M R, et al. Synthesis, microstructure and magnetic properties of Ni-Zn ferrites [J]. Journal of Magnetism and Magnetic Materials, 2003, 256: 174-182.
[3]An Y L, Li J, Yuan X, et al. Preparation and electromagnetism property of activated carbon loaded with Ni-Zn ferrite [J]. Journal of Functional Materials, 2014,(S1):28-31.
[4]Yu L M, Zhang J C, Liu Y S, et al. Fabrication, structure and magnetic properties of nanocrystalline Ni-Zn ferrite by high-energy milling [J]. Journal of Magnetism and Magnetic Materials, 2005, 288: 54-59.
[5]Zhang Y G, Xu B, Wang SH L, et al. Preparation and photocatalytic properties of Ni-Zn ferrite nanopower [J]. Journal of Functional Materials, 2013,(14):2010-2013.
[6]Verma A, Goel T C, Mendiratta R G, et al. Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method [J]. Journal of Magnetism and Magnetic Materials, 2000, 208: 13-19.
[7]Zhu Yungui, Shi Shanyou, Li Xueliang, et al. Nanosphere-shaped α-Fe2O3synthesized hydrothermally from pyrite slag [J]. Journal of Hefei University of Technology, 2003, 26(2):264-267.
[8]Yu Liming, Zhang Jincang, Xu Zhenpei, et al. Structure and magnetic properties of nanocrystalline Ni-Zn ferrite fabricated by high energy milling method [J]. Journal of Functional Materials, 2004, 35(6): 689-692.
[9]Ren Xiaoyan, Xu Zhenpei, He Zhengming. Formation of nanocrystalline spinel Ni-Zn ferrite by mechanical alloying [J]. Journal of Materials Research, 2004, 3(18): 315-319.
[10]Elsa E, Sileoa R R, Silvia E J. Nickel zinc ferrites prepared by the citrate precursor method [J]. Physica B, 2002, 320: 257-260.
[11]Cao Huiqun, Wei Bo, Liu Jianhong, et al. Hydrothermal synthesis and magnetic properties of nanosized nickel zinc ferrite powder [J]. Journal of the Chinese Ceramic Society, 2007, 35(6): 713-716.
[12]Jiang Jing, Li Liangchao, Xu Feng. Structural analysis and magnetic properties of Gd-doped Li-Ni ferrites prepared by the rheological phase method [J]. Journal of Rare Earths, 2007, 25(1):79-83.
[13]Zhou Xiangchun, Jiang Jing, Li Liangchao, et al. Preparation and magnetic properties of La-substituted Zn-Cu-Cr ferrites via a rheological phase reaction method [J]. Journal of Magnetism and Magnetic Materials, 2007, 314(1):7-10.
[14]Li Liangchao, Jiang Jing, Zhou Xiangchun. Synthesis and magnetic properties of MCr2O4(M=Cr, Zn) nanocrystalline [J]. The Chinese Journal of Nonferrous Metals, 2006, 16(10):1761-1764.
[15]Xu Feng, Li Liangchao, Jiang Jing, et al. Synthesis of nanocrystalline ferrites Zn0.4Ni0.6Cr0.5LaxFe1.5-xO4and its magnetic properties [J]. Acta Chimica Sinica, 2007, 65(9):816-820.
[16]Suwalka O, Sharma R K, Sebastian V, et al. A study of nanosized Ni substituted Co-Zn ferrite prepared by co-precipitation [J]. Journal of Magnetism and Magnetic Materials, 2007, 313(1):198-203.
[17]Bu?ko Mirosaw M, Krzysztof Haberko. Hydrothermal synthesis of nickel ferrite powders, their properties and sintering [J]. Journal of the European Ceramic Society, 2007, 27(2/3):723-727.
[18]Zahi S, Daud A R, Hashim M. A comparative study of nickel-zinc ferrites by sol-gel route and solid-state reaction [J]. Materials Chemistry and Physics, 2007, 106(2/3):452-456.
[19]Zhao D, Wu X, Guan H, et al. Study on supercritical hydrothermal synthesis of CoFe2O4nanoparticles [J]. The Journal of Super Critical Fluids, 2007, 42(2):226-233.
[20]Vidal-Vidal J, Rivas J, López-Quintela M A. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method [J]. Colloids and Surfaces A: Physico chemical and Engineering Aspects, 2006, 288(1/3):44-51.
[21]Wang J J, Yu L M, Cao S H X, et al. Microstructure and low temperature magnetic properties of Ni-Zn ferrite [J]. Journal of Functional Materials, 2005, 36(12):1855-1858.
[22]Zhou Xiaobing, Dai Jianqing, Cai Jinhong. Thermodynamic analysis on preparation of Ni-Zn-Cu ferrite precursor by co-precipition method [J]. Journal of the Chinese Ceramic Society, 2009, 37(1):23-28.
Investigation of the synthesis and characterization of Ni-Zn ferrite prepared by sodium jarosite residue
TAO Changyuan, ZENG Qiang, LIU Zuohua, DU Jun, FAN Xing, LIU Renlong
(School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044,China)
Abstract:The Ni-Zn ferrite was synthesized with sodium jarosite residue through co-precipitation method. The preparation of Ni-Zn ferrite by co-precipitation of iron, nickel and zinc (provided by nickel sulfate and zinc sulfate) with n-butylamine at room temperature was reported. SEM, XRD and FT-IR etc technologies were adopted to investigate properties of the synthesized samples in detail. And, the results of hysteresis loops showed that the specific saturation magnetization, specific remanence and coercovity of the Ni-Zn ferrite were 9.04, 0.65 A·m2/kg and 2.47 kA/m, respectively, possessing characters of low specific remanent magnetization and coercivity of soft magnetic materials apparently.
Key words:chemical co-precipitation; sodium jarosite; Ni-Zn ferrite; preparation
DOI:10.3969/j.issn.1001-9731.2016.01.038
文獻(xiàn)標(biāo)識碼:A
中圖分類號:TM277+.1
作者簡介:陶長元(1963-),男,江蘇鹽城人,博士,教授,主要從事物理化學(xué)與功能材料方面研究。
基金項目:國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)資助項目(2011CB933300);教育部新世紀(jì)優(yōu)秀人才支持計劃資助項目(NCET-13-0631)
文章編號:1001-9731(2016)01-01183-03
收到初稿日期:2015-01-23 收到修改稿日期:2015-08-19 通訊作者:陶長元,E-mail: taocy@cqu.edu.cn