亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高溫對藍莓葉片氣孔特征和氣體交換參數(shù)的影響

        2016-04-09 03:17:11黨承華王賀新姜國斌李根柱張自川鄭云普大連大學生命科學與技術學院大連1166大連大學現(xiàn)代農(nóng)業(yè)研究院大連1166大連民族大學環(huán)境與資源學院大連116600河北工程大學水電學院邯鄲05608河北省水生態(tài)文明及社會治理研究中心邯鄲05608
        農(nóng)業(yè)工程學報 2016年1期
        關鍵詞:影響

        朱 玉,黃 磊,黨承華,王賀新,姜國斌,李根柱,張自川,婁 鑫,鄭云普,5※(1.大連大學生命科學與技術學院,大連1166;.大連大學現(xiàn)代農(nóng)業(yè)研究院,大連1166;.大連民族大學環(huán)境與資源學院,大連116600;.河北工程大學水電學院,邯鄲05608;5.河北省水生態(tài)文明及社會治理研究中心,邯鄲05608)

        ?

        高溫對藍莓葉片氣孔特征和氣體交換參數(shù)的影響

        朱玉1,2,黃磊3,黨承華4,王賀新2,姜國斌3,李根柱2,張自川2,婁鑫2,鄭云普4,5※
        (1.大連大學生命科學與技術學院,大連116622;2.大連大學現(xiàn)代農(nóng)業(yè)研究院,大連116622;3.大連民族大學環(huán)境與資源學院,大連116600;4.河北工程大學水電學院,邯鄲056038;5.河北省水生態(tài)文明及社會治理研究中心,邯鄲056038)

        摘要:為探討不同強度高溫對南高叢藍莓葉片氣孔特征及其氣體交換參數(shù)的影響,利用人工氣候箱設置4個溫度處理:對照(25℃)、輕度高溫(30℃)、中度高溫(35℃)和重度高溫(40℃)對兩年生南高叢藍莓(Vaccinium corymbosum L.)幼苗(海岸、奧尼爾及藍脊)進行為期90 d的光照培養(yǎng)實驗。研究結果表明:高溫增加海岸和藍脊葉片的氣孔密度,但對奧尼爾的氣孔密度無影響。中度高溫增大奧尼爾和藍脊葉片氣孔的長度、寬度和面積,但海岸的氣孔長度比輕度高溫減小23.5% (P<0.05)。高溫使奧尼爾的氣孔空間分布更加規(guī)則,而對海岸和藍脊的影響不大。3個品種的葉片凈光合反應速率(Pn)、氣孔導度(Gs)和蒸騰速率(Tr)均隨高溫強度先升高后降低,但其最大值隨品種發(fā)生變化。研究結果表明,南高叢藍莓具有調整氣孔結構特征和優(yōu)化氣孔空間分布格局提高其氣體交換效率的功能,但在品種間存在較大的差異,最終導致氣體交換參數(shù)對高溫產(chǎn)生不同的響應,尤其表現(xiàn)在抵抗極端高溫能力方面。結果有助于從葉片氣孔特征變化角度深入理解不同高溫強度對南高叢藍莓氣體交換產(chǎn)生影響的潛在機理,為藍莓耐高溫脅迫選育及引種栽培工作提供理論支持。

        關鍵詞:溫度;脅迫;優(yōu)化;藍莓;高溫脅迫;氣孔結構和功能;氣孔分布格局;氣體交換

        朱玉,黃磊,黨承華,王賀新,姜國斌,李根柱,張自川,婁鑫,鄭云普.高溫對藍莓葉片氣孔特征和氣體交換參數(shù)的影響[J].農(nóng)業(yè)工程學報,2016,32(01):218-225.doi:10.11975/j.issn.1002-6819.2016.01.031 http://www.tcsae.org Zhu Yu, Huang Lei, Dang Chenghua, Wang Hexin, Jiang Guobin, Li Genzhu, Zhang Zichuan, Lou Xin, Zheng Yunpu.Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(01): 218-225.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.031 http://www.tcsae.org

        0 引言

        氣孔是植物與大氣之間進行氣體交換的重要器官[1-2],對調節(jié)生態(tài)系統(tǒng)碳、水循環(huán)過程起著極其重要的作用[3-5]。植物一般通過調整葉片氣孔的開度、大小、頻度及其空間格局來優(yōu)化氣體交換的效率。然而,目前有關高溫對葉片氣孔頻度及大小等方面特征的影響并沒有一致的結論。例如,一些研究的結果發(fā)現(xiàn),高溫沒有改變葉片的氣孔密度和氣孔指數(shù)[6-8],但有些研究卻發(fā)現(xiàn)高溫能夠減少或增加氣孔密度和氣孔指數(shù)[9-12]。此外,高溫還能改變單個氣孔的大小和形狀[13-14]及其在葉片上的空間分布格局[15-16]。同時,葉片的光合作用過程對高溫的反應也最為敏感,在其他脅迫癥狀出現(xiàn)前被完全抑制[17]。然而,以往的研究結果關于高溫對葉片光合速率的影響還存在較大的爭議[6,18]。有研究報道高溫對葉片光合速率沒有影響[19],而另一些研究卻發(fā)現(xiàn)高溫降低了葉片的光合速率[18,20-23],甚至還有的研究認為高溫會增加葉片的光合速率[11,24-25]。對以往不同的研究結果進行比較是非常困難的,這主要是由于以往研究中的高溫強度存在較大差異,且光合作用的溫度敏感性和最適溫度在不同物種和生態(tài)型之間也不盡相同[26]。通常而言,當高等植物生存在極端高溫或者低溫環(huán)境下時,植物光合作用的反應速率均比較低;而只有植物生長在某一個最適溫度下才能表現(xiàn)出最大的光合反應速率[11,27]。

        藍莓(Vaccinium corymbosum L.)屬杜鵑花科(Ericaceae)越桔屬(Vaccinium)植物,其果實富含的花青素類物質(Anthocyanins)具有較強的抗氧化活性[28-31]。南高叢藍莓是美國人工雜交選育的栽培品種,冬季冷溫需要量低于500 h,比北高叢藍莓更適宜在高溫氣候區(qū)種植。然而,據(jù)報道我國的氣候呈現(xiàn)逐漸變暖的趨勢,特別是華北和東北地區(qū)的升溫幅度尤為明顯[32-33]。隨著全球變暖的加劇,近年來極端高溫氣候事件的發(fā)生頻率也明顯增加[34],導致局部區(qū)域氣溫較長時間持續(xù)達到40℃以上[35-36]。此外,相關的研究結果還發(fā)現(xiàn)高溫通過改變植物的氣體交換過程(如光合作用)直接影響植物的生長和發(fā)育進程[24,37-42]。然而,高溫是否會影響南高叢藍莓葉片氣孔特征及其氣體交換過程,最終影響藍莓的生長狀況這一關鍵科學問題至今未得到較好的回答。本研究探討高溫對南高叢藍莓葉片氣孔特征(氣孔大小、氣孔密度和氣孔空間分布格局)及其氣體交換過程的影響,重點從氣孔的角度深入剖析和理解高溫對南高叢藍莓葉片氣體交換過程產(chǎn)生影響的潛在機理,為南高叢藍莓耐高溫的選育及引種提供理論依據(jù)和數(shù)據(jù)支持。

        1 材料與方法

        1.1試驗材料及處理

        以南高叢藍莓奧尼爾、海岸和藍脊為試驗材料,每個品種隨機挑選長勢和大小一致的2年生幼苗20株,平均分配到4個人工氣候箱中進行30 d的適應性預培養(yǎng)。所有的人工氣候箱均設置溫度25℃(晝)/ 20℃(夜),光照強度1 000 μmol/m2·s,光照周期8:00~20:00,相對濕度60%~75%。每周澆水和Hoagland營養(yǎng)液各1次。將上述4個人工氣候箱的溫度分別設定為25℃(對照)、30℃(輕度高溫)、35℃(中度高溫)和40℃(重度高溫),其它環(huán)境參數(shù)完全相同,對幼苗進行90 d的高溫處理培養(yǎng),且每周對植株澆水和Hoagland營養(yǎng)液各1次。為避免氣候箱自身差異對研究結果產(chǎn)生影響,培養(yǎng)期內每周隨機調換氣候箱的溫度和植株。

        1.2印跡法取樣及光學顯微鏡觀察

        每株選取3個葉片,用無色透明的指甲油涂于葉片遠軸面的中部,采集氣孔印跡樣品(5mm×15mm)。將葉片印跡玻片置于萊卡光學顯微鏡(DM2500,Leica Corp,Germany)下觀察并利用顯微鏡裝備的照相機(DFC 300-FX, Leica Corp, Germany)拍照。選擇5個隨機的顯微視野,每個視下拍3張照片,得到15張氣孔的顯微照片(面積0.3 mm× 0.45 mm),從15張照片中隨機選取5張來計算氣孔的密度。另外,隨機選取4張照片,利用ArcGIS10.0軟件分別測量氣孔的長、寬、周長、面積及形狀指數(shù)[25]。形狀指數(shù)是指通過計算單一氣孔形狀與相同面積的圓之間的偏離程度來測量其形狀的復雜程度,即當氣孔為圓形時,其形狀指數(shù)即為1;若氣孔的形狀越扁長,則氣孔形狀指數(shù)的值就越大。形狀指數(shù)S的計算公式為:

        式中S為氣孔的形狀指數(shù);P為氣孔開口的周長,mm;A為氣孔開口的面積,mm2。

        1.3掃描電鏡觀察

        從葉片中部隨機采集3個2 mm×2 mm樣品。將樣品固定于2.5%(v/v)的戊二醛(0.1 mol/L磷酸緩沖液,pH值7.0),置于4℃下冷藏保存3 d,用磷酸緩沖液沖洗6次,用1%(v/v)鋨酸固定3 h,用相同磷酸緩沖液沖洗干凈。將組織進行不同酒精梯度的脫水和臨界點干燥,再在觀察臺上固定,利用高壓涂膜裝置進行噴金處理。對單個氣孔在Quanta 200掃描電子顯微鏡(FEI Corp, USA)下觀察和拍照[25]。

        1.4氣孔的空間格局分析

        本研究中,認為每個氣孔都是葉片上分布的單點,氣孔開口的最中間位置為單點。利用ArcGIS10.0軟件將顯微照片在相同坐標系進行數(shù)字化處理,得到每個氣孔的坐標值,運用Ripley,s K-Function空間統(tǒng)計分析方法對氣孔分布狀況進行分析[25]。利用所有單點距離的二階矩陣探究其在不同尺度上的二維分布格局。L(d)值表達為:

        式中L(d)為最小鄰域距離,mm;d為氣孔空間分布尺度,mm。

        為了確定95%的可信任區(qū)間,采用蒙特卡洛算法模擬隨機分布點1 000次。當分布格局為隨機分布時,所有的d值到L(d)距離均相等。若L(d)值大于95%可信任區(qū)間,氣孔為簇狀分布格局。如果氣孔在給定尺度d下隨機分布,則L(d)值在95%可信任區(qū)間內。反之,L(d)值小于95%可信任區(qū)間為規(guī)則分布[25]。

        1.5氣體交換參數(shù)測定

        本研究中的葉片凈光合速率(Pn)、氣孔導度(Gs)、細胞間CO2濃度(Ci)和蒸騰速率(Tr)等氣體交換參數(shù)使用光合測定系統(tǒng)(Li-6400;LI-COR Inc.Lincoln, Nebraska, USA)確定[26]。葉室內光照強度1000 μmol/m2·s,CO2濃度400 μmol/m2·s,光合有效輻射(photosynthetically available radiation,PAR),葉片溫度為25℃水蒸汽壓虧缺(water vapor pressure deficit,VPD)為2.0 kPa[26]。另外,光合反應速率測定結束后,關閉Li-6400便攜式光合測定系統(tǒng)的光源,讓葉片在黑暗環(huán)境下適應30 min后,測定葉片的暗呼吸速率Rd[38]。此外,葉片尺度的水分利用效率(water use efficiency,WUE)利用公式WUE=Pn/Tr來計算[18]。

        1.6統(tǒng)計分析

        本研究利用單因素方差分析和Duncan′s multiple range test比較處理間的顯著性差異(P<0.05),利用SPSS 13.0(Chicago, IL)統(tǒng)計分析和Sigmaplot作圖。

        2 結果與分析

        2.1高溫對葉片氣孔密度的影響

        不同高溫強度對3個南高叢藍莓的氣孔密度產(chǎn)生很大影響,且品種間存在較大的差異。各溫度處理對奧尼爾葉片上氣孔的密度沒產(chǎn)生顯著影響(P>0.05)見表1。高溫處理使海岸的氣孔密度先增加后降低,同對照相比,中度高溫導致海岸的氣孔密度增加29.8%(表1),而繼續(xù)升高溫度(重度高溫)卻使其氣孔密度顯著降低,比中度高溫降低39.3%(P<0.05)。雖然高溫也導致藍脊的氣孔密度呈現(xiàn)先增后降的趨勢,但各處理間差異不顯著(P>0.05)。

        2.2高溫對葉片氣孔開度和形狀的影響

        奧尼爾葉片上氣孔的長度、寬度、面積和周長均隨高溫強度的增加呈現(xiàn)升高的趨勢,但其最大值仍低于對照,且各處理間差異不顯著;另外,在中度高溫條件下,奧尼爾葉片的氣孔形狀指數(shù)最小。不同高溫處理對海岸的氣孔長度、面積及周長產(chǎn)生顯著影響(P<0.05)見表1,呈現(xiàn)先降后升的趨勢,在中度高溫處理時最低;同對照相比,中度高溫使海岸的氣孔長度、面積及周長分別降低29.5%、43.2%和27%;雖然各溫度處理對氣孔寬度影響不顯著(P>0.05),但仍是中度高溫時氣孔寬度最小。在中度高溫時海岸葉片上氣孔形狀指數(shù)最低,而重度高溫時升高,同中度高溫相比,重度高溫使氣孔的形狀指數(shù)顯著增加約3%(P<0.05)(圖1)。不同的高溫處理使得藍脊的氣孔長度、面積和周長逐漸升高,且處理間差異顯著(P<0.05),與對照相比,重度高溫使氣孔的長度、面積和周長分別增加18.7%、31.5%和14.8%;然而,藍脊葉片上的氣孔寬度則在中度高溫時達到最大,分別比對照和輕度高溫處理增加14.5%和19.3%;隨著高溫強度的繼續(xù)加大(40℃),藍脊氣孔的寬度稍微降低,但與中度高溫相比差異不顯著(P>0.05)。另外,高溫對藍脊氣孔的形狀指數(shù)影響不顯著,在中度高溫條件下,氣孔的形狀指數(shù)最?。ū?)。

        表1 高溫對南高叢藍莓葉片氣孔特征的影響Table 1 Effects of high temperatures on leaf stomatal traits of south highbush blueberry

        圖1 南高叢藍莓葉片單個氣孔結構特征的掃描電子顯微鏡照片F(xiàn)ig.1  Scanning electron photographs of structural traits of individual stoma on south highbush blueberry leaves

        2.3高溫對氣孔空間分布格局的影響

        不同的高溫強度下,3個品種的氣孔均在小尺度范圍內為規(guī)則分布(<162 μm),而在大尺度范圍內隨機分布(表2)。具體來說,與對照相比,重度高溫使奧尼爾的空間尺度減少11.9%(表2),L(d)值減小14%(表3)。不同強度的高溫處理對海岸葉片的氣孔空間分布格局沒有顯著影響(P>0.05;表2和3)。此外,隨著高溫強度的增加藍脊葉片上氣孔的平均空間尺度和L(d)值均逐漸升高,在輕度高溫時最小,而重度高溫時最大,平均的空間尺度和L(d)值分別比輕度高溫時增加17.8%和21.6%(表2、3)。

        表2 高溫對南高叢藍莓葉片氣孔空間分布尺度的影響Table 2 Effects of high temperatures on spatial distribution scales of stomata on the leaves of south highbush blueberries

        表3 高溫對南高叢藍莓葉片單個氣孔間最小鄰域距離的影響Table 3 Effects of high temperatures on nearest neighbor distance between stomata on leaves of south highbush blueberries

        2.4高溫對葉片氣體交換參數(shù)的影響

        高溫導致3個南高叢藍莓葉片的凈光合反應速率(Pn)、氣孔導度(Gs)、蒸騰速率(Tr)均先升高后降低,但其最大值隨品種的不同而變化(圖2)。3個品種在中度增溫時Pn最大,依次為奧尼爾>藍脊>海岸。隨后,奧尼爾的Pn明顯降低,在重度高溫時,奧尼爾、海岸和藍脊葉片的Pn仍然比對照高2.02、1.44和1.61倍。另外,輕度高溫導致海岸和藍脊葉片Gs的最大值比對照提高2.43倍和1.80倍,中度高溫使奧尼爾葉片Gs最大值比對照提高2.41倍。同時,輕度高溫也使海岸和藍脊葉片Tr的最大值比對照分別增加約1倍和1.5倍,中度高溫使奧尼爾葉片Tr的最大值比對照增加約6倍。此外,高溫導致奧尼爾的水分利用效率(WUE)呈現(xiàn)先升高后降低的趨勢,輕度高溫時WUE達到最大值,重度高溫使WUE比對照顯著降低2.75倍,海岸和藍脊則是在中度高溫時WUE達到最大值。然而,細胞間CO2濃度(Ci)卻表現(xiàn)出相反的變化趨勢,即不同高溫強度導致3個藍莓的Ci先降低后升高,中度高溫下海岸、奧尼爾和藍脊的Ci出現(xiàn)最小值,且比對照分別降低17%、27%和32%。同時,3個藍莓葉片的暗呼吸速率始終隨著高溫強度的升高而增加,在重度高溫時達到最大值;同對照相比,海岸、奧尼爾和藍脊葉片的Rd分別提高約2倍、2.5倍和3倍(圖2)。

        圖2 高溫對南高叢藍莓葉片氣體交換的影響Fig.2 Effects of high temperatures on leaf gas exchange of south highbush blueberries

        3 討論

        3.1高溫對南高叢藍莓葉片氣孔特征的影響

        目前有關高溫對葉片氣孔頻度及大小等方面特征的影響還沒有一致的結論[43-47]。本研究結果顯示,中度高溫導致海岸和藍脊的氣孔密度最大,但氣孔開口沒有達到最大(表1),表明中度高溫條件下,雖然高溫使海岸和藍脊葉片上的氣孔密度增加,但并未對氣孔的開度產(chǎn)生影響,即葉片上氣體交換的氣孔有效面積未達到最大值。盡管高溫對奧尼爾葉片的氣孔密度沒有顯著影響,但中度高溫使葉片氣孔的開度增加,此時葉片上氣體交換的有效面積顯著增加。另外,中度高溫時奧尼爾的氣孔導度和蒸騰速率均具有較高的數(shù)值也直接支持了上述的結論。然而,雖然重度高溫時奧尼爾葉片的氣孔長度增加,氣孔的寬度減小,即氣孔變得更扁,表明重度高溫時植物減小氣孔開度來降低由葉片內水分過度散失而帶來的傷害。另外,掃描電子顯微鏡的觀察結果也證實重度高溫條件下奧尼爾葉片上的氣孔與對照相比開口變小、氣孔關閉(圖2)。重度高溫環(huán)境下葉片蒸騰速率的降低表明葉片水分散失的減少,這可能是植物為了抵抗高溫脅迫而對氣孔密度和開度進行調整的具體表現(xiàn)。然而,植物通過調整氣孔大小來應對外界高溫環(huán)境的能力在不同品種間存在著很大的差異。中度高溫處理對奧尼爾葉片的氣孔密度、氣孔長度、氣孔寬度以及氣孔周長和面積均沒有產(chǎn)生顯著的影響,但氣孔的形狀指數(shù)卻最?。饪鬃顖A),表明奧尼爾具有通過優(yōu)化氣孔結構來抵抗外界高溫環(huán)境的能力。研究結果表明,南高叢藍莓可以通過調整葉片的氣孔結構特征(氣孔密度和氣孔開度)來最優(yōu)化其進行氣體交換的效率,從而降低高溫脅迫傷害,但該抗高溫的能力在不同品種間存在變異(奧尼爾>海岸>藍脊)。

        3.2高溫對南高叢藍莓葉片氣孔空間分布格局的影響

        以往的研究結果發(fā)現(xiàn)植物葉片上氣孔的空間分布格局由細胞的分裂和分化過程所決定,而細胞的分裂和分化過程會受到遺傳信號的調控[16,48-52]和環(huán)境因素的影響[51,53]。與對照相比,重度高溫使奧尼爾的L(d)值減少14%,表明高溫導致奧尼爾葉片氣孔的空間分布格局更加規(guī)則,從而有利于提高奧尼爾葉片的氣體交換效率(表4)。此外,隨著溫度的增高,平均L(d)值比輕度高溫時增加21.6%(表3),表明高溫可能導致藍脊葉片上的氣孔分布更加不規(guī)則,從而使植物氣體交換的速率降低。

        3.3高溫對南高叢藍莓葉片氣體交換參數(shù)的影響

        光合作用是植物對環(huán)境溫度變化響應最為敏感的生理過程之一[54-60]。本研究的結果顯示,在中度高溫條件下(35℃)奧尼爾葉片上氣孔的開度較大且氣孔形狀指數(shù)最小,即氣孔開口的形狀接近于圓形(表1),表明氣孔開度的增大可能更加有利于大氣CO2通過氣孔進入葉片的內部,并擴散到相應的光合作用位點,從而提高藍莓葉片的凈光合速率。隨著溫度的增加,奧尼爾葉片上的氣孔空間分布格局更加規(guī)則,表明更多的CO2分子易于由規(guī)則的氣孔擴散到葉片組織內部,更加利于提高其凈光合反應速率。此外,對奧尼爾葉片氣體交換參數(shù)的測量結果表明,Pn在中度高溫條件下的顯著提高也為上述結論提供了直接的證據(jù)支持(圖2a)。然而,與中度高溫相比,盡管重度高溫條件下奧尼爾葉片的氣孔長度以及氣孔面積和周長均增加,但氣孔的形狀指數(shù)增大(氣孔變得扁而長),表明氣孔的開度減小,且氣孔接近關閉的狀態(tài);因此,植物為防止高溫對光合反應位點造成傷害通過減小氣孔的開度來控制CO2進入葉片的一種保護策略,最終導致Gs和Pn的降低(圖1)。綜上所述,南高叢藍莓在應對高溫脅迫時采取了多種策略,從葉片結構和功能的不同水平都做出了調整,以有利于其進行正常的生理代謝和生長;然而,南高叢藍莓在葉片水平上做出調整應對高溫環(huán)境的能力是十分有限的,輕度和中度高溫條件下能保證植物正常的生長和代謝過程,但重度高溫對3個南高叢藍莓品種均造成不同程度的傷害。因此,未來氣候變暖背景下南高叢藍莓的種植仍存在高溫氣候事件傷害的潛在風險。

        4 結論

        本研究探討了高溫對3種南高叢藍莓葉片氣孔特征及其氣體交換參數(shù)的影響,得到如下結論:

        1)輕度和中度高溫環(huán)境下的南高叢藍莓通過優(yōu)化葉片氣孔的開度和分布提高氣體交換效率。

        2)重度高溫時南高叢藍莓調整氣孔的開度或氣孔密度來控制葉片組織內的CO2濃度,從而降低光合反應位點受高溫傷害程度。

        3)南高叢藍莓通過調整氣孔特征抵抗高溫脅迫,不同品種抗高溫脅迫的能力為奧尼爾>海岸>藍脊。

        研究結果有助于從氣孔特征角度深入理解藍莓耐高溫脅迫的潛在機理,為抗高溫藍莓的引種和栽培提供理論支持和數(shù)據(jù)支撐。

        [參考文獻]

        [1] Woodward F I.Stomatal numbers are sensitive to increases in CO2from preindustrial levels[J].Nature, 1987, 327: 617-618.

        [2] Hetheringto A M, Woodward F I.The role of stomata in sensing and driving environmental change [J].Nature, 2003, 424: 901-908.

        [3] Franks P J, Beerling D J.Maximum leaf conductance driven by CO2effects on stomatal size and density over geologic time[J].Proceedings of the National Academy of Sciences, 2009, 106: 10343-10347.

        [4] Haworth M, Heath J, Mcelwain J C.Differences in the response sensitivity of stomatal index to atmospheric CO2among four genera of Cupressaceae conifers[J].Annals of Botany, 2010, 105: 411-418.

        [5] Taylor S H, Franks P J, Hulme S P, et al.Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses[J].New Phytologist, 2012, 193: 387-396.

        [6] Apple M E, Olszyk D M, Ormrod D P, et al.Morphology and stomatal function of Douglas fir needles exposed to climate change: Elevated CO2and temperature[J].International Journal of Plant Science, 2000, 161: 127-132.

        [7] Kouwenberg L L R, Kurschner W M, Mcelwain J C.Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry[J].Reviews in Mineralogy & Geochemistry, 2007, 66: 215-241.

        [8] Fraser L H, Greenall A, Carlyle C, et al.Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature[J].Annals of Botany, 2009, 103: 769-775.

        [9]張潔,李天來.日光溫室亞高溫對番茄光合作用及葉綠體超微結構的影響[J].園藝學報,2005,32(4):614-619.Zhang Jie, Li Tianlai.Effects of daytmie sub-high temperature on photosynthesis and chloroplast ultrastructure of tomato leaves in greenhouse[J].Acta Horticulturae Sinica, 2005, 32(4): 614-619.(in Chinese with English abstract)

        [10] Xu Z Z, Zhou G S, Shimizu H.Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass[J].Crop Science, 2009, 49: 1843-1851.

        [11] Jin B, Wang L, Wang J, et al.The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana[J].BMC Plant Biology, 2011, 11: 35.

        [12] Hu J, YangY Q, Huang W, et al.Effects of temperature on leaf hydraulic architecture of tobacco plants [J].Planta, 2014, 240: 489-496.

        [13]張立榮,牛海山,汪詩平,等.增溫與放牧對矮嵩草草甸4種植物氣孔密度和氣孔長度的影響[J].生態(tài)學報,2010,30 (24):6961-6969.Zhang Lirong, Niu Haishan, Wang Siping, et al.Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau[J].Acta Ecologica Sinica, 2010, 30(24): 6961-6969.(in Chinese with English abstract)

        [14] Chen W L, Yang W J, Lo H F, et al.Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var.oleiformis Pers.)with different tolerance under heat stress[J].Scientia Horticulturae, 2014, 179: 367-375.

        [15] Croxdale J L.Stomatal patterning in angiosperms[J].American Journal of Botany, 2000, 87: 1069-1080.

        [16] Shpak E D, Mcabee J M, Pillitteri L J, et al.Stomatal patterning and differentiation by synergistic interactions of receptor kinases [J].Science, 2005, 309: 290-293.

        [17] Berry J, Bjorkman O.Photosynthetic response and adaptation to temperature in higher plants [J].Annual Review of Plant Physiology, 1980, 31: 491-543.

        [18] Djanaguiraman M, Prasad P V V, Boyle D L, et al.Hightemperature stress and soybean leaves: Leaf anatomy and photosynthesis[J].Crop Science, 2011, 51: 2125-2131.

        [19] Llorens L, Penuelas J, Estiarte M, et al.Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming [J].Annals of Botany, 2004, 94: 843-853.

        [20]郭延平,周慧芬,曾光輝,等.高溫脅迫對柑橘光合速率和光系統(tǒng)Ⅱ活性的影響[J].應用生態(tài)學報,2003,14(6):867-870.Guo Yanping, Zhou Huifen, Zeng Guanghui, et al.Effects of high temperature stress on net photosynthetic rate and photosystemⅡactivity in Citrus [J].Journal of Applied Ecology, 2003, 14(6): 867-870.(in Chinese with English abstract)

        [21]張富存,張波,王琴,等.高溫脅迫對設施番茄光合作用特性的影響[J].中國農(nóng)學通報,2011, 27(28): 211-216.Zhang Fuchun, Zhang Bo, Wang Qin, et al.Effects of high temperature stress on photosynthesis characters of tomato [J].Chinese Agricultural Science Bulletin, 2011, 27(28): 211-216.(in Chinese with English abstract)

        [22]杜堯東,李鍵陵,王華,等.高溫脅迫對水稻劍葉光合和葉綠素熒光特征的影響[J].生態(tài)學雜志,2012, 31(10):2541-2548.Du Yaodong, Li Jianling, Wang Hua, et al.Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice[J].Chinese Journal of Ecology, 2012, 31(10): 2541-2548.(in Chinese with English abstract)

        [23] Feng B, Liu P, Li G, et al.Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties[J].Journal of Agronomy & Crop Science, 2014, 200: 143-155.

        [24] Han C, Liu Q, Yang Y.Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings[J].Plant Growth & Regulation, 2009, 58: 153-162.

        [25] Zheng Y P, Xu M, Hou R X, et al.Effects of experimental warming on stomatal traits in leave s of maize(Zea may L.)[J].Ecology and Evolution, 2013, 3: 3095-3111.

        [26] Niu S L, Wan S Q.Warming changes plant competitive hierarchy in a temperate steppe in northern China[J].Journal of Plant Ecology, 2008, 1: 103-110.

        [27] Battaglia M, Beadle C, Loughhead S.Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens[J].Tree Physiology, 1996, 16: 81-89.

        [28] Bae J Y, Lim S S, Kim S J, et al.Bog blueberry anthocyanins alleviate photoaging in ultraviolet-B irradiation-induced human dermalfibroblasts[J].Molecular Nutrition&Food Research, 2009, 53: 726-738.

        [29] Liu J, Zhang W, Jing H, et al.Bog bilberry(Vaccinium uliginosum L.)extract reduces cultured Hep-G2, Caco-2 and 3T3 -L1 cell viability, affects cell cycle progression and has variable effects on membrane permeability[J].Journal of Food Science, 2010, 75: 103-107.

        [30] Li C Y, Feng J, Huang W Y, et al.Composition of polyphenols and antioxidant activity of rabbiteye blueberry(Vaccinium ashei)in Nanjing[J].Journal of Agriculture Food Chemistry, 2013, 61: 523-531.

        [31] Wang L J, Su S, Wu J, et al.Variation of anthocyanins and flavonols in Vaccinium uliginosum berry in Lesser Khingan Mountains and its antioxidant activity[J].Food Chemistry, 2014, 160: 357-364.

        [32] White T A, Campbell B D, Kemp P D.Impacts of extreme climatic events on competition during grassland invasions [J].Global Change Biology, 2001, 7: 1-13.

        [33] Wand D, Heckathorn S A, Mainali K.Effects of N on plant response to heat-wave: A field study with prairie vegetation[J].Journal of Integrative Plant Biology, 2008, 50: 1416-1425.

        [34] Meehl G A, Tebaldi C.More intense, more frequent, and longer lasting heat waves in the 21st century[J].Science, 2004, 305: 994-997.

        [35] Schar C, Vidale P L, Luthi D, et al.The role of increasingtemperature variability in European summer heatwaves [J].Nature, 2004, 427: 332-336.

        [36] Fischer E, Schar C.Consistent geographical patterns of changes in high-impact European heat waves[J].Nature Geosciences, 2010, 3: 398-403.

        [37] Kudo G, Suzuki S.Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan[J].Oecologia, 2003, 135: 280-287.

        [38] Zhao C, Liu Q.Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization[J].Acta Physiologia Plantarum, 2009, 31: 163-173.

        [39] Prieto P, Penuelas J, Liusia J, et al.Effects of experimental warming and drought on biomass accumulation in a Mediterranean shrubland [J].Plant Ecology, 2009, 205: 179-191.

        [40] Lin D, Xia J, Wan S.Climate warming and biomass accumulation of terrestrial plants: a meta-analysis[J].New Phytologist, 2010, 188: 187-198.

        [41] Wang J, Duan B, Zhang Y.Effects of experimental warming on growth, biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands[J].Plant Ecology,2012,213:47-55.

        [42] Albert K R, Ro-Poulsen H, Mikkelsen T N, et al.Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia-exuosa in a temperate heath ecosystem [J].Journal of Experimental Botany,2011, 62: 4253-4266.

        [43] Young J J, Mehta S, Israelsson M, et al.CO2signaling in guard cells:Calciumsensitivityresponsemodulation,a Ca2+-independent phase, and CO2insensitivity of the gca2 mutant[J].Proceedings of National Academy of Sciences, 2006, 103: 506-7511.

        [44] Shimazaki K, Doi M, Assmann S M, et al.Light regulation of stomatal movement[J].Annual Review of Plant Biology, 2007, 58: 219-247.

        [45] Shang Z, Laohavisit A, Davies J M.Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance [J].Plant Signaling & Behavior, 2009, 4: 989-991.

        [46] Anderson V J, Brisk D D.Stomatal distribution, density and conductance of three perennial grasses native to the southern true trairie of Texas[J].American Midland Naturalist, 1990, 123: 152-159.

        [47] Lammertsma E I, Boer H J, Dekker S C, et al.Global CO2rise leads to reduced maximum stomatal conductance in Florida vegetation[J].Proceedings of National Academy of Sciences, 2011, 108: 4035-4040.

        [48] Franks P J, Drake P L, Beerling D J.Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus[J].Plant, Cell & Environment, 2009, 32: 1737-1748.

        [49] Nadeau J A, Sack F D.Control of stomatal distribution on the Arabidopsis leaf surface[J].Science, 2002, 296: 1697-1700.

        [50] Juarez M, Twigg R, Timmermans M.Specification of adaxial cell fate during maize leaf development[J].Development, 2004, 131: 4533-4544.

        [51] Wang H, Ngwenyama N, Liu Y, et al.Stomatal development and patterning are regulated by environmentally responsive mitogenactived protein kinases in Arabidopsis[J].The Plant Cell, 2007, 19: 63-73.

        [52] Hunt L, Baley K J, Gray J E.The signalling peptide EPFL9 is a positive regulator of stomatal development[J].New Phytologist, 2010, 186: 609-614.

        [53] Casson S A, Gray J E.Influence of environmental factors on stomatal development[J].New Phytologist, 2008, 178: 9-23.

        [54]王忠.植物生理學[M].北京:中國農(nóng)業(yè)出版社,2006.Wang Zhong.Plant Physiology[M].Beijing: China Agriculture Press, 2006.(in Chinese with English abstract)

        [55]張順堂,張桂蓮,陳立云,等.高溫脅迫對水稻劍葉凈光合速率和葉綠素熒光參數(shù)的影響[J].中國水稻科學,2011,25(3):335-338.Zhang Shuntang, Zhang Guilian, Chen Liyun, ett al.Effects of high temperature stress on the net photosynthetic rate and chlorophyll fluorescence parameters of rice flag leaves [J].Chinese Journal of Rice Science, 2011, 25(3): 335-338.(in Chinese with English abstract)

        [56]羅海波,馬苓,段偉,等.高溫脅迫對‘赤霞珠’葡萄光合作用的影響[J].中國農(nóng)業(yè)科學,2010,43(13):2744-2750.Luo Haibo, Ma Ling, Duan Wei, et al.Influence of Heat Stress on Photosynthesis in Vitis vinifera L.cv.Cabernet Sauvignon[J].Scientia Agricultura Sinica, 2010, 43(13): 2744 -2750.(in Chinese with English abstract)

        [57]許大全.光合作用學[M].北京:科學出版社,2013.Xu Daquan.Photosynthesis[M].Beijing: Science Press, 2013.(in Chinese with English abstract)

        [58]李天來,李淼.短期晝間亞高溫脅迫對番茄光合作用的影響[J].農(nóng)業(yè)工程學報,2009,25(9):220-225.Li Tianlai, Li Miao.Effect of short-term daytime sub-high temperature stress on photosynthesis of tomato leaves [J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9):220-225.(in Chinese with English abstract)

        [59]張潔,李天來,徐晶.晝間亞高溫處理時期對日光溫室番茄光合作用與產(chǎn)量的影響[J].農(nóng)業(yè)工程學報,2008,24(3): 193-197.Zhang Jie, Li Tianlai, Xu Jing.Effects of sub-high temperature in daytime from different stages on tomato photosynthesis and yield in greenhouse[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 24 (3): 193-197.(in Chinese with English abstract)

        [60]梁文娟,王美玲,艾希珍,等.黃瓜幼苗光合作用對亞適溫弱光脅迫的適應性[J].農(nóng)業(yè)工程學報,2008,24(8):240-244.Liang Wenjuan, Wang Meiling, Ai Xizhen, et al.Photosynthesis adaptation of cucumber seedlings to suboptimal temperature and low light intensity stress[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 24 (8): 240-244.(in Chinese with English abstract)

        Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry

        Zhu Yu1,2, Huang Lei3, Dang Chenghua4, Wang Hexin2, Jiang Guobin3, Li Genzhu2, Zhang Zichuan2, Lou Xin2, Zheng Yunpu4,5※
        (1.School of Life science and Technology, Dalian University, Dalian 116622, China; 2.Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China; 3.College of Environment and Resources, Dalian Nationality University, Dalian 116600, China; 4.School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056038, China; 5.Research Center of Water Ecological Civilization and Social Management, Handan 056038, China)

        Abstract:Blueberry is one of the most important fruit trees all over the world and also the major economic tree species cultivated in China.Blueberry was suggested to be planted only in Northern China, because the warmer climate in Southern China could not meet its chilling duration.Several blueberry cultivars have recently been introduced to subtropical China and these cultivars can blossom and bear fruits.However, the temperature in subtropical China often approach 40℃or even higher in summer, and thus high temperature has become the most significant abiotic stress limiting the growth and production of blueberry in this area.Meanwhile, previous studies also reported that the heat endurance ability varied with different blueberry cultivars.In this study, we examined the effects of high temperatures on the leaf stomatal traits and gas exchange of blueberry cultivars with four growth chambers controlling different high temperatures including control(25℃), mild high temperature(30℃), moderate high temperature(35℃), and severe high temperature(40℃).Two-year-old seedlings of three highbush blueberry cultivars including‘O’Neal’,‘Gulfcoast’, and‘Blue Ridge’were selected from field plots and transplanted into pots(10 cm diameter×25 cm long)filled with fritted clay(one plant per pot)and grown in a greenhouse with an average temperature of 25/20℃(day/night)and about 1 000 μmol m-2·s-1photosynthetic active radiation(PAR)in natural sun light, and 60%~75% relative humidity for 30 d(March-April 2014)to establish canopy.During the establishment period, plants were irrigated to water-holding capacity daily and fertilized once per week with half-strength Hoagland's solution.We selected 20 healthy and uniform growth plants for each cultivar and then randomly planted the plants into each of four walk-in growth chambers(5 plants for each cultivar), where the temperature was determined as 25, 30, 35, or 40℃, respectively.Other environmental factors maintained throughout all the four chambers include humidity(60%~75%), light intensity(1 000 μmol m-2·s-1PAR), photoperiod(light on at 8 am, and off at 8 pm), soil type(fritted clay, same brand and package for all), water amount(200 ml, watered once per week), and nutrition type(plain tap water).Plants were fertilized once weekly with half-strength Hoagland's solution throughout the growth period.In order to minimize confounding effects of environmental variation between different chambers, we randomly changed the temperature of each growth chamber every week, and then we relocated the high temperature treated plants to the growth chambers with corresponding temperature.The large volume of the pot with frequent watering and fertilization ensured enough space for root growth and ample nutrient supply to avoid“bonsai effect”.Our results showed that comparing with the control, high temperatures increased the stomatal density of Gulfcoast and Blue Ridge, but had little effect on the stomatal density of O′Neal(P>0.05).Moderate high temperature increased the stomatal aperture width, stomatal aperture length, and stomatal area of O′Neal and Blue Ridge, whereas the stomatal aperture length of Gulfcoast was significantly reduced by 23.5% under moderate high temperature(P<0.05)compared with the mild high temperature(30℃).High temperatures resulted in a more regular stomatal distribution pattern on the leaves of O′Neal, while had little effect on the stomatal distribution pattern of Gulfcoast and Blue Ridge.Mild and moderate high temperatures significantly increased the net photosynthetic rates(Pn), stomatal conductance(Gs)and transpiration rates(Tr)of the three blueberry cultivars, whereas the severe high temperature caused them sharply decrease, although their maximum values varied across the three cultivars.In Conclusion, high temperatures increased the efficiency of leaf gas exchange by adjusting the structural characteristics and optimizing the spatial distribution pattern of stomata on the leaves of the south highbush blueberry.However, the ability of optimization for stomatal structure and function in the leaves of the south highbush blueberry was cultivar dependent, and thus resulted in the different responses to high temperatures in leaf gas exchange across cultivars, especially for heat stress resistance under extremely high temperature.Our results may not only be helpful for further understanding the potential mechanisms of high temperatures on leaf gas exchange of south highbush blueberry from the changes in leaf stomatal traits, but also provide theory for the selection and introduction of heat tolerance cultivars.

        Keywords:temperature; stresses; optimization; blueberry; heat stress; stomatal structure and function; stomatal distribution pattern; leaf gas exchange

        通信作者:※鄭云普(1981-),男,河北邯鄲人,講師,博士,碩士生導師,主要從事農(nóng)業(yè)水土環(huán)境及全球變化生態(tài)學方面的研究。邯鄲河北工程大學水電學院,056038。Email:zhengyunpu_000@sina.com

        作者簡介:朱玉(1989-),女,河南周口人,主要從事藍莓生理生態(tài)學及菌根學研究。大連大連大學生命科學與技術學院,116622。

        基金項目:國家自然科學基金青年項目(31400418);遼寧省科技計劃項目(2013204001);河北省自然科學基金項目(14964206D-3);中國博士后基金面上項目(2014M561044)

        收稿日期:2015-08-01

        修訂日期:2015-12-02

        中圖分類號:S641

        文獻標志碼:A

        文章編號:1002-6819(2016)-01-0218-08

        doi:10.11975/j.issn.1002-6819.2016.01.031

        猜你喜歡
        影響
        美食網(wǎng)紅如何影響我們吃什么
        英語文摘(2022年4期)2022-06-05 07:45:18
        是什么影響了滑動摩擦力的大小
        哪些顧慮影響擔當?
        當代陜西(2021年2期)2021-03-29 07:41:24
        影響大師
        沒錯,痛經(jīng)有時也會影響懷孕
        媽媽寶寶(2017年3期)2017-02-21 01:22:28
        擴鏈劑聯(lián)用對PETG擴鏈反應與流變性能的影響
        中國塑料(2016年3期)2016-06-15 20:30:00
        基于Simulink的跟蹤干擾對跳頻通信的影響
        如何影響他人
        APRIL siRNA對SW480裸鼠移植瘤的影響
        久久精品人妻一区二三区| 三年片大全在线观看免费观看大全| 国产国语熟妇视频在线观看| 亚洲综合色区无码专区| 综合图区亚洲偷自拍熟女| 加勒比东京热中文字幕| 国产成人亚洲精品青草天美| 国产在线手机视频| 日本精品人妻一区二区三区| 日本一区二区三区视频免费观看| 国产内射爽爽大片| 亚洲sm另类一区二区三区| 国产欧美亚洲精品a| 国产大片中文字幕| 狼人av在线免费观看| 美女人妻中出日本人妻| 久久精品欧美日韩精品| 欧美日韩综合网在线观看| 初尝人妻少妇中文字幕在线| 一区在线视频免费播放| 日韩av无码一区二区三区不卡| 久久久久国产精品熟女影院| 日韩美无码一区二区三区| 国产精品女同av在线观看| 白丝爆浆18禁一区二区三区| 久久国产色av| 国产精品性一区二区三区| 亚洲国产精品久久又爽av| 久久成人国产精品| 曰韩精品无码一区二区三区| 国产精品老女人亚洲av无| 亚洲三区在线观看内射后入| 内射精品无码中文字幕| 国产AV无码无遮挡毛片| 国产三级不卡一区不卡二区在线| 偷偷色噜狠狠狠狠的777米奇| 在线精品国内视频秒播| 五十路一区二区中文字幕| 国产免费久久精品99久久| 国产suv精品一区二区69| 一本一道久久a久久精品综合蜜桃|