王葉群,楊增玲,張紹英,劉 婷(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京100083)
?
用于污染黃曲霉毒素花生分選的熒光信號(hào)研究
王葉群,楊增玲,張紹英※,劉婷
(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京100083)
摘要:為在加工前將黃曲霉毒素超限的帶衣花生米從原料中剔除,參照已有的色選系統(tǒng),提出一種依據(jù)黃曲霉毒素含量超限帶衣花生米的專屬熒光信號(hào)進(jìn)行逐粒分選的技術(shù)構(gòu)想。采用Cary Eclipse熒光分光光度計(jì)測(cè)定100粒外觀具有代表性的帶衣花生米表面的紫外-熒光規(guī)律,通過(guò)與免疫親和層析凈化熒光光度法(GB/T18979-2003)檢測(cè)結(jié)果對(duì)比,判定了黃曲霉毒素超限帶衣花生米的熒光光譜特征;通過(guò)繪制450/490、460/490熒光強(qiáng)度比值的箱線圖,評(píng)估了表面熒光法判斷黃曲霉毒素超限帶衣花生米的準(zhǔn)確率;在搭建的熒光成像系統(tǒng)上,對(duì)黃曲霉毒素超限帶衣花生米進(jìn)行了熒光成像。檢測(cè)發(fā)現(xiàn),在365 nm波長(zhǎng)激發(fā)下,黃曲霉毒素超限帶衣花生米在420~460 nm處有熒光峰;以450/490熒光強(qiáng)度比值為依據(jù)剔除超限值帶衣花生米的判斷準(zhǔn)確率為81%;a.u.>40的帶衣花生米可在圖像中呈現(xiàn)亮藍(lán)熒光光斑。表明表面熒光信號(hào)可作為帶衣花生米在線、無(wú)損、逐粒分選的專屬光學(xué)信號(hào),用于黃曲霉毒素超限帶衣花生米的剔除。
關(guān)鍵詞:農(nóng)產(chǎn)品;熒光;帶衣花生米;黃曲霉素;分選
王葉群,楊增玲,張紹英,劉婷.用于污染黃曲霉毒素花生分選的熒光信號(hào)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(01):187-192.doi:10.11975/j.issn.1002-6819.2016.01.026 http://www.tcsae.org
Wang Yequn, Yang Zengling, Zhang Shaoying, Liu Ting.Fluorescent signal characteristics for sorting of peanut contaminated by aflatoxion[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(01): 187-192.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.026 http://www.tcsae.org
E-mail:cauzsy@cau.edu.cn
花生是重要的食用油原料,占中國(guó)油料作物總量的50%左右[1]?;ㄉ谏L(zhǎng)、收獲、運(yùn)輸、貯藏過(guò)程中極易感染黃曲霉和寄生曲霉[2-3],其次級(jí)代謝產(chǎn)物——黃曲霉毒素具有強(qiáng)毒性和高致癌、致畸性,毒性是氰化鉀的10倍,被國(guó)際癌癥研究機(jī)構(gòu)確定為Ⅰ類致癌物[4-5]。世界各國(guó)對(duì)花生及其制品中的黃曲霉毒素制定了嚴(yán)格的限量標(biāo)準(zhǔn),中國(guó)對(duì)花生及其制品中黃曲霉毒素B1的限量為≤20 μg/kg[6-8]。因此,研究污染黃曲霉毒素花生加工前的分選技術(shù),將有效隔絕污染源,以防代治,對(duì)確保食品安全意義重大。
帶衣花生米是花生加工利用過(guò)程中的主要原料形式。加工前對(duì)帶衣花生米進(jìn)行在線、無(wú)損、逐粒分選,可有效防止黃曲霉毒素進(jìn)入產(chǎn)品。目前,國(guó)內(nèi)外已有花生中黃曲霉毒素的檢測(cè)方法,如薄層色譜法、高效液相色譜法、免疫化學(xué)方法等,均需破壞花生米的整體性[9-17];而常規(guī)色選法僅以標(biāo)定的外觀或表皮特征為依據(jù)進(jìn)行差異比較分選,常造成外觀合格但毒素超限個(gè)體的漏剔[18];同樣,毒素不超限但外觀異常的個(gè)體則多會(huì)被誤剔。
此前研究發(fā)現(xiàn),在紫外光照射下,B族黃曲霉毒素發(fā)藍(lán)色熒光,G族黃曲霉毒素發(fā)黃綠色熒光[19-23]。因此,參照已廣泛應(yīng)用的對(duì)顆粒物料進(jìn)行逐粒色選的技術(shù)思路[24-27],提出了一種帶衣花生米逐粒分選的技術(shù)構(gòu)想[28-29](見(jiàn)圖1):將色選系統(tǒng)中的可見(jiàn)光成像改為熒光成像,通過(guò)對(duì)以旋轉(zhuǎn)下滑狀態(tài)逐個(gè)、順序通過(guò)背景板前的帶衣花生米進(jìn)行多次或連續(xù)紫外——熒光成像,獲取污染超限粒的專屬光學(xué)信號(hào),并據(jù)此轉(zhuǎn)換為執(zhí)行信號(hào),即可將黃曲霉毒素超限的帶衣花生米從加工前的原料中剔出。
圖1 帶衣花生米逐粒分選系統(tǒng)方案圖Fig.1 Sorting system of single peanut
本文擬通過(guò)測(cè)定、比較污染黃曲霉毒素帶衣花生米表面的紫外——熒光光譜[30],分析其紫外——熒光特性,并通過(guò)搭建熒光成像系統(tǒng),獲得污染黃曲霉毒素帶衣花生米的紫外——熒光圖像,經(jīng)過(guò)適當(dāng)?shù)霓D(zhuǎn)換和分析,獲得污染黃曲霉毒素帶衣花生米的專屬熒光信號(hào),以此作為帶衣花生米在線、無(wú)損、逐粒分選的判別依據(jù),實(shí)現(xiàn)加工前污染黃曲霉毒素帶衣花生米的剔除。
1.1樣品的采集
檢測(cè)用帶衣花生米為花28(產(chǎn)地:山東費(fèi)縣;收獲時(shí)間:2012年)。依據(jù)花28的生物特征(表皮顏色、幾何結(jié)構(gòu)),挑選100粒外觀具有代表性的帶衣花生米作為檢測(cè)樣本。
1.2帶衣花生米熒光光譜分析
100粒檢測(cè)樣本的熒光光譜采用Cary Eclipse熒光分光光度計(jì)(美國(guó)VARIAN公司)測(cè)定。以穩(wěn)定性、重合度及分辨率為依據(jù)選定的Cary Eclipse熒光分光光度計(jì)檢測(cè)參數(shù)為:激發(fā)光波長(zhǎng)365 nm,發(fā)射波長(zhǎng)范圍為400~600 nm,狹縫均置為5 nm,掃描速度置為medium,電壓設(shè)為600 V。對(duì)樣品表面進(jìn)行周向6點(diǎn)熒光發(fā)射光譜掃描,以6點(diǎn)平均熒光強(qiáng)度繪制熒光發(fā)射光譜[31]。
1.3帶衣花生米黃曲霉毒素超限檢測(cè)
依據(jù)免疫親和層析凈化熒光光度法(GB/T18979—2003)進(jìn)行帶衣花生米黃曲霉毒素超限檢測(cè)。在檢測(cè)過(guò)程中為實(shí)現(xiàn)黃曲霉毒素提取液免疫親和柱恒流純化,自制了恒流定量過(guò)柱系統(tǒng)(圖2):利用絲杠副將步進(jìn)電機(jī)的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)換為注射器柱塞的直線運(yùn)動(dòng),通過(guò)控制步進(jìn)電機(jī)轉(zhuǎn)速和轉(zhuǎn)角間接控制進(jìn)樣器進(jìn)樣流量及體積。進(jìn)樣流量調(diào)整范圍:0~333 mL /min。
圖2 恒流定量過(guò)柱系統(tǒng)Fig.2 Liquid flow velocity control system
1.4熒光成像系統(tǒng)搭建及帶衣花生米單色熒光成像
以XSY-1落射熒光顯微鏡(重慶光電儀器有限公司)為平臺(tái),搭建了帶衣花生米熒光成像系統(tǒng)(圖3)。利用擴(kuò)束鏡將激發(fā)光斑投射區(qū)域擴(kuò)充至覆蓋2~3?;ㄉ?;在DLCW-L 1.3M USB2.0工業(yè)相機(jī)物鏡前配置帶通濾光片,獲取樣品的單色熒光圖像。試驗(yàn)選定的帶通濾光片為(460±5)nm[26]。
圖3 熒光圖像采集系統(tǒng)示意圖Fig.3 Fluorescence image acquisition system
2.1帶衣花生米表面熒光信號(hào)檢測(cè)確定
對(duì)挑選出的外觀具有代表性的100粒帶衣花生米(包括霉變粒和正常粒),以中心波長(zhǎng)為365 nm的紫外光激發(fā),在400~600 nm范圍內(nèi)掃描得到了其受測(cè)樣品的熒光光譜(見(jiàn)圖4)。100粒帶衣花生米熒光光譜見(jiàn)圖4。
將100粒受測(cè)帶衣花生米與圖4中各自的熒光光譜比對(duì)發(fā)現(xiàn):具有不同外觀特征的帶衣花生米的熒光光譜差異明顯,并且,表皮具有霉變特征的個(gè)體,其熒光光譜大多在420~460 nm范圍出現(xiàn)明顯的熒光峰。依據(jù)100粒帶衣花生米在450 nm處的熒光強(qiáng)度分布,將其分為8組(見(jiàn)表1),每組樣品的黃曲霉毒素采用GB/T18979-2003方法檢測(cè),每組3次重復(fù)。
表1 受測(cè)樣本分組依據(jù)及分布表Tab.1 Grouped basis and distribution of test sample
按GB/T18979-2003方法,稱取3.4 g硫酸奎寧,用0.05 mol/L硫酸溶液稀釋至100 mL,此溶液在450 nm處的熒光強(qiáng)度相當(dāng)于20.0 μg/kg的黃曲霉毒素標(biāo)準(zhǔn)溶液,其熒光光譜如圖5a所示。8組受測(cè)樣本的黃曲霉毒素免疫親和柱提取液的熒光光譜(每組重復(fù)測(cè)3次,取其平均熒光強(qiáng)度繪制熒光光譜)如圖5b所示(圖中十字標(biāo)識(shí)點(diǎn)為硫酸奎寧校準(zhǔn)液450nm處的熒光強(qiáng)度)。通過(guò)對(duì)比圖5a和圖5b可以判斷8組受測(cè)樣本中黃曲霉毒素含量大于20.0 μg/ kg的樣本組。
圖4 100粒帶衣花生米熒光光譜Fig.4 Fluorescence spectra of 100 peanuts
圖5 硫酸奎寧溶液及帶衣花生米(8組)黃曲霉毒素免疫親和柱提取液的熒光光譜Fig.5 Fluorescence spectra of quinine sulfate solution andsolution extracted from 8 grouped peanuts by immunoaffinity column
由圖4和圖5b可知,帶衣花生米表面熒光光譜及其黃曲霉毒素免疫親和柱提取液的熒光光譜譜形相似,均在420~460 nm有明顯的熒光峰,表明受測(cè)帶衣花生米表面產(chǎn)生熒光的物質(zhì)應(yīng)為黃曲霉毒素。
通過(guò)與硫酸奎寧校準(zhǔn)液450 nm處的熒光強(qiáng)度比對(duì)可見(jiàn),除組號(hào)1、2外,其余6組樣本在450 nm處的熒光強(qiáng)度均超限值,即黃曲霉毒素(B1+B2+G1+G2)的含量均大于20.0 μg/kg。表明:利用熒光分光光度計(jì)(激發(fā)波長(zhǎng)365 nm)檢測(cè)450 nm處的熒光強(qiáng)度判定帶衣花生米中黃曲霉毒素限值,與GB/T18979-2003中采用化學(xué)方法進(jìn)行黃曲霉毒素限值的判斷結(jié)果存在邏輯關(guān)系,即當(dāng)450 nm處的熒光強(qiáng)度>30a.u.時(shí),帶衣花生米的黃曲霉毒素含量超過(guò)國(guó)標(biāo)限值。
由此可以確定,黃曲霉毒素污染超限的帶衣花生米的特征熒光信號(hào)為:在365 nm波長(zhǎng)激發(fā)光下,發(fā)射光譜在420~460 nm處有熒光峰;且發(fā)射光譜450 nm的熒光強(qiáng)度>30。
2.2黃曲霉毒素超限帶衣花生米表面熒光評(píng)判的準(zhǔn)確率
由于GB/T18979-2003中的免疫親和層析凈化熒光光度法依據(jù)450 nm處的熒光強(qiáng)度判斷帶衣花生米黃曲霉毒素含量是否超限值,因此,以帶衣花生米在450 nm處的熒光強(qiáng)度30為界限將檢測(cè)樣品分為兩組,分別得到了其在450/490 nm和460/490 nm處熒光強(qiáng)度比值的箱線圖(見(jiàn)圖6a和圖6b)。
圖6 450/490 nm和460/490 nm熒光強(qiáng)度比值分析Fig.6 Fluorescence ratio of 450/490 nm and 460/490 nm
由圖6a和圖6b可見(jiàn),450 nm處a.u.>30和a.u.<30的帶衣花生米的熒光光譜在450/490 nm和460/490 nm兩處熒光強(qiáng)度比值的中位數(shù)位置、四分位間距框的位置與高度均不重合,說(shuō)明兩者比值基本不同。根據(jù)Whisker上限和Whisker下限計(jì)算出的450/490 nm熒光強(qiáng)度比值的重疊率為19%,表明:應(yīng)用該方法判別黃曲霉毒素超限帶衣花生米準(zhǔn)確率為81%。
2.3黃曲霉毒素超限帶衣花生米單色熒光成像
在熒光圖像采集系統(tǒng)上對(duì)污染超限粒進(jìn)行了單色熒光成像。為修正系統(tǒng)的紅移,強(qiáng)化熒光信號(hào)在單色圖像中的表現(xiàn),單色成像時(shí)選用了(460±5)nm的帶通濾光片。成像試驗(yàn)發(fā)現(xiàn),受限于熒光圖像采集系統(tǒng)的靈敏度,a.u.<30的污染超限粒的單色圖像中未見(jiàn)光斑;a.u.>40的污染超限粒的單色圖像中則會(huì)出現(xiàn)形狀不規(guī)整的藍(lán)色光斑。
示例選取了光斑具有代表性的9幅污染超限粒的單色熒光圖像,并按光斑亮度和面積劃分為3組(每組3粒,見(jiàn)圖7)。為了考察光斑亮度和面積與熒光光譜的關(guān)聯(lián),在選定檢測(cè)參數(shù)下檢測(cè)了與9幅單色熒光圖像對(duì)應(yīng)的污染超限粒的熒光光譜(見(jiàn)圖8)。通過(guò)圖7與圖8的比對(duì)發(fā)現(xiàn):污染超限粒單色熒光圖像中的光斑面積和亮度,與其在450 nm處的表面熒光強(qiáng)度正相關(guān)。
圖7 帶衣花生米單色(460 nm)熒光圖像Fig.7 Fluorescence image of peanuts with 460 nm filter
圖8 污染粒的熒光光譜Fig.8 Fluorescence spectra ofcontaminated peanuts
本文以帶衣花生米為研究對(duì)象,依據(jù)黃曲霉毒素的紫外——熒光特性,判定了黃曲霉毒素超限帶衣花生米的熒光光譜特征;評(píng)估了表面熒光法判斷黃曲霉毒素超限帶衣花生的準(zhǔn)確率;并對(duì)黃曲霉毒素超限帶衣花生米進(jìn)行了熒光成像。研究結(jié)果表明:
1)黃曲霉毒素污染超限的帶衣花生米的特征熒光信號(hào)為:在365 nm波長(zhǎng)激發(fā)光下,發(fā)射光譜在420~460 nm處有熒光峰,且發(fā)射光譜450 nm的a.u.>30。
2)依據(jù)帶衣花生米表面熒光特性可有效區(qū)分污染超限粒與正常粒,判斷準(zhǔn)確率為81%
3)試驗(yàn)條件下,a.u.>40的污染超限粒的單色(460 nm)熒光圖像中會(huì)出現(xiàn)明顯的藍(lán)色光斑。
4)表面熒光信號(hào)可作為帶衣花生米在線、無(wú)損、逐粒分選的專屬光學(xué)信號(hào),用于黃曲霉毒素污染超限的帶衣花生的剔除。
[參考文獻(xiàn)]
[1]許婷婷,宮清軒,江晨,等.我國(guó)花生產(chǎn)業(yè)的發(fā)展現(xiàn)狀與前景展望[J].山東農(nóng)業(yè)科學(xué), 2010,(7):117-119.
[2]李建輝.花生中黃曲霉毒素的影響因子及脫毒技術(shù)研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2009.Li Jianhui.Impact Factor and Detoxification of Aflatoxin inPeanuts[D].Beijing: Chinese Academy of Agricultural Sciences, 2009.(in Chinese with English abstract)
[3]何春林,張慶珍.小型花生榨油廠對(duì)黃曲霉毒素B1防控與技改措施[J].食品工業(yè),2012,(7):111-113.He Chunlin, Zhang Qingzhen.The prevention and technical innovation measures to the Aflatoxin B1 in small peanut oil extractionfactory[J].Food Industy,2012,(7):111-113.(in Chinese with English abstract)
[4] Liu R, Chang M, Jin Q, et al.Degradation of aflatoxin B1 in aqueous medium through UV irradiation [J].European Food Research and Technology, 2011, 233(6): 1007-1012.
[5]白璐.黃曲霉毒素的危害[J].吉林農(nóng)業(yè),2012,(1):178-178.
[6] Moss M O.Risk assessment for aflatoxins in foodstuffs [J].International biodeterioration& biodegradation, 2002, 50(3): 137-142.
[7] GB2761-2011.食品安全國(guó)家標(biāo)準(zhǔn)食品中真菌毒素限量[S] .
[8] Ding X, Li P, Bai Y, et al.Aflatoxin B 1 in post-harvest peanuts and dietary risk in China[J].Food Control, 2012, 23(1): 143-148.
[9]張鵬,趙衛(wèi)東.高效薄層色譜法測(cè)定黃曲霉毒素B1, B2, G1, G2[J].分析化學(xué), 2000, 28(3): 392-392.
[10]王葉群,姚剛,張紹英.污染黃曲霉毒素花生的檢測(cè)及分選技術(shù)研究進(jìn)展[J].農(nóng)業(yè)工程,2014,4(6):59-63.Wang Yequn,Yao Gang,Zhang Shaoying.Development of detection and sorting technology for Aflatoxins contaminated peanuts[J].Agricultural Engineering, 2014, 4(6): 59-63.(in Chinese with English abstract)
[11]高秀芬,計(jì)融,李燕俊,等.高效液相色譜法測(cè)定玉米中的黃曲霉毒素[J].中國(guó)食品衛(wèi)生雜志,2007,19(2):105-108.Gao Xiufen, Ji Rong, Li Yanjun, et al.Detemination of aflatoxins in corns by high performance liquid chromatography[J].Chinese Journal of Food Hygiene, 2007, 19(2): 105-108.(in Chinese with English abstract)
[12]姜宗亮,門愛(ài)軍,張藝兵,等.花生中黃曲霉毒素污染和控制[M].北京:中國(guó)標(biāo)準(zhǔn)出版社,2012.
[13]張俊.酶聯(lián)免疫吸附法測(cè)定玉米中黃曲霉毒素B1含量的優(yōu)勢(shì)[J].中國(guó)科技縱橫,2013,(12):52-52.
[14]張慧麗,楊松,蘇君偉,等.黃曲霉菌感染花生的不同檢測(cè)方法的應(yīng)用[J].食品與生物技術(shù)學(xué)報(bào),2013,32(8):868-874.Zhang Huili, Yang Song, Su Junwei, et al.Different detections on peanut infected by Aspergillusflavus[J].Journal of Food Science and Biotechnology, 2013, 32(8): 868-874.(in Chinese with English abstract)
[15] Gnanasekharan V, Chinnan M S, Dorner J W.Methods for characterization of kernel density and Aflatoxin levels of individual peanuts[J].Peanut Science, 1992, 19(1): 24-28.
[16] Chiou R Y Y, Tsao H H.Aflatoxin content of single peanut kernels in commercial lots and in kernels artificially infected with Aspergillusparasiticus[J].Journal of Food Protection, 1997, 60(7): 843-848.
[17]張文玲,袁濤,李書(shū)國(guó).近10年糧油食品中黃曲霉毒素檢測(cè)技術(shù)的研究進(jìn)展[J].糧食加工,2012,37(1):77-81.
[18]李雅麗,劉陽(yáng).霉變花生光電分選技術(shù)應(yīng)用現(xiàn)狀及發(fā)展趨勢(shì)[J].農(nóng)業(yè)機(jī)械,2012,(12):50-53.
[19]李長(zhǎng)強(qiáng).黃曲霉毒素產(chǎn)生的原因,危害及控制措施[J].飼料博覽,2012,(8):53-54.
[20] Ramos A J, Hernandez E.Prevention of aflatoxicosis in farm animals by means of hydrated sodium calcium aluminosilicate addition to feedstuffs: a review[J].Animal Feed Science and Technology, 1997, 65(1): 197-206.
[21]居乃虎.黃曲霉毒素[M].北京:輕工業(yè)出版社,1980,76-86.
[22] Steiner W E, Rieker R H, Battaglia R.Aflatoxin contamination in dried figs: distribution and association with fluorescence[J].Journal of Agricultural and Food Chemistry, 1988, 36(1): 88-91.
[23] Yao H, Hruska Z, Brown R L, et al.Hyperspectral bright greenish - yellow fluorescence(BGYF)imaging of aflatoxin contaminated corn kernels[C]//Optics East 2006.International Society for Optics and Photonics, 2006: 63810B-63810B-8.
[24]崔貴金.赤霉病麥粒光電分選技術(shù)研究[D].河南工業(yè)大學(xué), 2013.Cui Guijin.Study on Separation of Wheat Scab by Photoelectric Separation Technology[D].Zhengzhou: Henan University of Technology, 2013.(in Chinese with English abstract)
[25]藍(lán)健.大米色選機(jī)的應(yīng)用研究[D].南昌:江西農(nóng)業(yè)大學(xué),2012.Lan Jian.Study on Application of Rice Color Soter[D].Nanchang: Jiangxi Agricultural University, 2012.(in Chinese with English abstract)
[26]陳紅,丁幼春,熊利榮.無(wú)損檢測(cè)技術(shù)在花生品質(zhì)檢測(cè)中的應(yīng)用[J].糧油加工,2005,(2):53-55.
[27] Kim M S, Chen Y R, Mehl P M.Hyperspectral reflectance and fluorescence imaging system for food quality and safety [J].Transactions-American Society of Agricultural Engineers, 2001, 44(3): 721-730.
[28]王葉群.花生中黃曲霉毒素的熒光信號(hào)特征研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2015.Wang Yequn.The Study on Fluorescent Signal Characteristics of Aflatoxions in Peanut[D].Beijing: China Agriculture University, 2015.(in Chinese with English abstract)
[29]張紹英,王葉群,劉婷,等.一種顆粒物料旋轉(zhuǎn)下滑溜管:中國(guó),201410602353.9[P].2014-10-31
[30] Yao H, Hruska Z, Kincaid R, et al.Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillusflavusspores [J].Food Additives and Contaminants, 2010, 27(5): 701-709.(in Chinese with English abstract)
[31]劉紹剛,方如明,吳守一.花生仁品質(zhì)的光特性分選技術(shù)[J].農(nóng)業(yè)工程學(xué)報(bào),1996,12(4):213-217.Liu Shaogang, Fang Ruming, Wu Shouyi.Peanut kernels quality sorting by optical Properties[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 1996, 12(4): 213-217.(in Chinese with English abstract)
Fluorescent signal characteristics for sorting of peanut contaminated by aflatoxion
Wang Yequn, Yang Zengling, Zhang Shaoying※, Liu Ting
(College of Engineering, China Agriculture University, Beijing 100083, China)
Abstract:Peanuts are especially susceptible to contamination of aspergillusflavus and aspergillusparasiticus, which can produce a kind of highly toxic substance, aflatoxin.The study about the separation technology of aflatoxin-infected peanuts before processing can effectively isolate the source of contamination by taking precautions instead of executing treatment on the contamination, thus being of great significance on guaranteeing food safety.For the purpose of effectively eliminating the red-skin peanuts with excessive aflatoxin levels from raw materials, one technology concept of one-by-one sorting method using the exclusive fluorescent signal of the red-skin peanuts with excessive aflatoxin levels was conceived here referring to the existing color sorting system.In this study, the fluorescence spectra of 100 red-skin peanut samples with representative appearance were determined using Cary Eclipse fluorescent spectrophotometer(at an excitation wavelength of 365 nm, an emission wavelength in the range of 400~600 nm and discharge voltage of 400 V).According to the fluorescence intensity distribution of samples at the wavelength of 450 nm, all these 100 red-skin peanut samples were divided into 8 groups.The aflatoxin content for each group of samples was determined using the standard method, GB/T 18972-2003 Determination aflatoxin content in food-Cleanup by immunoaffinity chromatography determination by highperformance liquid chromatography and fluorimeter.By comparing the surface fluorescence spectroscopy of the 8 groups with the obtained results from the standard method, the fluorescence spectroscopy characteristics of the the red-skin peanuts with excessive aflatoxin levels were primarily determined.The accuracy rate of discriminating the aflatoxin levels of red-skin peanuts using surface fluorescence was evaluated by means of drawing the box-plots of the fluorescence intensity ratio at 450 nm/490 nm and 460 nm/490 nm.Taking the colony laser fluorescence microscope as a platform, and using a laser beam expander that can enlarge the projection area of the excitation light to cover 2-3 peanuts, the fluorescence images of the red-skin peanuts with excessive aflatoxin levels were taken using a monochrome fluorescence image acquisition system, which was set up by putting a band-pass filter(460±5 nm)at the front of an industrial camera objective.The results of this study showed that there was a correlation between the determination of the aflatoxinlevels in red-skin peanuts by using fluorescent spectrophotometer at an excitation wavelength of 365 nm to detect the fluorescence intensity at 450 nm and the aflatoxin measurement using the standard method, which means that while the fluorescence intensity at 450 nm is greater than 30 a.u., the aflatoxincontent exceeded the national standard limit.Thus, the characteristic fluorescent signal of the excessive aflatoxin contamination can be intended as follows: the emission spectra generate fluorescence peaks at 420~460 nm and the fluorescence intensity at 450 nm was greater than 30a.u., while under an excitation wavelength of 365nm.According to the calculation based on the Whisker upper and lower limit, the overlapping ratio of the fluorescence intensity was at 450 nm and 490 nm is 19%, indicating that the discrimination accuracy rate of red-skin peanuts with excessive aflatoxin levels was 81%.Meanwhile, using the fluorescence image acquisition system, the monochrome images of the aflatoxin excessive peanuts were obtained, which displayed blue light spot for the contaminated peanuts once the surface fluorescence intensity was greater than 40a.u.Overall, the study indicates that the surface fluorescence signal can be the exclusive light signal of the red-skin peanuts for on-line, nondestructive and one-by-one sorting, for the purpose of eliminating the red-skin peanuts with excessive aflatoxin levels.
Keywords:agricultural products; fluorescence; red-skin peanut; aflatoxin; sorting
通信作者:※張紹英(1961-),男,河北人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)工程裝備研究。北京中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,100083。
作者簡(jiǎn)介:王葉群(1989-),女,陜西人,博士生,主要從事農(nóng)產(chǎn)品加工及貯藏研究。北京中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,100083。E-mail:yequnw@163.com
基金項(xiàng)目:“十二五”國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2012BAD31B09)
收稿日期:2015-07-25
修訂日期:2015-11-12
中圖分類號(hào):TS201.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6819(2016)-01-0187-06
doi:10.11975/j.issn.1002-6819.2016.01.026