亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于二氰根鉻的一系列氰根橋聯(lián)CrⅢ-CuⅡ-CrⅢ三核配合物的合成、結(jié)構(gòu)與磁性

        2016-05-03 07:06:41張麗芳韓方方楊代勝倪中海
        無機化學學報 2016年4期
        關鍵詞:晶體結(jié)構(gòu)磁性

        張麗芳 韓方方 楊代勝 陳 會 倪中海

        (中國礦業(yè)大學化工學院,徐州 221116)

        ?

        基于二氰根鉻的一系列氰根橋聯(lián)CrⅢ-CuⅡ-CrⅢ三核配合物的合成、結(jié)構(gòu)與磁性

        張麗芳韓方方楊代勝陳會倪中海*

        (中國礦業(yè)大學化工學院,徐州221116)

        摘要:基于一系列二氰根鉻與[Cu(cyclam)](ClO4)2反應合成了3個氰根橋聯(lián)Cr(Ⅲ)-Cu(Ⅱ)-Cr(Ⅲ)三核配合物[Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O (1)(cyclam=1,4,8,11-四氮雜環(huán)十四烷,bpmb(2-)=1,2-二(2-吡啶甲酰胺基)-4-甲基苯),[Cu(cyclam)][Cr(bpdmb)(CN)2]2(2)(bpdmb(2-)=1,2-二(2-吡啶甲酰胺基)-4,5-二甲基苯)和[Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O (3)(bpClb(2-)=1,2-二(2-吡啶甲酰胺基)-4-氯苯)。單晶衍射結(jié)果表明:3個化合物是結(jié)構(gòu)類似的中性三核配合物,均含有氰根橋聯(lián)的Cr-CN-Cu-NC-Cr連接;磁性研究表明:氰根橋在Cr(Ⅲ)和Cu(Ⅱ)離子間傳遞弱的鐵磁耦合作用,基于自旋哈密頓算符H?=-2J(CrCu)S(?)(Cu)(S(?)(Cr1)+S(?)(Cr2))擬合得到它們的磁耦合常數(shù)分別是J(CrCu)=1.53(2) cm(-1)(1),0.45(1) cm(-1)(2)和0.73(2) cm(-1)(3)。

        關鍵詞:氰根橋聯(lián);晶體結(jié)構(gòu);磁性;雜金屬

        江蘇省高校優(yōu)勢學科建設工程項目和中央高?;究蒲袠I(yè)務費專項資金(No.2015XKMS047)資助。*通信聯(lián)系人。E-mail:nizhonghai@cumt.edu.cn

        0 Introduction

        Molecule-based magnetic materials have attracted much attention because of their fascinating structural features and excellent magnetic properties[1-6]. As one of the most known linkages, the cyanide group plays an important role in the synthesis and assembly of molecular magnets since the topological structure and the nature of the magnetic interaction between different metal ions can be relatively readily controlled and anticipated[7-11]. Thus far, a large number of cyanide -bridged complexes with various molecular topological structures and remarkable magnetic properties have been successfully prepared[12-23]. Among the well known cyanide-containing building blocks, cyanidechromatemay be more effective for the assembly of molecular magnetic compounds because the central Crion has three unpaired electrons. However, cyanide-bridged CrⅢ-M systems are relatively limited due to the shortage of stable and suitable cyanidechromatebuilding blocks[24-26].

        In the past several years, we paid our continuous efforts to assemble new cyanide-bridged magnetic complexes, and the results have shown that the transdicyanide building blocks [Fe(L)(CN)2]-(L=pyridine carboxamide ligands) are versatile building blocks for the assembly of low-dimensional complexes[18-19,22-23]. Very recently, we reported the synthesis, magnetic properties and magneto-structural correlation of a series of trinuclar CrⅢ-NiⅡ-CrⅢcomplexes based on a series of trans-dicyanide building blocks [Cr(L)(CN)2]-[24]. As one of the important composition of a series of work based on [Cr(L)(CN)2]-building blocks, herein, we report the synthesis, crystal structures and magnetic properties of the three trinuclear CrⅢ-CuⅡcomplexes [Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O (1), [Cu(cyclam)] [Cr(bpdmb)(CN)2]2(2)and[Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O (3) based on [Cu(cyclam)](ClO4)2and a series of dicyanidechromatebuilding blocks (Scheme 1).

        Scheme 1 Structures of building blocks [Cr(L)(CN)2]-[L=bpClb (R1=Cl, R2=H), bpmb (R1=H, R2=CH3) or bpdmb (R1=R2=CH3)] and Cu(cyclam)]2+

        1 Experimental

        1.1 Materials and physical measurements

        Elemental analyses (C, H and N) were carried out on an Elementary Vario EL instrument. The infrared spectra of solid samples on KBr pellets were recorded on a Nicolet 7199B FT/IR spectrophotometer in the region of 4 000~400 cm-1. The powder XRD data were measured on a Bruker D8 Advance X-ray diffractometer equipped with a Cu Kα radiation (λ=0.154 18 nm, Cathode voltage =40 kV, Cathode current =30 mA). Magnetic property measurements on crystal samples were carried out on a Quantum Design MPMS SQUID magnetometer. The experimental susceptibilities were corrected for the diamagnetism estimated based on Pascal′s tables.

        All chemicals and solvents were purchased from commercial sources and used without further handing. The precursors Cu(cyclam)](ClO4)2[27]and K[Cr(L) (CN)2][28]were prepared according to literature methods.

        1.2 Preparation of complexes 1~3

        The complexes were prepared using one similar procedure. A red solution of K[Cr(L)(CN)2] (0.2 mmol) in CH3OH and H2O (10 mL, VCH3OH/VH2O=1) was mixed with a solution of [Cu (cyclam)](ClO4)2(0.1 mmol) in CH3OH and CH3CN (10 mL, VCH3OH/VCH3CN=1). After about several days, red brown single crystals were obtained with high yields (60%~75%).

        1: Anal. Calcd. for CuCr2C52H60N16O8(%): C: 51.84; H: 5.02; N, 18.60. Found(%): C: 51.60; H: 4.98; N: 18.52. Selected IR frequencies (KBr disk, cm-1): 2 157 (m,νC≡N), 2 138 (m,νC≡N).

        2: Anal. Calcd. for CuCr2C54H58N16O5(%): C: 55.03; H: 4.96; N: 19.01. Found (%): C: 55.15; H: 4.95; N: 18.73. Selected IR frequencies (KBr disk, cm-1): 2 155 (m,νC≡N), 2 134 (m,νC≡N).

        3: Anal. Calcd. for CuCr2C50H54N16O8Cl2(%): C: 48.22; H, 4.37; N: 17.99. Found(%): C, 48.16; H: 4.40;N: 18.33. Selected IR frequencies (KBr disk, cm-1): 2 154 (m,νC≡N), 2 133 (m,νC≡N).

        1.3 X-ray data collection and structure refinement

        The diffraction data were collected at 123 K on a Bruker Smart ApexⅡCCD diffractometer equipped with a graphite-monochromatized Mo Kα radiation (λ= 0.071 073 nm). The structures of complexes 1~3 were solved by direct methods with the SHELXS-97 program[29]and refined by full-matrix least-squares methods on F2with the SHELXS-97[30]. Anisotropic thermal parameters were used for the non-hydrogen atoms and isotropic parameters for the hydrogen atoms. Hydrogen atoms were added geometrically and refined using a riding model. Images were created by using DIAMOND program. Crystallographic data and structure refinement parameters are listed in Table 1.

        CCDC: 1444524, 1; 1444525, 2; 1444526, 3.

        Table1 Crystal data and structure refinement parameters for complexes 1~3

        2 Results and discussion

        2.1 Crystal structures of complexes 1~3

        The complexes have been characterized by single -crystal X-ray diffraction analysis. The stick and ball drawings of complexes 1 ~3 are presented in Fig.1, and the main structural parameters are listed in Table 2. The measured XRD patterns on powder samples of complex 1~3 are consistent well with the calculated data based on their single crystal structures (Fig.2), indicating the samples are high purity of these complexes.

        Complexes 1 ~3 have similar neutral trinuclear sandwich-like structures with the general formula [Cu(cyclam)][Cr(L)(CN)2]2. Each [Cr(L)(CN)2]-unit acts as a monodentate ligand through one of its two cyanide groups toward the central copperion. Each chromiumion in complexes 1~3 is hexacoordinated with two bridging cyanide nitrogen atoms and four coplanar nitrogen atoms of L ligand, which forms a slightly distorted octahedron. The average bond distances of Cr-N(amide) and Cr-N(pyridine) are 0.197 7(4) and 0.208 1(35) nm for 1, 0.196 7(2) and 0.207 2(66) nm for 2, and 0.196 5(7) and 0.207 5(4) nm for 3, which are comparable with those in complexes [Ni(cyclam)] [Cr(L)(CN)2]2and [Cr(bpb)(H2O)(N3)]·H2O[24,28]. The Cr-C(bridging cyanide) bond distances are 0.210 9(4) nm for 1, 0.210 2(3) nm for 2 and 0.209 7(4) nm for 3. The Cr-C (non-bridging cyanide) bond distances fall within a narrow range of 0.209 5(4)~0.210 4(4) nm. The Cr-C≡N (bridging cyanide) bond angles in these complexes are bent with 173.0(3)°for 1, 172.5(2)°for 2 and 172.9(3)°for 3, while the Cr-C≡N(non-bridging cyanide) bond angles are almost linear with the value from 174.8(2)°to 178.5(4)°. Besides, the C-Cr-C bond angles with the value from 171.88(9)°to 176.63(16)° are also nearly linear.

        Table2 Selected bond distances (nm) and bond angles (°) of complexes 1~3

        Symmetry codes:i-x, -y, -z for 1;ii1/2-x, 1/2-y, 2-z for 2;iii1-x, 1-y, 2-z for 3Fig.1  Crystal structure of complex 1 (a), 2 (b) and 3 (c)

        Fig.2 XRD patterns for powder samples of complex 1~3

        The CuⅡcenters are also hexacoordinated with six nitrogen atoms which come from two bridging cyanides in the axial position and cyclam ligand in the equatorial plane, forming an elongated octahedron due to the Jahn-Teller effect of CuⅡion. The Cu-N (cyanide) bond length with the value of 0.246 8(3) nm for 1, 0.252 6 nm for 2 and 0.246 8(4) nm for 3, and the corresponding Cu-N≡C bond angles are very bent with 139.0(3)°for 1, 139.23°for 2 and 140.0(3)°for 3, respectively. The intramolecular Cr…Cu separations through bridging cyanides are 0.531 8 nm for 1, 0.533 3 nm for 2 and 0.5316 nm for 3.

        2.2 Magnetic properties of complexes 1~3

        The temperature dependences of magnetic susceptibilities for the complexes 1~3 were measured in the 2~300 K temperature range under an applied field of 2 000 Oe, the χmT versus T plots are illustrated in Fig.3. Apparently, all the three complexes show very similar magnetic properties. The room temperature values of χmT for the three complexes are in the range of 4.15~4.20 emu·K·mol-1, which are slightly higher than the spin-only value of 4.125 emu·K·mol-1expected for the isolated trinuclear system of two chromate(S=3/2) ions and one copper(S=1/2) ion, assuming g =2.00. A gradual increase in χmTvalues of the three complexes are observed as the temperature is decreased until about 20 K and then the χmT values increase sharply to a maximum value of 4.29 emu·K·mol-1at 28 K for 1, 4.22 emu·K·mol-1at 15 K for 2 and 4.40 emu·K·mol-1at 6 K for 3. After that, the χmT values rapidly decrease to about 3.54 emu·K·mol-1, 3.72 emu·K·mol-1, 3.92 emu·K·mol-1at 2 K for 1, 2 and 3, respectively. Theses χmT versus T plots distinctly indicate that the magnetic interactions between Crand Cuare ferromagnetic. The abrupt decrease of χmT values at low temperature probably due to the intermolecular antiferromagnetic interactions. The magnetic susceptibilities of the three complexes in the range of 10~300 K obey the Curie-Weiss law with a positive Weiss constant θ=0.71 K and Curie constant C=4.17 emu·K·mol-1for 1,θ= 0.29 K, C=4.16 emu·K·mol-1for 2, and θ=0.38 K, C= 4.18 emu·K·mol-1for 3. The field dependence of the magnetizations of complexes 1~3 performed under the field range of 0~50 kOe at 2.0 K (Inset in Fig.2) are close to the corresponding Brillouin curve deduced from isolated CrⅢspin (S=3/2) and CuⅡspin (S=1/2) with g=2.00, further indicating the presence of overall ferromagnetic interaction in all three cyanide-bridged complexes.

        Inset: Field dependence of magnetization at 2.0 K; the line and the broken line represent the Brillouin function that correspond to S=7/2 and S=3/2+1/2+3/2 based on g=2.0, respectivelyFig.3 Temperature dependences of χmT for the complex 1 (a), 2 (b) and 3 (c)

        On the bases of the linear trinuclear magnetic model of Cr-Cu-Cr, the magnetic susceptibilities of complexes 1~3 can be fitted according to the following expressions based on the isotropic spin exchange Hamiltonian

        The best-fit parameters obtained are J=1.53 (2) cm-1, g=2.02(1) and zJ′=-0.24(3) cm-1for 1, J=0.45(2) cm-1, g=2.02(1) and zJ′=-0.078(1) cm-1for 2, J=0.73(2) cm-1, g=2.02(2) and zJ′=-0.096(3) cm-1for 3, where zJ′represents the intermolecular magnetic coupling. The small positive J values also support the overall weak ferromagnetic coupling for complexes 1~3. The ferromagnetic coupling between Cr(d3, t2g3) and Cu(d9, t2g6eg3) ions through the bridging cyanide group is reasonable and can be compared with other cyanidebridged CrⅢ-CuⅡcomplexes[33]. It is still noteworthy that the ferromagnetic coupling interactions are very weak in the three complexes, which is due to the relatively small Cu-N≡C bond angles[18]and the relatively long Cu-N bond distance. The similar magnetic coupling constants are due to their similar bond parameters.

        3 Conclusions

        References:

        [1] Caneschi A, Gatteschi D, Renard J P, et al. Inorg. Chem., 1989,28:1976-1980

        [2] Cha M J, Shin J W, Lee Y H, et al. Inorg. Chem. Commun., 2009,12:520-522

        [3] Li G L, Ni Z H, Cheng W Q, et al. Inorg. Chem. Commun., 2013,31:58-61

        [4] Ni Z H, Kou H Z, Zhang L F, et al. Angew. Chem. Int. Ed., 2005,44:7742-7745

        [5] Brechin E K, Boskovic C, Wernsdorfer W, et al. J. Am. Chem. Soc., 2002,124:9710-9711

        [6] Sato O, Kawakami T, Kimura M, et al. J. Am. Chem. Soc., 2004,126:13176-13177

        選取我院2017年1月~2018年1月收治的100例ERCP術(shù)患者進行了研究,隨機抽簽分為兩組各50例。對照組中,男31例、女19例,年齡32~74歲,年齡(54.9±3.7)歲。觀察組中,男32例、女18例,年齡33~73歲,平均(55.1±3.8)歲。兩組一般臨床資料無明顯差異,差異無統(tǒng)計學意義(P>0.05)。

        [7] Murugesu M, Habrych M, Wernsdorfer W, et al. J. Am. Chem. Soc., 2004,126:4766-4767

        [8] MIAO Bao-Xi(苗保喜), LI Guo-Ling(李國玲), ZHAO Yun(趙云), et al. Chinese J. Inorg. Chem.(無機化學學報), 2013, 29:2470-2474

        [9] Palii A, Tsukerblat B, Klokishner S, et al. Chem. Soc. Rev., 2011,40:3130-3156

        [10]Zhang K L, Chen W, Xu Y, et al. Polyhedron, 2001,20:2033 -2036

        [11]Mironov V S, Chibotaru L F, Ceulemans A J. J. Am. Chem. Soc., 2003,125:9750-9760

        [12]Visinescu D, Toma L M, Fabelo O, et al. Dalton Trans., 2008,31:4103-4105

        [13]Berlinguette C P, Vaughn D, Cristina C V, et al. Angew. Chem. Int. Ed., 2003,42:1523-1526

        [14]Shen W Z, Chen X Y, Cheng P, et al. Z. Anorg. Allg. Chem., 2003,629:591-594

        [15]Tang J K, Si S F, Wang L Y, et al. Inorg. Chem. Commun., 2002,5:1012-1015

        [16]Andruh M, Costes J P, Diaz C, et al. Inorg. Chem., 2009,48: 3342-3359

        [17]Yeung W F, Man W L, Wong W T, et al. Angew. Chem. Int. Ed., 2001,40:3031-3033

        [18]Ji Y J, Zhang L F, Zhao Y, et al. Transition Met. Chem., 2015,40:437-444

        [19]Ni Z H, Tao J, Wernsdorfer W, et al. J. Chem. Soc. Dalton Trans., 2008,31:2788-2794

        [20]Liu W, Wang C F, Li Y Z, et al. Inorg. Chem., 2006,45: 10058-10065

        [21]Catala L, Cacoin T, Boilot J P, et al. Adv. Mater., 2003,15: 826-829

        [22]Zhang D P, Zhang L F, Li G L, et al. Chem. Commun., 2013, 49:9582-9586

        [23]Ni Z H, Zhang L F, Ge C H, et al. Inorg. Chem. Commun., 2008,11:94-96

        [24]Chen H, Miao B X, Zhang L F, et al. Inorg. Chim. Acta, 2013,404:34-39

        [25]Yao M X, Zheng Q, Cai X M, et al. Inorg. Chem., 2012,51: 2140-2149

        [26]Li G L, Zhang L F, Ni Z H, et al. Bull. Korean Chem. Soc., 2012,33:1675-1680

        [27]Barefiel E K. Inorg. Chem., 1972,11:2273-2274

        [28]Leung W H, Ma J X, Che C M, et al. J. Chem. Soc. Dalton Trans., 1991:1071-1076

        [29]Sheldrick G M. Acta Crystallogr., 2008,A64:112-122

        [30]Shelkdrick G M. SHELXL-97, Program for Refinement of Crystal Structure, University of G?ttingen, Germany, 1997.

        [31]Shen X P, Zhou H B, Zhang Q, et al. Eur. J. Inorg. Chem., 2012:5050-5057

        [32]Lim J H, Yoon J H, Choi S Y, et al. Inorg. Chem., 2011,50: 1749-1757

        [33]YANG Dai-Sheng(楊代勝), XU Li-Hua(許麗華), CHEN Hui(陳會), et al. Chinese J. Inorg. Chem.(無機化學學報), 2015, 31:565-570

        Syntheses, Crystal Structures and Magnetic Properties of a Series of Cyanide-Bridged Trinuclear Cr-Cu-CrComplexes Based on DicyanidechromateBuilding Blocks

        ZHANG Li-Fang HAN Fang-Fang YANG Dai-Sheng CHEN Hui NI Zhong-Hai*
        (School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China)

        Abstract:Three cyanide-bridged trinuclear chromate-copper-chromatecomplexes [Cu(cyclam)][Cr(bpmb) (CN)2]2·4H2O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane and bpmb(2-)=1,2-bis(pyridine-2-carboxamido)-4-methylbenzenate), [Cu(cyclam)][Cr(bpdmb)(CN)2]2(2) (bpdmb(2-)=1,2-bis(pyridine-2-carboxamido)-4,5-dimethylbenzenate) and [Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O (3) (bpClb(2-)=1,2-bis(pyridine-2-carboxamido)-4-chlorobenzenate), have been synthesized by the reaction of [Cu(cyclam)](ClO4)2with a series of dicyanidechromatebuilding blocks. Single crystal X-ray diffraction analyses show that complexes 1~3 have similar neutral trinuclear structures with Cr-CN-Cu-NC-Crlinkages. Magnetic investigations indicate that complexes 1~3 exhibit weak ferromagnetic coupling between Crand Cucenters through the cyanide bridge with J(CrCu)=1.53(2) cm(-1)for 1, 0.45(1) cm(-1)for 2 and 0.73(2) cm(-1)for 3 based on the spin exchange Hamiltonian H?=-2J(CrCu)S(?)(Cu)(S(?)(Cr1)+S(?)(Cr2)). CCDC: 1444524, 1; 1444525, 2; 1444526, 3.

        Keywords:cyanide-bridged; crystal structure; magnetic property; heterometallic

        收稿日期:2015-12-29。收修改稿日期:2016-03-02。

        DOI:10.11862/CJIC.2016.090

        中圖分類號:O614.121;O614.61+1

        文獻標識碼:A

        文章編號:1001-4861(2016)04-0731-07

        猜你喜歡
        晶體結(jié)構(gòu)磁性
        例談晶體結(jié)構(gòu)中原子坐標參數(shù)的確定
        化學軟件在晶體結(jié)構(gòu)中的應用
        可見光響應的ZnO/ZnFe2O4復合光催化劑的合成及磁性研究
        陶瓷學報(2019年6期)2019-10-27 01:18:18
        自制磁性螺絲刀
        磁性離子交換樹脂的制備及其對Cr3+的吸附
        鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學研究
        一種新型磁性指紋刷的構(gòu)思
        含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
        火炸藥學報(2014年3期)2014-03-20 13:17:39
        二維網(wǎng)狀配聚物[Co(btmb)2(SCN)2]n的合成、晶體結(jié)構(gòu)和Pb2+識別性能
        磁性Fe3O4@SiO2@ZrO2對水中磷酸鹽的吸附研究
        亚洲日韩v无码中文字幕| 开心久久综合婷婷九月| 久久理论片午夜琪琪电影网| 青青草原精品99久久精品66| 国产成人综合久久久久久| av男人的天堂手机免费网站| 校园春色人妻激情高清中文字幕| 我爱我色成人网| 欧美国产小视频| 久久久国产视频久久久| 91自拍视频国产精品| 日韩亚洲欧美中文在线 | 免费高清日本中文| 高清国产精品一区二区| 午夜dv内射一区二区| 成人白浆超碰人人人人| 久久国产免费观看精品| 中文字幕亚洲高清精品一区在线| 未发育成型小奶头毛片av| 成人欧美一区二区三区a片| 无码国产精品色午夜| 久久久熟女一区二区三区| 欧美xxxx做受欧美| 成年人黄视频大全| 亚洲中文字幕永久网站| 人妻少妇中文字幕在线观看 | 欧美三级乱人伦电影| 人人妻人人澡av| 亚洲国产色婷婷久久精品| 日韩精品久久久肉伦网站| 久久青草免费视频| 一个人看的在线播放视频| 五月色婷婷丁香无码三级| 五月天激情婷婷婷久久| 国模少妇无码一区二区三区| 羞羞色院99精品全部免| 精品少妇一区二区三区免费观| 日韩永久免费无码AV电影| 美女福利视频在线观看网址| 中文字幕人成乱码熟女| 97超级碰碰人妻中文字幕|