劉魏魏,王效科,逯 非,歐陽(yáng)志云
1 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085 2 中國(guó)科學(xué)院大學(xué),北京 100049
?
造林再造林、森林采伐、氣候變化、CO2濃度升高、火災(zāi)和蟲害對(duì)森林固碳能力的影響
劉魏魏1,2,王效科1,*,逯非1,歐陽(yáng)志云1
1 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100085 2 中國(guó)科學(xué)院大學(xué),北京100049
摘要:森林生態(tài)系統(tǒng)具有吸收大氣CO2、緩解氣候變化的作用。造林再造林作為京都議定書認(rèn)可的大氣CO2減排途徑,是提高森林固碳能力的低成本、有效策略。森林生態(tài)系統(tǒng)固碳能力還受森林采伐、氣候變化、大氣CO2濃度升高、火災(zāi)以及蟲害等自然因素和人為因素的強(qiáng)烈影響。綜述了全球和區(qū)域造林再造林的固碳能力,以及目前較受重視的一些因素(森林采伐、氣候變化、大氣CO2濃度升高、火災(zāi)以及蟲害)對(duì)森林生態(tài)系統(tǒng)固碳能力的影響。結(jié)果表明,全球造林再造林固碳能力為148—2400 TgC/a;采伐造成的全球森林碳損失最大為900 TgC/a,其次是火災(zāi)為300 TgC/a,蟲害造成森林碳釋放最小在2—107 TgC/a之間。建議在今后的研究中,應(yīng)關(guān)注固碳措施和多種環(huán)境因素對(duì)森林生態(tài)系統(tǒng)固碳能力,尤其是對(duì)森林土壤固碳能力的影響,嚴(yán)格控制森林采伐和火災(zāi)發(fā)生,以及減少或避免造林再造林活動(dòng)引起的碳泄漏。
關(guān)鍵詞:森林生態(tài)系統(tǒng);造林再造林;采伐;氣候變化;CO2濃度升高;火災(zāi);蟲害;固碳能力
由于人類礦物燃料燃燒和土地利用變化導(dǎo)致大氣CO2濃度急劇上升[1],并引發(fā)了一系列全球環(huán)境問(wèn)題。森林作為重要的陸地生態(tài)系統(tǒng)在吸收大氣CO2、緩解氣候變化中的作用已經(jīng)得到了廣泛的共識(shí)[2- 5]。目前,全球森林碳儲(chǔ)量在652—927 PgC之間[2, 6],約占全球有機(jī)碳儲(chǔ)量的33%—46%[7- 9];固碳能力達(dá)到4.02 PgC/a[2]。森林固碳能力受造林再造林、森林管理、土地利用變化、森林采伐、氣候變化、CO2濃度、火災(zāi)、病蟲鼠害和暴風(fēng)雪災(zāi)害等人為因素和自然因素的強(qiáng)烈干擾。在目前大氣CO2濃度下,森林生態(tài)系統(tǒng)凈初級(jí)生產(chǎn)力并沒(méi)有達(dá)到飽和,隨著大氣CO2濃度升高和CO2施肥作用,以及實(shí)施造林再造林等管理措施森林凈初級(jí)生產(chǎn)力還將進(jìn)一步增加[10],固碳能力也將進(jìn)一步提高。而土地利用變化、森林采伐和退化等因素易引起森林生態(tài)系統(tǒng)碳排放(目前造成森林碳排放約為2.95 PgC/a[2, 11])。因此未來(lái)森林碳庫(kù)水平仍由碳輸入和碳輸出兩方面共同決定,即通過(guò)固碳措施來(lái)增加森林碳庫(kù)的碳輸入以及通過(guò)降低干擾來(lái)減少森林碳庫(kù)釋放。另外,由于全球各地氣候條件、森林管理措施和森林災(zāi)害呈現(xiàn)較大的差異性,因此這些因素對(duì)全球森林固碳能力影響也呈現(xiàn)較大的區(qū)域差異性。探究全球和區(qū)域森林管理措施和固碳能力,以及氣候變化和自然災(zāi)害對(duì)固碳能力的影響,對(duì)預(yù)測(cè)森林生態(tài)系統(tǒng)固碳作用、緩解大氣CO2濃度增加和管理全球碳循環(huán)具有重要作用。當(dāng)前,已有很多關(guān)于全球、區(qū)域或者某一具體地點(diǎn)的森林固碳措施和固碳能力,以及單一或幾個(gè)干擾因素對(duì)森林固碳能力影響的研究[2- 3, 6, 12- 20],本文在搜集已發(fā)表文獻(xiàn)基礎(chǔ)上,綜合論述了全球和區(qū)域造林再造林的固碳能力,以及森林采伐、氣候變化、CO2濃度、火災(zāi)和蟲害等主要干擾因素對(duì)森林固碳能力的影響,以期探究這些因素對(duì)森林生態(tài)系統(tǒng)固碳能力的影響及其在緩解氣候變化中的作用。
1造林再造林對(duì)全球和區(qū)域森林固碳能力影響
造林和再造林是指在原來(lái)沒(méi)有森林的土地上植樹(shù)造林。造林是指在很長(zhǎng)時(shí)間以來(lái)沒(méi)有森林的土地上植樹(shù)造林,而再造林是指在近期沒(méi)有森林的土地上植樹(shù)造林。京都議定書認(rèn)為造林和再造林可以減少礦物燃料燃燒釋放的CO2,是增加陸地生態(tài)系統(tǒng)固碳的可行方式[10]。目前,全球造林再造林面積有264Mhm2,占全球森林面積的6.6%[6]。造林和再造林通過(guò)植被生長(zhǎng)和再生提高森林生態(tài)系統(tǒng)生產(chǎn)力,并把大量的碳固定在新生植被[12]和死有機(jī)物質(zhì)中[21],在樹(shù)木成熟和土壤碳達(dá)到平衡之前,固碳一直在進(jìn)行,這個(gè)過(guò)程一般持續(xù)數(shù)十年甚至百年[22]。造林和再造林不僅能固定大量的碳,相對(duì)于其他固碳措施來(lái)說(shuō)還具有成本優(yōu)勢(shì)[23- 24]。因此,過(guò)去十多年,全球進(jìn)行了大面積的造林和再造林,2000—2010年造林和再造林分別以5.6Mhm2/a和5.3Mhm2/a的速度增加[6]。全球造林再造林主要集中在撒哈拉以南的非洲、拉丁美洲、以及北半球的歐洲、美國(guó)和中國(guó)等地區(qū)[12]。造林再造林對(duì)增加全球森林資源[6]、提高森林生態(tài)系統(tǒng)固碳能力產(chǎn)生了重要影響。
全球造林再造林固碳能力為148—2400 TgC/a[2, 7, 10, 25- 27],固碳速率在0.14—9.5 t C hm-2a-1之間[7, 28- 31],可以抵消全球人為CO2排放(約為5200 TgC/a)的2.8%—46.2%。預(yù)計(jì)21世紀(jì)中期全球造林再造林固碳能力可以達(dá)到310—2721 TgC/a[12, 32],可以抵消全球人為CO2排放的6.0%—52.3%。
從區(qū)域和國(guó)家來(lái)看,非洲和拉丁美洲造林再造林面積為15.4—31.6Mhm2和14.9—40.8Mhm2[6, 25],其中非洲中南部和拉丁美洲中部造林再造林固碳速率相對(duì)較高,均大于3 t C hm-2a-1[28]。Houghton等[33]利用簿記模型估算了巴西亞馬遜地區(qū)棄耕農(nóng)田再造林植被固碳速率在1.5—5.5 t C hm-2a-1之間,再造林25a后森林生物量可以恢復(fù)到原來(lái)水平的70%,接下來(lái)50a可以恢復(fù)到原來(lái)水平[33]。Humpen?der等[12]利用MAgPIE模型預(yù)測(cè)21世紀(jì)末撒哈拉以南的非洲和拉丁美洲地區(qū)造林固碳速率將達(dá)到20 t C hm-2a-1??傮w來(lái)說(shuō),目前非洲、拉丁美洲造林再造林固碳速率在1.5—5.5 t C hm-2a-1之間。
北半球造林再造林主要集中在發(fā)達(dá)國(guó)家[34]。歐洲造林再造林面積約69.3Mhm2[6]。Zaehle等[35]基于LPJ-DGVM模型預(yù)測(cè)到2100年歐盟聯(lián)合體(包括歐盟15國(guó)、挪威和荷蘭)造林凈固碳能力在17—38 TgC/a之間,可以抵消同時(shí)期碳排放的1.9%—2.9%。其中英國(guó)未來(lái)造林面積將以8khm2/a速率增長(zhǎng)。2020年造林固碳能力為0.58 TgC/a(Thomson等[36]利用C-FLOW模型估算得出),英國(guó)森林每年可以抵消4.9Tg碳排放[37]。到2050年森林面積將占國(guó)土面積的16%,固碳能力將抵消同時(shí)期溫室氣體排放的10%[38];烏克蘭適宜造林面積有2.29Mhm2,造林可以增加該國(guó)森林面積23%。未來(lái)40a造林的固碳能力為4.6 TgC/a,可以抵消該國(guó)年碳排放的4.6%[37];荷蘭盡管實(shí)施了造林計(jì)劃,但由于其國(guó)土面積小,預(yù)計(jì)造林面積僅0.007Mhm2,通過(guò)造林來(lái)緩解氣候變化的空間較小[37]。綜合以上可以看出,未來(lái)歐洲造林再造林固碳能力在0.58—38 TgC/a之間。
北美洲地區(qū)造林再造林面積約37.5Mhm2[6]。其中加拿大魁北克東南部造林50a后固碳速率達(dá)到1.5 t C hm-2a-1(Tremblay等[39]利用實(shí)測(cè)方法得出),后續(xù)的固碳能力將繼續(xù)增大。墨西哥再造林是森林面積增加的主要因素,約占該國(guó)森林面積增量的98%。de Jong等[40]利用IPCC指南方法估算了墨西哥再造林固碳速率為0.7 t C hm-2a-1,再造林植被固碳能力可以抵消該國(guó)森林砍伐碳釋放的13%。北美碳匯一半來(lái)自于美國(guó)造林和再造林[15],Woodbury等[41- 42]利用歷史土地利用變化數(shù)據(jù)和Forcarb模型估算了美國(guó)造林的固碳能力為17 TgC/a;Benítez等[28]利用基于網(wǎng)格模型估算了美國(guó)中部造林再造林固碳速率均大于3t C hm-2a-1;Niu等[16]利用土地覆蓋和土壤地理數(shù)據(jù)以及多種模型估算了美國(guó)中西部造林后20a的固碳速率為4 t C hm-2a-1,可以抵消當(dāng)?shù)鼗剂咸寂欧诺?%[16]。可以看出,北美造林再造林固碳速率在0.7—4 t C hm-2a-1之間。
2000s亞洲地區(qū)造林再造林面積分別以4.9Mhm2/a和2.5 Mhm2/a的速度大幅度增長(zhǎng),這主要是中國(guó)造林引起的(造林速率3.0—4.1Mhm2/a)[6, 37]。南亞造林面積以0.3Mhm2/a速度增加,固碳能力為13 TgC/a(Patra等[17]利用簿記法估算得出),其中印度造林的固碳能力是該區(qū)域較強(qiáng)的國(guó)家。東亞地區(qū)在過(guò)去30a由于實(shí)施造林再造林工程,森林面積增加了16.9Mhm2,森林植被固碳能力為66.9 TgC/a,固碳速率為0.23 t C hm-2a-1[3]。其中日本造林再造林約10.33Mhm2[3],占該國(guó)森林面積的40%[43]。Fang等[3]利用森林清查數(shù)據(jù)和生物量連續(xù)因子變化函數(shù)法估算了造林植被固碳速率為1.38 t C hm-2a-1。日本森林植被碳儲(chǔ)量的增加主要是由造林再造林植被碳密度增加(或者森林生長(zhǎng))引起的(91.1%),而森林面積擴(kuò)張對(duì)植被碳儲(chǔ)量增加作用(8.9%)很小[3];中國(guó)是世界上造林再造林面積最大的國(guó)家[6],2000s造林再造林面積達(dá)36.15Mhm2[3],約占森林面積的23%[44],植被固碳能力為47.5 TgC/a,固碳速率為0.54t C hm-2a-1[3]。預(yù)計(jì)到2050年造林再造林面積將再增加21.7Mhm2[45],固碳能力在57.1—62.8 TgC/a之間[44- 45],可以抵消同時(shí)期化石燃料碳排放的4.6%—7.1%[44]。另外,中國(guó)森林植被碳儲(chǔ)量增加主要是由森林面積擴(kuò)張引起的(58.1%),植被碳密度增加的作用(41.9%)相對(duì)較小[3]??梢钥闯?,中國(guó)森林植被碳密度還有很大的提升空間,未來(lái)固碳潛力還很大??傮w來(lái)說(shuō)亞洲地區(qū)造林再造林固碳能力在13—66.9 TgC/a之間,固碳速率在0.23—1.38 t C hm-2a-1之間。
總體上看,熱帶地區(qū)造林再造林固碳能力為1700 TgC/a[2],固碳速率在4—8 t C hm-2a-1之間[7, 28]。非洲和拉丁美洲等熱帶地區(qū)造林再造林固碳速率(1.5—5.5 t C hm-2a-1)也大于溫帶的歐洲、北美洲和亞洲地區(qū)造林再造林固碳速率(0.23—4 t C hm-2a-1);溫帶地區(qū)造林再造林固碳能力為27—500 TgC/a[7, 10],固碳速率為1.5—4.5 t C hm-2a-1[7],其中北美造林再造林固碳速率(0.7—4 t C hm-2a-1)大于亞洲造林再造林固碳速率(0.23—1.38 t C hm-2a-1);寒帶地區(qū)造林固碳能力為700 TgC/a[27];固碳速率相對(duì)較低,均小于1 t C hm-2a-1[28],這可能是由于造林降低了太陽(yáng)反射率,從而減緩了森林從大氣中吸收CO2的能力[12]。
造林再造林的固碳能力受土地利用狀況、土壤類型、造林樹(shù)種、森林管理、干擾和氣候等多方面影響[16, 21, 29, 43, 46],并造成固碳能力估算的不確定性。造林再造林主要是增加植被碳固定,一般認(rèn)為植被固碳量占總固碳量的2/3[47]。造林再造林后土壤碳變化差異很大,一般在±1.5 t C hm-2a-1之間[39]。例如,Tremblay等[39]實(shí)測(cè)得出加拿大魁北克地區(qū)造林50a后土壤碳損失0.4 t C hm-2a-1[39];Paul等[48]通過(guò)對(duì)比實(shí)驗(yàn)研究發(fā)現(xiàn)俄亥俄州農(nóng)田再造林50a后落葉林土壤固碳速率在0.15—0.58 t C hm-2a-1之間,而松柏林土壤碳損失0.85 t C hm-2a-1。造林再造林后土壤碳變化主要取決于造林再造林時(shí)間和造林前土壤狀況[47]。一般認(rèn)為,造林再造林后數(shù)幾十年內(nèi)(有的為10a,有的甚至為50a),土壤有機(jī)碳(SOC)呈降低趨勢(shì);隨后開(kāi)始緩慢積累,并隨著立木成熟積累速度加快[39]。這可能是由于造林再造林后的幼齡林中,死生物量低造成枯枝落葉少,枯枝落葉帶來(lái)的碳輸入小于土壤呼吸引起的碳損失[39]。另外,造林前SOC高的,造林后5—10a內(nèi)呈下降趨勢(shì),隨后再升高[48];而造林前SOC低的,造林后呈現(xiàn)上升趨勢(shì)[16, 39]。盡管從長(zhǎng)期看造林再造林可以增加土壤碳輸入,但和土壤原碳儲(chǔ)量相比,輸入的碳非常少,估算存在極大的不確定性;并且在樹(shù)種、林齡和種植密度間有很大的變異性。這使得對(duì)造林再造林土壤碳輸入的估算非常困難[49]。
2采伐
采伐是影響森林固碳能力最主要的森林管理方式。全球森林采伐量約3×109m3[6],極大地影響了全球和區(qū)域森林固碳能力。采伐直接降低森林植被密度或清除森林植被,造成森林生產(chǎn)力下降或消失,碳吸收能力減少,同時(shí)采伐使植被碳轉(zhuǎn)移到木材產(chǎn)品和生物燃料中,造成森林生態(tài)系統(tǒng)碳儲(chǔ)量減少和固碳能力降低。美國(guó)森林采伐造成碳損失(或轉(zhuǎn)移)為18.1 TgC/a(US EPA[50]利用清單數(shù)據(jù)、IPCC[51- 52]方法估算得出)。1990—2008年加拿大管理森林采伐對(duì)森林生態(tài)系統(tǒng)固碳影響情況如下,Stinson等[53]基于清單數(shù)據(jù)利用CBM-CFS3經(jīng)驗(yàn)?zāi)P凸浪愕奶紦p失為45 TgC/a,該期間森林整體上呈現(xiàn)碳匯;而根據(jù)聯(lián)合國(guó)氣候變化公約(UNFCCC)方法估算的19年間有8a森林呈現(xiàn)碳源。這可能是由于UNFCCC方法忽略了采伐植被的碳轉(zhuǎn)移,沒(méi)有考慮木材產(chǎn)品中碳的存留時(shí)間,認(rèn)為采伐植被的碳立即排放到大氣中,過(guò)高地估計(jì)了采伐引起的碳排放。盡管木材采伐減少了森林生態(tài)系統(tǒng)碳儲(chǔ)量,但不導(dǎo)致溫室氣體直接排放。另外,薪材替代化石燃料燃燒還能減少碳排放[53]。因此,有些研究認(rèn)為[54- 55]采伐是減少碳排放方法之一,但大多數(shù)研究[50, 53, 56]認(rèn)為采伐后幼林替代成熟林導(dǎo)致凈碳損失??傮w來(lái)看,采伐造成全球森林生態(tài)系統(tǒng)碳釋放為900 TgC/a[26](包括碳轉(zhuǎn)移590 TgC/a,實(shí)際碳排放310 TgC/a),約占全球碳排放的17%。但由于采伐樹(shù)種、材積、密度、采伐規(guī)范和技術(shù)、木材產(chǎn)品生命周期以及估算方法的差異,采伐對(duì)森林生態(tài)系統(tǒng)固碳影響還存在很大的不確定性。
采伐后森林植被密度降低,促進(jìn)了林木再生和林下植物生長(zhǎng),從而增加了森林生產(chǎn)力,促進(jìn)植被碳固定[57]。Houghton等[26]利用簿記法研究了采伐后全球森林再生的固碳能力為1120 TgC/a;Albani等[57]利用ED模型研究了采伐后美國(guó)東部森林再生的固碳能力為100 TgC/a。采伐后森林固碳能力還受采伐頻率和采伐后森林結(jié)構(gòu)的影響[56]。另外,當(dāng)采伐對(duì)森林植被碳儲(chǔ)量影響不大時(shí),采伐可能增加森林粗木質(zhì)殘?bào)w的碳儲(chǔ)量,而粗木質(zhì)殘?bào)w一般不隨木材從森林中移除,森林粗木質(zhì)殘?bào)w碳儲(chǔ)量的增加促進(jìn)了營(yíng)養(yǎng)元素和水分循環(huán),從而也對(duì)森林生態(tài)系統(tǒng)碳收支產(chǎn)生影響[58]。
采伐對(duì)森林土壤固碳能力的影響受多種因素共同作用。采伐影響輸入到土壤的殘落物數(shù)量和質(zhì)量,殘落物數(shù)量和質(zhì)量又改變土壤微生物群落組成和活性。另外,采伐還通過(guò)影響氣候來(lái)影響植被和微生物生長(zhǎng)過(guò)程,從而影響土壤碳平衡。一般采伐后的幾年至數(shù)十幾年內(nèi)土壤碳儲(chǔ)量降低[59],隨后又上升。這是由于采伐后森林植被的移除使輸入到土壤的凋落物數(shù)量減少,同時(shí)微生物分解速率的增加導(dǎo)致碳釋放增加;土壤碳儲(chǔ)量降至最低點(diǎn)后,隨著林木再生、有機(jī)物質(zhì)分解恢復(fù)到采伐前水平以及凋落物輸入增加導(dǎo)致土壤SOC開(kāi)始積累[18]。Nave等[58]利用Meta分析研究了溫帶森林采伐后5a內(nèi)土壤碳儲(chǔ)量減少了8%。盡管采伐后森林土壤碳儲(chǔ)量減少,但由于土壤碳庫(kù)種類、大小、周轉(zhuǎn)時(shí)間和碳分子特性的差異較大,森林土壤受采伐影響不如植被敏感。
3氣候變化和CO2濃度升高
森林生態(tài)系統(tǒng)固碳還受氣候變化和CO2濃度升高的影響。北半球森林生態(tài)系統(tǒng)作為一個(gè)穩(wěn)定碳匯主要原因之一是氣候變化和CO2濃度升高促進(jìn)了植被再生[57]。氣候變化(尤其是溫度升高)和CO2濃度升高能夠促進(jìn)植物生長(zhǎng)[60],提高森林生產(chǎn)力[9, 18- 19],增加輸入到土壤的枯枝落葉數(shù)量和土壤有機(jī)碳含量[18, 61],從而有利于森林碳固定[13]。評(píng)價(jià)氣候變化和CO2濃度升高對(duì)森林固碳能力的影響,對(duì)于研究未來(lái)氣候條件下森林在減緩大氣變化中的作用有重要意義。Dib等[18]利用Rothc和CENTURY模型模擬顯示,到本世紀(jì)末溫度和CO2濃度升高能夠使美國(guó)新罕布什爾州落葉林SOC含量比當(dāng)前水平增加7%;Bellassen等[62]基于清單數(shù)據(jù),利用ORCHIDEE-FM模型研究了氣候變化和大氣CO2濃度升高能夠使歐洲森林生態(tài)系統(tǒng)凈初級(jí)生產(chǎn)力(NPP)增加0.013 t hm-2a-1;Hudibury等[13]利用CLM4模型對(duì)美國(guó)俄勒岡州森林固碳能力的研究表明,在現(xiàn)有管理措施以及溫度和CO2濃度升高情況下,2100年森林凈固碳能力將增加32%—68%,顯著抵消火災(zāi)和其他擾動(dòng)造成的森林碳排放??傮w來(lái)說(shuō),溫度和CO2濃度升高兩者相互作用將使森林生態(tài)系統(tǒng)碳輸入增加7%—68%,從而提高森林生態(tài)系統(tǒng)固碳能力[13, 63]。
溫度和CO2濃度升高單因素對(duì)森林固碳能力的影響同樣取決于碳輸入與輸出的平衡。溫度升高可以提高植被光合作用和NPP,增加凋落物數(shù)量和土壤碳輸入。然而溫度升高也會(huì)提高北方森林有機(jī)物質(zhì)分解速率,促進(jìn)土壤呼吸[18],增加土壤碳輸出。另外,溫度升高也增加了蒸騰作用,降低土壤濕度,增加干旱頻率和強(qiáng)度,有可能降低土壤呼吸和有機(jī)質(zhì)的分解[18]。Dib等[18]利用Rothc模型模擬的在不考慮CO2施肥作用、未來(lái)各種溫度升高情景下美國(guó)新罕布什爾州森林土壤碳輸出都大于碳輸入,呈現(xiàn)碳源狀態(tài)。Masahito等[64]利用渦度相關(guān)法研究了溫度對(duì)阿拉斯加森林固碳的影響,結(jié)果表明由于年際氣候波動(dòng),9a內(nèi)該區(qū)域秋天溫度升高了0.22℃ /a導(dǎo)致黑云杉林由碳匯變成碳源,這可能是由于秋天溫度升高引起森林呼吸作用引起的碳輸出大于光合作用引起的碳輸入造成的。
CO2濃度升高對(duì)森林固碳能力的影響涉及的因素較多。CO2濃度升高能夠提高光合作用效率,增加NPP和凋落物數(shù)量。另外CO2濃度升高還有可能促進(jìn)根系生長(zhǎng)[18],間接地影響土壤碳平衡。Talhelm等[19]基于實(shí)地調(diào)查研究了CO2濃度升高使美國(guó)威斯康辛州森林NPP提高39%,森林碳儲(chǔ)量增加11%;Albani等[57]利用ED模型研究了CO2濃度升高下,1980—2000年美國(guó)東部森林固碳能力為170—220TgC/a,21世紀(jì)達(dá)到700 TgC/a,CO2施肥是增加該區(qū)域碳匯的主要原因。但也有學(xué)者[60, 65]認(rèn)為短期內(nèi)CO2濃度升高能夠促進(jìn)森林增長(zhǎng),增加森林SOC積累;但長(zhǎng)期看會(huì)促進(jìn)森林土壤微生物呼吸,縮短SOC周轉(zhuǎn)時(shí)間,減少森林SOC積累。另外,CO2濃度升高也能夠提高森林水分利用效率,促進(jìn)植被生長(zhǎng),增加碳固定[13, 38],然而大氣CO2濃度升高下,水分利用效率的提高也增加了森林土壤含水量[35],從而促進(jìn)干旱半干旱區(qū)森林土壤微生物分解作用,也有可能增加碳釋放[60]。由于CO2濃度對(duì)森林固碳能力的影響涉及因素較多,以及氣候變化和CO2濃度變化的多樣性,氣候變化和CO2濃度對(duì)森林固碳能力的研究將是以后森林碳循環(huán)研究的重點(diǎn)和難點(diǎn)。
4火災(zāi)
全球每年約有1%森林受到火災(zāi)的嚴(yán)重影響[6],火災(zāi)引起的森林碳排放(約0.3PgC/a[66])約占全球碳排放的5.8%?;馂?zāi)不僅能夠直接把森林有機(jī)物質(zhì)分解成無(wú)機(jī)物質(zhì)、水蒸氣和CO2,造成溫室氣體排放[20, 22],還間接改變森林生產(chǎn)力[20],影響植被結(jié)構(gòu)和組成、土壤性質(zhì)以及養(yǎng)分循環(huán)過(guò)程,從而影響森林生態(tài)系統(tǒng)碳循環(huán)[67]。正確評(píng)估火災(zāi)對(duì)森林固碳能力的影響,將有助于全面評(píng)價(jià)森林在緩解氣候變化中的作用。全球森林火災(zāi)碳排放主要集中在東亞和北美地區(qū),熱帶封閉森林較少[20]。中國(guó)森林每年受火災(zāi)面積約0.95Mhm2[68],王效科等[69]和Lü等[70]分別根據(jù)森林火災(zāi)統(tǒng)計(jì)資料、森林火災(zāi)統(tǒng)計(jì)資料結(jié)合遙感數(shù)據(jù),利用排放因子法和排放比法估算了中國(guó)森林火災(zāi)碳排放在10.2—11.3 TgC/a之間;Hayes等[71]利用TEM模型估算了1997—2006年亞洲寒帶西伯利亞北部森林火災(zāi)碳釋放為255 TgC/a,北美寒帶森林火災(zāi)碳排放為51 TgC/a;Stinson等[53]基于清單數(shù)據(jù),利用CBM-CFS3經(jīng)驗(yàn)?zāi)P凸浪懔?990—2008年加拿大森林火災(zāi)碳釋放為23 TgC/a;US EPA[50]利用清單數(shù)據(jù)和IPCC[51- 52]方法估算了美國(guó)48個(gè)州以及阿拉斯加森林火災(zāi)引起的碳排放為242.7 TgC/a??傮w來(lái)說(shuō),目前全球森林火災(zāi)碳釋放約為300 TgC/a[66],低于森林采伐造成的碳釋放。
火災(zāi)也影響森林土壤的固碳能力?;馂?zāi)可以直接燃燒部分土壤有機(jī)碳,使土壤有機(jī)碳層變?。涣硗?,火災(zāi)后植被冠層破壞或者完全去除,使太陽(yáng)輻射能量透過(guò)冠層到達(dá)地表,火災(zāi)后地表熱能也直接傳遞到土壤,都導(dǎo)致土壤溫度升高促進(jìn)土壤呼吸、增加碳釋放。Poirier等[72]通過(guò)對(duì)加拿大魁北克地區(qū)14個(gè)受火災(zāi)干擾后森林土壤實(shí)際測(cè)定發(fā)現(xiàn),火災(zāi)使北方森林SOC含量由449.9g/kg降低到419.9 g/kg;Amiro等[73]利用渦度相關(guān)法發(fā)現(xiàn)受火災(zāi)干擾10a內(nèi)北美森林土壤為碳源,以后才變?yōu)樘紖R。然而,Berenguer等[74]利用GLMMs模型研究表明,火災(zāi)干擾后亞馬遜森林土壤碳密度與未受火災(zāi)干擾森林土壤碳密度相差不大,這可能是由于熱帶溫度本來(lái)就很高,火災(zāi)引起的土壤溫度上升并未促進(jìn)土壤微生物分解作用和土壤碳釋放。
區(qū)域研究認(rèn)為全球氣候變暖環(huán)境下,未來(lái)寒帶發(fā)生火災(zāi)的頻率、范圍和強(qiáng)度還可能增大[71, 75-76]。Kloster等[77]利用CLM-CN模型預(yù)測(cè)了2075—2099年全球森林火災(zāi)造成的碳排放將超過(guò)現(xiàn)在的17%—62%;Hudiburg等[13]利用CLM4模型預(yù)測(cè)了美國(guó)俄勒岡州森林火災(zāi)碳釋放將從現(xiàn)在的3.2 TgC/a增長(zhǎng)到2100年的4.0 TgC/a;Liu等[78]預(yù)計(jì)2081—2100年中國(guó)東北寒帶森林火災(zāi)發(fā)生密度可能增加30%—230%,人為因素引起的火災(zāi)將超過(guò)氣候變化對(duì)火災(zāi)的影響,火災(zāi)將造成該區(qū)域碳大量釋放。因此,維持森林生態(tài)系統(tǒng)植被結(jié)構(gòu)、固碳功能和其他環(huán)境功能必須控制火災(zāi)發(fā)生,尤其是控制高發(fā)區(qū)域火災(zāi)的發(fā)生。
5蟲害
全球受蟲害影響的森林約有34Mhm2[6]。北半球加拿大、美國(guó)、歐洲和東亞等地區(qū)森林蟲害爆發(fā)嚴(yán)重。尤其是北美地區(qū),近幾十年來(lái)約23 Mhm2森林爆發(fā)蟲害[6],每年北美森林蟲害爆發(fā)面積約占全球森林蟲害面積的68%,極大地影響該地區(qū)森林碳循環(huán)[14]。在遭受蟲害后的幾年到數(shù)十年內(nèi),森林固碳能力降低。這是由于遭受蟲害后,植被再生變慢,森林初級(jí)生產(chǎn)力(GPP)大幅度降低。遭病蟲害嚴(yán)重的樹(shù)木甚至死亡,死亡樹(shù)木分解又釋放大量CO2,尤其在樹(shù)木死亡后的幾年內(nèi),枯死有機(jī)物質(zhì)數(shù)量大,分解速率快,CO2釋放量大。GPP降低和呼吸(Rh)增加造成森林凈生產(chǎn)力(NEP)和碳儲(chǔ)量減少[79]。Brown等[80]利用渦度相關(guān)法研究了加拿大不列顛哥倫比亞森林在受松山甲蟲影響的最初1—2a NEP降低0.33—0.82 t hm-2a-1;Stinson等[53]基于清單數(shù)據(jù),利用CBM-CFS3經(jīng)驗(yàn)?zāi)P凸浪懔?990—2008年松山甲蟲造成加拿大管理森林碳損失26.8 TgC/a,2005年更高達(dá)107 TgC/a;Dymond等[79]利用CBM-CFS3模型研究發(fā)現(xiàn)加拿大魁北克東部10.6Mhm2森林受云杉蚜蟲侵害碳釋放為2 TgC/a,預(yù)計(jì)2011—2024年云杉蚜蟲的爆發(fā)將使該區(qū)域由碳匯變成碳源;Metsaranta等[81]利用CBM-CFS3模型預(yù)測(cè)蟲害使2010—2100年加拿大管理森林均呈現(xiàn)碳源。由于蟲害面積、情景假設(shè)差異和估算的不確定性,蟲害造成森林生態(tài)系統(tǒng)碳釋放還存在很大的變化范圍,總結(jié)以上結(jié)果看出蟲害引起森林碳釋放在2—107 TgC/a之間,約占全球碳排放的0.04%—2.1%。
但從長(zhǎng)期看,隨著時(shí)間推移,蟲害造成的枯死有機(jī)物質(zhì)數(shù)量降低,呼吸釋放的碳也減少;樹(shù)木死亡促進(jìn)了林下植被生長(zhǎng)以及樹(shù)木再生增加了GPP。GPP增加和Rh減少提高了森林NEP和碳儲(chǔ)量[79]。Edbury等[82]利用CLM4過(guò)程模型研究發(fā)現(xiàn)山松甲蟲爆發(fā)后100a內(nèi)美國(guó)西部森林都為碳源,100a后才為碳匯。Albani等[83]利用ED模型和隨機(jī)模型研究了鐵杉長(zhǎng)毛球蚜對(duì)美國(guó)東部森林的影響,結(jié)果表明2000—2040年該區(qū)域森林固碳能力減少11 TgC/a;2040—2100年碳吸收為0.89 PgC,比未受蟲害影響時(shí)增加12%。可以看出,受蟲害影響后數(shù)幾十年至百年內(nèi)森林為碳源,以后才為碳匯。另外,受蟲害后森林表現(xiàn)為碳源或碳匯還受蟲害爆發(fā)強(qiáng)度的影響。蟲害爆發(fā)較輕時(shí)森林為碳匯;爆發(fā)嚴(yán)重時(shí),森林受蟲害后的數(shù)幾十年都為碳源。Medvigy等[84]利用ED2模型研究了百年時(shí)間尺度上舞毒蛾蟲害強(qiáng)度對(duì)美國(guó)新澤西州森林固碳能力的影響,結(jié)果表明隨著蟲害強(qiáng)度增加森林NEP呈線性降低。蟲害爆發(fā)的周期也影響森林碳源/匯,周期為5—15a時(shí)森林生產(chǎn)力和生物量明顯降低[84]。
6總結(jié)與展望
造林再造林、氣候變化和CO2濃度增加可以通過(guò)擴(kuò)大森林面積或者增加森林碳輸入實(shí)現(xiàn)森林生態(tài)系統(tǒng)碳固定。造林和再造林是增加全球森林固碳能力的主要因素,全球造林再造林固碳能力為148—2400 TgC/a[2, 7, 10, 25-27];氣候變化和CO2濃度增加也使森林碳儲(chǔ)量比當(dāng)前水平增加7%—68%[13, 18- 19];而森林采伐、火災(zāi)和蟲害則通過(guò)降低森林生產(chǎn)力和碳輸入,降低森林固碳能力。森林采伐造成全球森林碳損失900 TgC/a[26],火災(zāi)造成森林碳釋放300 TgC/a[66],蟲害造成森林碳釋放在2—107 TgC/a[53, 79]之間。由于情景設(shè)定的差異和估算方法的不同,評(píng)價(jià)造林再造林、森林采伐、氣候變化、CO2濃度、火災(zāi)和蟲害等對(duì)森林生態(tài)系統(tǒng)固碳能力的影響還存在很大不確定性。但是可以看出造林再造林、氣候變化和CO2濃度增加可以在一定程度上提高森林固碳能力,而森林采伐和火災(zāi)則造成森林碳損失1200 TgC/a,抵消造林再造林最大固碳能力的一半。因此,建議在森林管理中應(yīng)嚴(yán)格控制森林采伐和火災(zāi)的發(fā)生。
目前關(guān)于造林和再造林對(duì)森林植被固碳能力的研究較多[85],而由于森林土壤固碳估算存在很大的不確定性,就造林和再造林對(duì)森林土壤固碳能力的研究相對(duì)較少。土壤作為重要的碳匯也有一定的固碳能力,因此今后應(yīng)注重研究固碳措施對(duì)森林土壤固碳能力的影響。目前就造林再造林、采伐、氣候變化、CO2濃度、火災(zāi)和蟲害等單一因素或者幾個(gè)因素結(jié)合對(duì)森林生態(tài)系統(tǒng)固碳能力的估算較多,但綜合這些因素對(duì)具體某一區(qū)域或國(guó)家整個(gè)森林生態(tài)系統(tǒng)(包括植被層、林下層、草本層、凋落物層和土壤層)碳動(dòng)態(tài)的研究卻鮮見(jiàn)報(bào)道[74]。森林生態(tài)系統(tǒng)作為一個(gè)整體系統(tǒng),其固碳能力受以上多種因素綜合影響很大。因此,以后還應(yīng)該注重多種因素綜合對(duì)森林生態(tài)系統(tǒng)固碳能力的影響。
造林和再造林還會(huì)通過(guò)活動(dòng)轉(zhuǎn)移、市場(chǎng)泄漏、排放轉(zhuǎn)移和生態(tài)泄漏等途徑造成森林生態(tài)系統(tǒng)碳泄漏,森林生態(tài)系統(tǒng)凈固碳能力由固碳措施的固碳能力和溫室氣體泄漏共同構(gòu)成,碳泄漏有可能抵消固碳措施的固碳效果,在實(shí)施造林和再造林措施時(shí)應(yīng)盡量減少或避免由于活動(dòng)對(duì)造林再造林區(qū)或周邊地區(qū)的森林造成碳泄漏。
參考文獻(xiàn)(References):
[1]Le Quéré C, Peters G P, Andres R J, Andrew R M, Boden T, Ciais P, Friedlingstein P, Houghton R A, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker D C E, Bopp L, Canadell J G, Chini L P, Doney S C, Harper A, Harris I, House J I, Jain A K, Jones S D, Kato E, Keeling R F, Klein Goldewijk K, K?rtzinger A, Koven C, Lefèvre N, Omar A, Ono T, Park G H, Pfeil B, Poulter B, Raupach M R, Regnier P, R?denbeck C, Saito S, Schwinger J, Segschneider J, Stocker B D, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S, Yue C. Global carbon budget 2013. Earth System Science Data Discussions, 2013, 6(2): 689- 760.
[2]Pan Y D, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S L, Rautianen A, Sitch S, Hayes D. A large and persistent carbon sink in the world′s forests. Science, 2011, 333(6045): 988- 993.
[3]Fang J Y, Guo Z D, Hu H F, Kato T, Muraoka H, Son Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 2014, 20(6): 2019- 2030.
[4]Makumba W, Akinnifesi F K, Janssen B, Oenema O. Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agriculture, Ecosystems and Environment, 2007, 118(1/4): 237- 243.
[5]Syampungani S, Chirwa P W, Akinnifesi F K, Ajayi O C. The potential of using agroforestry as a win- win solution to climate change mitigation and adaptation and meeting food security challenges in southern Africa. Agricultural Journal, 2010, 5(2): 80- 88.
[6]Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010. Rome: FAO, 2010.
[7]Intergovernmental Panel on Climate Change. IPCC Special Report: Land Use, Land-Use Change, and Forestry. Cambridge: Cambridge University Press, 2000.
[8]Kutch W L, Bahn M, Heinemeyer A. Soil Carbon Dynamics: An Integrated Methodology. Cambridge: Cambridge University Press, 2010: 49- 75.
[9]Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320(5882): 1444- 1449.
[10]Lal R. Carbon sequestration. Philosophical Transactions ofthe Royal Society B, Biological Sciences, 2008, 363(1492): 815- 830.
[11]Sarmiento J L, Gloor M, Gruber N, Beaulieu C, Jacobson A R, Mikaloff Fletcher S E, Pacala S, Rodgers K. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences, 2010, 7(8): 2351- 2367.
[12]Humpen?der F, Popp A, Dietrich J P, Klein D, Lotze-Campen H, Bonsch M, Bodirsky B L, Weindl I, Stevanovic M, Müller C. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environmental Research Letters, 2014, 9(6): 064029.
[13]Hudiburg T W, Luyssaert S, Thornton P E, Law B E. Interactive effects of environmental change and management strategies on regional forest carbon emissions. Environmental Science & Technology, 2013, 47(22): 13132- 13140.
[14]Hicke J A, Allen C D, Desai A R, Dietze M C, Hall R J, Hogg E H, Kashian D M, Moore D, Raffa K F, Sturrock R N, Vogelmann J. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 2012, 18(1): 7- 34.
[15]U. S. Climate Change Science Program and the Subcommittee on Global Change Research. The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. Asheville: CCSP, 2007.
[16]Niu X Z, Duiker S W. Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U. S. Forest Ecology and Management, 2006, 223(1/3): 415- 427.
[17]Patra P K, Canadell J G, Houghton R A, Piao S L, Oh N H, Ciais P, Manjunath K R, Chhabra A, Wang T, Bhattacharya T, Bousquet P, Hartman J, Ito A, Mayorga E, Niwa Y, Raymond P A, Sarma V V S S, Lasco R. The carbon budget of South Asia. Biogeosciences, 2013, 10(1): 513- 527.
[18]Dib A E, Johnson C E, Driscoll C T, Fahey T J, Hayhoe K. Simulating effects of changing climate and CO2emissions on soil carbon pools at the Hubbard Brook experimental forest. Global Change Biology, 2014, 20(5): 1643- 1656.
[19]Talhelm A F, Pregitzer K S, Kubiske M E, Zak D R, Campany C E, Burton A J, Dickson R E, Hendrey G R, Isebrands J G, Lewin K F, Nagy J, Karnosky D F. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Global Change Biology, 2014, 20(8): 2492- 2504.
[20]Li F, Bond-Lamberty B, Levis S. Quantifying the role of fire in the Earth system-Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences, 2014, 11(5): 1345- 1360.
[21]Jandl R, Vesterdal L, Olsson M, Bens O, Badeck F, Rock J. Carbon sequestration and forest management. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2007, 2(017):1- 16.
[22]Congressional Research Service. Carbon Sequestration in Forests. US: CRS, 2009.
[23]Mason C, Plantinga A. Contracting for Impure Public Goods: Carbon Offsets and Additionality. Cambridge: National Bureau of Economic Research Working Paper Series, 2011: 21- 23.
[24]King A W, Hayes D J, Huntzinger D N, West T O, Post W M. North American carbon dioxide sources and sinks: magnitude, attribution, and uncertainty. Frontiers in Ecology and the Environment, 2012, 10(10): 512- 519.
[25]Nilsson S, Schopfhauser W. The carbon-sequestration potential of a global afforestation program. Climate Change, 1995, 30(3): 267- 293.
[26]Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850—2000. Tellus Series B-Chemical and Physical Meteorology, 2003, 55(2): 378- 390.
[27]Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science, 1994, 263(5144): 185- 190.
[28]Benítez P C, McCallum I, Obersteiner M, Yamagata Y. Global potential for carbon sequestration: Geographical distribution, country risk and policy implications. Ecological Economics, 2007, 60(3): 572- 583.
[29]Paul K I, Polglase P J, Nyakuengama J G, Khanna P K. Change in soil carbon following afforestation. Forest Ecology and Management, 2002, 168(1/3): 241- 257.
[30]Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 2000, 6(3): 317- 327.
[31]Metz B, Davidson O R, Bosch P R, Dave R, Meyer L A. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[32]Thomson A M, César Izaurralde R, Smith S J, Clarke L E. Integrated estimates of global terrestrial carbon sequestration. Global Environmental Change, 2008, 18(1): 192- 203.
[33]Houghton R A, Skole D L, Nobre C A, Hackler J L, Lawrence K T, Chomentowski W H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 2000, 403(6767): 301- 304.
[34]Tan Z X, Lal R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA. Agriculture, Ecosystems and Environment, 2005, 111(1/4): 140- 152.
[35]Zaehle S, Bondeau A, Carter T R, Cramer W, Erhard M, Prentice I C, Reginster I, Rounsevell M D A, Sitch S, Smith B, Smith P C, Sykes M. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990- 2100. Ecosystems, 2007, 10(3): 380- 401.
[36]Department for the Environment, Food and Rural Affairs. Inventory and Projections of UK Emissions by Sources and Removals by Sinks Due to Land Use, Land Use Change and Forestry. London: DEFRA, 2009.
[37]Nijnik M. Carbon capture and storage in forests // Hester R E, Harrison R M eds. Carbon Capture: Sequestration and Storage. Cambridge: Royal Society of Chemistry, 2009: 203- 239.
[38]Natural England. Carbon Storage by Habitat: Review of the Evidence of the Impacts of Management Decisions and Condition of Carbon Stores and Sources. Worcester: NE, 2012.
[39]Tremblay S, Périé C, Ouimet R. Changes in organic carbon storage in a 50 year white spruce plantation chronosequence established on fallow land in Quebec. Canadian Journal of Forest Research, 2006, 36(11): 2713- 2723.
[40]de Jong B, Anaya C, Masera O, Olguín M, Paz F, Etchevers J, Martínez R D, Guerrero G, Balbontín C. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecology and Management, 2010, 260(10): 1689- 1701.
[41]Woodbury P B, Smith J E, Heath L S. Carbon sequestration in the U. S. forest sector from 1990 to 2010. Forest Ecology and Management, 2007, 241(1/3): 14- 27.
[42]Woodbury P B, Heath L S, Smith J E. Effects of land use change on soil carbon cycling in the conterminous United States from 1900 to 2050. Global Biogeochemical Cycles, 2007, 21(3): GB3006.
[43]Arai H, Tokuchi N. Factors contributing to greater soil organic carbon accumulation after afforestation in a Japanese coniferous plantation as determined by stable and radioactive isotopes. Geoderma, 2010, 157(3/4): 243- 251.
[44]Xu B, Guo Z D, Piao S L, Fang J Y. Biomass carbon stocks in China′s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Science China Life Sciences, 2010, 53(7): 776- 783.
[45]Huang L, Liu J Y, Shao Q Q, Xu X L. Carbon sequestration by forestation across China: Past, present, and future. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291- 1299.
[46]Shi J, Cui L L. Soil carbon change and its affecting factors following afforestation in China. Landscape and Urban Planning, 2010, 98(2): 75- 85.
[47]Heil G W, Muys B, Hansen K. Environmental Effects of Afforestation in North-Western Europe // Plant and Vegetation. The Netherlands: Springer, 2007: 19- 52.
[48]Paul E A, Morris S J, Six J, Paustian K, Gregorich E G. Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Science Society of America Journal, 2003, 67(5): 1620- 1628.
[49]Byrne K A, Black K. Carbon Sequestration in Irish Forest. 2008, [2014-10-22]. http://wwwcofordie/publications/projectreports/climatechangeandforests/carbonsequestrationinforests/.
[50]US Environmental Protection Agency. Inventory of US Greenhouse Gas Emissions and Sinks: 1990—2012. Washington D C: US EPA, 2014.
[51]Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Cambridge: Cambridge University Press, 2003.
[52]The Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: IPCC, 2006.
[53]Stinson G, Kurz W A, Smyth C E, Neilson E T, Dymond C C, Metsaranta J M, Boisvenue C, Rampley G J, Li Q, White T M, Blain D. An inventory-based analysis of Canada′s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 2011, 17(6): 2227- 2244.
[54]Eriksson E, Gillespie A R, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J. Integrated carbon analysis of forest management practices and wood substitution. Canadian Journal of Forest Research, 2007, 37(3): 671- 681.
[55]Malmsheimer R W, Heffernan P, Brink S, Crandall D, Deneke F, Galik C, Gee E, Helms J A, McClure N, Mortimer N, Ruddell S, Smith M, Stewart J. Preventing GHG emissions through wood substitution. Journal of Forestry, 2008, 106(3): 132- 135.
[56]Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post- harvest retention, and wood products. Forest Ecology and Management, 2010, 259(8): 1363- 1375.
[57]Albani M, Medvigy D, Hurtt G C, Moorcroft P R. The contributions of land-use change, CO2fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 2006, 12(12): 2370- 2390.
[58]Nave L E, Vance E D, Swanston C W, Curtis P S. Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 2010, 259(5): 857- 866.
[59]Bala G, Caldeira K, Wickett M, Phillips T J, Lobell D B, Delire C, Mirin A. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(16): 6550- 6555.
[60]van Groenigen K J, Qi X, Osenberg C W, Luo Y Q, Hungate B A. Faster decomposition under increased atmospheric CO2limits soil carbon storage. Science, 2014, 344(6183): 508- 509.
[61]Kowalchuk G A. Bad news for soil carbon sequestration? Science, 2012, 337(6098): 1049- 1050.
[62]Bellassen V, Viovy N, Luyssaert S,Le Maire G, Schelhaas M-J, Ciais P. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Global Change Biology, 2011, 17(11): 3274- 3292.
[63]Qiao N, Schaefer D, Blagodatskaya E, Zou X M, Xu X L, Kuzyakov Y. Labile carbon retention compensates for CO2released by priming in forest soils. Global Change Biology, 2014, 20(6): 1943- 1954.
[64]Ueyama M, Iwata H, Harazono Y. Autumn warming reduces the CO2sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Global Change Biology, 2014, 20(4): 1161- 1173.
[65]Heath J, Ayres E, Possell M, Bardgett R D, Black H I J, Grant H, Ineson P, Kerstiens G. Rising atmospheric CO2reduces sequestration of root-derived soil carbon. Science, 2005, 309(5741): 1711- 1713.
[66]van der Werf G R, Randerson J T, Giglio L, Collatz G J, Mu M, Kasibhatla P S, Morton D C, DeFries R S, Jin Y, van Leeuwen T T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997—2009). Atmospheric Chemistry and Physics, 2010, 10(23): 11707- 11735.
[67]Chaiyo U, Garivait S, Wanthongchai K. Carbon storage in above-ground biomass of tropical deciduous forest in Ratchaburi province, Thailand. World Academy of Science, Engineering and Technology,International Science index 58, 2011, 5(10): 495- 500.
[68]莊亞輝, 曹美秋, 王效科, 馮宗煒. 中國(guó)地區(qū)生物質(zhì)燃燒釋放的含碳痕量氣體. 環(huán)境科學(xué)學(xué)報(bào), 1998, 18(4): 337- 343.
[69]王效科, 馮宗煒, 莊亞輝. 中國(guó)森林火災(zāi)釋放的CO2、CO和CH4研究. 林業(yè)科學(xué), 2001, 37(1): 90- 95.
[70]Lü A F, Tian H Q, Liu M L, Liu J Y, Melillo J M. Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. Journal of Geophysical Research: Atmospheres, 2006, 111(D5): D05313.
[71]Hayes D J, McGuire A D, Kicklighter D W, Gurney K R, Burnside T J, Melillo J M. Is the northern high- latitude land- based CO2sink weakening? Global Biogeochemical Cycles, 2011, 25(3): GB3018.
[72]Poirier V, Paré D, Boiffin J, Munson A D. Combined influence of fire and salvage logging on carbon and nitrogen storage in boreal forest soil profiles. Forest Ecology and Management, 2014, 326: 133- 141.
[73]Amiro B D, Barr A G, Barr J G, Black T A, Bracho R, Brown M, Chen J, Clark K L, Davis K J, Desai A R, Dore S, Engel V, Fuentes J D, Goldstein A H, Goulden M L, Kolb T E, Lavigne M B, Law B E, Margolis H A, Martin T, McCaughey J H, Misson L, Montes-Helu M, Noormets A, Randerson J T, Starr G, Xiao J. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research: Biogeosciences, 2010, 115(G4): G00K2.
[74]Berenguer E, Ferreira J, Gardner T A, Arag?o L E O C, De Camargo P B, Cerri C E, Durigan M, Junior R C D O, Guimaraes I G, Barlow J. A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 2014, 20(12): 3713- 3726.
[75]Westerling A L, Bryant B P, Preisler H K, Holmes T P, Hidalgo H G, Das T, Shrestha S R. Climate change and growth scenarios for California wildfire. Climatic Change, 2011, 109(S1): 445- 463.
[76]Wotton B M, Nock C A, Flannigan M D. Forest fire occurrence and climate change in Canada. International Journal of Wildland Fire, 2010, 19(3): 253- 271.
[77]Kloster S, Mahowald N M, Randerson J T, Lawrence P J. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 2012, 9(1): 509- 525.
[78]Liu Z H, Yang J A, Chang Y, Weisberg P J, He H S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 2012, 18(6): 2041- 2056.
[79]Dymond C C, Neilson E T, Stinson G, Porter K, MacLean D A, Gray D R, Campagna M, Kurz W A. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems, 2010, 13(6): 917- 931.
[80]Brown M, Black T A, Nesic Z, Foord V N, Spittlehouse D L, Fredeen A L, Grant N J, Burton P J, Trofymow J A. Impact of mountain pine beetle on the net ecosystem production of lodgepole pine stands in British Columbia. Agricultural and Forest Meteorology, 2010, 150(2): 254- 264.
[81]Metsaranta J M, Kurz W A, Neilson E T, Stinson G. Implications of future disturbance regimes on the carbon balance of Canada′s managed forest (2010—2100). Tellus Series B-Chemical and Physical Meteorology, 2010, 62(5): 719- 728.
[82]Edburg S L, Hicke J A, Lawrence D M, Thornton P E. Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): G04033.
[83]Albani M, Moorcroft P R, Ellison A M, Orwig D A, Foster D R. Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Canadian Journal of Forest Research, 2010, 40(1): 119- 133.
[84]Medvigy D, Clark K L, Skowronski N S, Sch?fer K V R. Simulated impacts of insect defoliation on forest carbon dynamics. Environmental Research Letters, 2012, 7(4): 045703.
[85]Li X D, Yi M J, Son Y, Jin G Z, Han S S. Forest biomass carbon accumulation in Korea from 1954 to 2007. Scandinavian Journal of Forest Research, 2010, 25(6): 554- 563.
Influence of afforestation, reforestation, forest logging, climate change, CO2concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem
LIU Weiwei1,2, WANG Xiaoke1,*, LU Fei1, OUYANG Zhiyun1
1StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China2UniversityofChineseAcademyofSciences,Beijing100049,China
Abstract:Controlling the rising levels of atmospheric greenhouse gas (GHG, especially CO2) concentration to mitigate global climate change is arguably the most challenging environmental issue encountered by China and many other countries. Forest ecosystem, which is an integral part of terrestrial ecosystems, can play a significant role in absorbing CO2 from the atmosphere and aiding global climate change mitigation, subsequently contributing to meet the national commitment and demand of carbon emission reduction and carbon sink enhancement. Afforestation and reforestation, as recognized in the Kyoto Protocol, provide relatively low-cost and effective solutions to enhance forest ecosystem carbon sink. Meanwhile, the carbon sequestration capacity of a forest ecosystem is enormously affected by various natural and anthropogenic factors, which may convert the forest ecosystem from a carbon sink to a source. Therefore, the understanding of the influence of afforestation, reforestation, and those factors on the carbon sequestration capacity of the forest ecosystem is important for the accurate estimation of global and regional forest ecosystem carbon budget. In this study, the recent research progresses on the effect of afforestation and reforestation on carbon sequestration capacity of global and regional forest has been reviewed, along with the influence of several natural and anthropogenic disturbances (i.e., forest logging, climate change, CO2 concentration enhancement, fire, and insect). It was indicated that the carbon sequestration capacity of global afforestation and reforestation was in the range of 148 to 2400 TgC/a, varying regionally as follows: tropical forest (1700 TgC/a) > boreal forest (700 TgC/a) > temperate forest (27—500 TgC/a). Furthermore, besides climate change and CO2 concentration rise, other factors that caused carbon emissions in the forest have been summed up and listed below. Forest logging caused the highest carbon emissions (900 TgC/a), followed by forest fire (300 TgC/a), and insects caused the lowest carbon emissions (2—107 TgC/a). Henceforth, more attention should be paid on the influence of carbon sequestration measures and integrated effects of multiple forms of disturbance on the carbon sequestration capacity of forest ecosystems, especially carbon sequestration capacity of forest soil. Furthermore, controlling forest logging and fire, along with reducing or avoiding additional carbon leakage due to afforestation and reforestation would also greatly contribute to forest carbon sequestration.
Key Words:forest ecosystem; afforestation and reforestation; logging; climate change; CO2 concentration rise; fire; insect; carbon sequestration capacity
基金項(xiàng)目:中國(guó)科學(xué)院戰(zhàn)略先導(dǎo)科技專題(XDA05050602, XDA05060102)
收稿日期:2014- 11- 02; 網(wǎng)絡(luò)出版日期:2015- 08- 24
*通訊作者
Corresponding author.E-mail: wangxk@rcees.ac.cn
DOI:10.5846/stxb201411022143
劉魏魏,王效科,逯非,歐陽(yáng)志云.造林再造林、森林采伐、氣候變化、CO2濃度升高、火災(zāi)和蟲害對(duì)森林固碳能力的影響.生態(tài)學(xué)報(bào),2016,36(8):2113- 2122.
Liu W W, Wang X K, Lu F, Ouyang Z Y.Influence of afforestation, reforestation, forest logging, climate change, CO2concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem.Acta Ecologica Sinica,2016,36(8):2113- 2122.