亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于區(qū)間多階段隨機(jī)規(guī)劃模型的灌區(qū)多水源優(yōu)化配置

        2016-04-09 03:16:59劉銀鳳李天霄AmgadOsman東北農(nóng)業(yè)大學(xué)水利與建筑學(xué)院哈爾濱150030
        關(guān)鍵詞:模型

        付 強(qiáng),劉銀鳳,劉 東,李天霄,劉 巍,Amgad Osman(東北農(nóng)業(yè)大學(xué)水利與建筑學(xué)院,哈爾濱150030)

        ?

        基于區(qū)間多階段隨機(jī)規(guī)劃模型的灌區(qū)多水源優(yōu)化配置

        付強(qiáng),劉銀鳳,劉東,李天霄,劉巍,Amgad Osman
        (東北農(nóng)業(yè)大學(xué)水利與建筑學(xué)院,哈爾濱150030)

        摘要:灌區(qū)多水源灌溉系統(tǒng)中存在許多不確定性因素,隨著系統(tǒng)環(huán)境的變化及不確定性因素的影響,導(dǎo)致其配水過(guò)程具有動(dòng)態(tài)特征。針對(duì)灌區(qū)多水源灌溉系統(tǒng)的配水特點(diǎn),該文建立基于區(qū)間多階段隨機(jī)規(guī)劃的灌區(qū)多水源優(yōu)化配置模型。同時(shí),考慮灌溉水對(duì)作物產(chǎn)量的影響,引入水分敏感指數(shù)權(quán)重系數(shù),并以黑龍江省和平灌區(qū)水稻不同生育階段灌溉水資源優(yōu)化配置進(jìn)行實(shí)例研究。結(jié)果表明,在不同來(lái)水情境下,管理者可根據(jù)各個(gè)生育階段水分敏感指數(shù)權(quán)重系數(shù),判斷作物不同生育階段的需水敏感程度,當(dāng)來(lái)水情境的來(lái)水量多時(shí),會(huì)產(chǎn)生余水量,可調(diào)配給下一生育階段;當(dāng)來(lái)水情境的來(lái)水量少時(shí),管理者可在減少灌溉水量與增加外調(diào)水之間進(jìn)行權(quán)衡,并根據(jù)需水關(guān)鍵期與需水非關(guān)鍵期做出決策,使水資源在作物生育階段間及作物生育階段內(nèi)進(jìn)行分配,實(shí)現(xiàn)灌區(qū)多水源灌溉系統(tǒng)的動(dòng)態(tài)配水。該模型的應(yīng)用在確保作物產(chǎn)量的同時(shí),使灌溉水資源在作物各個(gè)生育階段進(jìn)行合理配置,有效地避免了水資源浪費(fèi),對(duì)提高灌溉水利用效率、保證水資源的可持續(xù)利用具有重要意義。

        關(guān)鍵詞:模型;灌溉;作物;灌區(qū)多水源;不確定性;區(qū)間多階段隨機(jī)規(guī)劃模型;優(yōu)化配置

        付強(qiáng),劉銀鳳,劉東,李天霄,劉巍,Amgad Osman.基于區(qū)間多階段隨機(jī)規(guī)劃模型的灌區(qū)多水源優(yōu)化配置[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(01):132-139.doi:10.11975/j.issn.1002-6819.2016.01.018 http://www.tcsae.org

        Fu Qiang, Liu Yinfeng, Liu Dong, Li Tianxiao, Liu Wei, Amgad Osman.Optimal allocation of multi-water resources in irrigation area based on interval-parameter multi-stage stochastic programming model[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(01): 132-139.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.018 http://www.tcsae.org

        中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:付強(qiáng)(E041100051S)

        0 引言

        作為人類(lèi)活動(dòng)的重要資源之一,水資源對(duì)保障社會(huì)、經(jīng)濟(jì)、環(huán)境、生態(tài)的可持續(xù)發(fā)展起著決定性作用。隨著各種各樣的水資源問(wèn)題的浮現(xiàn),導(dǎo)致水的供需矛盾日益惡化,如何協(xié)調(diào)好水資源的供需關(guān)系,確保水資源合理高效的利用,是水資源領(lǐng)域研究的熱點(diǎn)問(wèn)題。農(nóng)業(yè)是用水大戶(hù),農(nóng)業(yè)水資源“瓶頸”制約問(wèn)題愈加凸顯,提高農(nóng)業(yè)用水效率對(duì)解決水資源供需矛盾、緩解用水壓力具有十分重要的意義。灌區(qū)作為農(nóng)業(yè)用水主體,對(duì)灌區(qū)農(nóng)業(yè)灌溉水資源進(jìn)行合理配置,勢(shì)必是提高農(nóng)業(yè)用水效率、可持續(xù)開(kāi)發(fā)和利用水資源的有效途徑[1]。

        近年來(lái),灌區(qū)水資源優(yōu)化配置的研究不斷涌現(xiàn)[2-5],灌區(qū)灌溉系統(tǒng)受氣候變化[6]、水管理政策以及作物生長(zhǎng)特性等諸多因素的影響,具有時(shí)空效應(yīng),是一個(gè)復(fù)雜的動(dòng)態(tài)配水過(guò)程,傳統(tǒng)的確定性方法往往疏于考慮這方面問(wèn)題,在處理灌區(qū)灌溉系統(tǒng)中不確定性因素間的復(fù)雜性關(guān)系時(shí),存在一定的局限性,而基于不確定性條件下的區(qū)間二階段隨機(jī)規(guī)劃模型,作為解決復(fù)合系統(tǒng)中不確定性的有效方法,在水資源領(lǐng)域得到了廣泛的應(yīng)用[7-10],該方法雖然解決了水資源系統(tǒng)中的經(jīng)濟(jì)、資源等因素的不確定性,卻不能反映系統(tǒng)環(huán)境的動(dòng)態(tài)變化,而區(qū)間多階段隨機(jī)規(guī)劃模型,不僅可以解決系統(tǒng)不確定性,同時(shí)能夠反映多情境下的系統(tǒng)動(dòng)態(tài)變化過(guò)程,該模型在水資源管理中已取得了一定的成果,Li和Huang將多階段隨機(jī)二次規(guī)劃方法應(yīng)用于水資源管理中[11]。Li等將多階段隨機(jī)規(guī)劃與整數(shù)規(guī)劃相結(jié)合,處理水庫(kù)系統(tǒng)中存在的不確定性問(wèn)題[12]。Dai等將多階段灌溉水資源配置模型應(yīng)用到農(nóng)業(yè)水資源管理與耕地利用模式優(yōu)化中[13]。莫淑紅等建立基于場(chǎng)景的多階段隨機(jī)規(guī)劃模型,對(duì)陜西省寶雞市馮家山水庫(kù)多用戶(hù)供水方案決策問(wèn)題進(jìn)行研究[14]。本文在上述學(xué)者研究的基礎(chǔ)上,對(duì)區(qū)間多階段隨機(jī)規(guī)劃模型進(jìn)行了改進(jìn),考慮灌區(qū)內(nèi)作物各生育階段的敏感指數(shù),在模型中引入水分敏感指數(shù)權(quán)重系數(shù),采用區(qū)間多階段隨機(jī)規(guī)劃模型在作物各生育階段間進(jìn)行優(yōu)化配水,使其適用于灌區(qū)內(nèi)多水源作物不同生育階段間優(yōu)化配置。模型中同時(shí)引入概率密度函數(shù)和離散區(qū)間處理不確定性參數(shù),其中,概率密度函數(shù)可表示水文隨機(jī)變量的不確定性,離散區(qū)間表示其他水文及經(jīng)濟(jì)參數(shù)的不確定性,多階段隨機(jī)規(guī)劃則可在一系列來(lái)水情境下,對(duì)各個(gè)生育階段內(nèi)部與階段之間進(jìn)行水量調(diào)配,從而實(shí)現(xiàn)灌區(qū)多水源作物不同生育階段的實(shí)時(shí)動(dòng)態(tài)配水。

        1 灌區(qū)多水源區(qū)間多階段隨機(jī)規(guī)劃模型

        1.1模型建立

        在灌區(qū)農(nóng)業(yè)灌溉系統(tǒng)中,影響作物產(chǎn)量的因素有很多,本文僅考慮灌溉水對(duì)作物產(chǎn)量的影響,不同供水工程灌溉供水情況均要受來(lái)水量的影響,具有較強(qiáng)的隨機(jī)性。因此,作物各生育階段不同供水工程的供水量是隨機(jī)變量,具有不確定性特點(diǎn),這就要求各相關(guān)供水工程的供水決策必須在各階段該隨機(jī)變量不同離散概率水平下及時(shí)的做出,該過(guò)程具有動(dòng)態(tài)特性,針對(duì)這樣的問(wèn)題,可以運(yùn)用多階段隨機(jī)規(guī)劃模型來(lái)解決。該模型可反映水資源管理中系統(tǒng)的無(wú)可預(yù)計(jì)性,即對(duì)未來(lái)階段隨機(jī)變量的實(shí)現(xiàn)不可預(yù)計(jì)時(shí),必須對(duì)當(dāng)前每一階段做出決策[15]。

        在分析灌區(qū)水資源承載力和作物生長(zhǎng)特征的基礎(chǔ)上,要求管理者對(duì)當(dāng)年灌溉水量預(yù)先做出決策,為作物各個(gè)生育階段設(shè)定一個(gè)初始的供水目標(biāo)值,由于不同供水工程在各個(gè)階段內(nèi)的來(lái)水情況的隨機(jī)性特點(diǎn),一旦供水量沒(méi)有達(dá)到初始供水目標(biāo)值,那就需要通過(guò)減少灌溉水量或者外調(diào)水源進(jìn)行補(bǔ)水,而減少灌溉水量會(huì)影響作物產(chǎn)量,外調(diào)水源補(bǔ)水會(huì)產(chǎn)生附加費(fèi)用,都會(huì)產(chǎn)生相應(yīng)的經(jīng)濟(jì)懲罰,因此,為使灌區(qū)灌溉凈效益最大化,本文根據(jù)作物不同生育階段缺水對(duì)最終產(chǎn)量的影響有較大差異(即需水敏感性不同)的特點(diǎn),引入水分敏感指數(shù)權(quán)重系數(shù),用來(lái)權(quán)衡不同生育階段的需水程度,判斷各個(gè)生育階段是否處于需水關(guān)鍵期(作物需水關(guān)鍵期是指缺水時(shí)對(duì)作物的產(chǎn)出影響大的時(shí)期),從而在減少灌溉用水與外調(diào)水源補(bǔ)水之間進(jìn)行選擇,使經(jīng)濟(jì)懲罰降到最低。

        本文運(yùn)用Jensen模型,計(jì)算各個(gè)生育階段的水分敏感指數(shù)[16-18],并得到作物不同生育階段的水分敏感指數(shù)權(quán)重系數(shù)。

        Jensen模型表述如下:

        式中t為作物生育階段;T為作物生育階段總數(shù);λt為第t階段作物產(chǎn)量對(duì)缺水的敏感指數(shù);ET為作物的實(shí)際騰發(fā)量,mm;ETm為作物的潛在騰發(fā)量,mm;Y為實(shí)際騰發(fā)量對(duì)應(yīng)的作物實(shí)際產(chǎn)量,kg/hm2;Ym為潛在騰發(fā)量對(duì)應(yīng)的作物潛在產(chǎn)量,kg/hm2。

        對(duì)Jensen模型做如下變換:

        試驗(yàn)總處理m個(gè),處理j=1,2,…,m,得到m組Xtj、Zj,采取最小二乘法,以使估計(jì)值與觀測(cè)值間的誤差平方和最小:

        求得Kt值后,由Kt=λt即可求得λt。

        利用Jensen模型計(jì)算得到λt值,進(jìn)而計(jì)算作物不同生育階段的水分敏感指數(shù)權(quán)重系數(shù):

        水分敏感指數(shù)權(quán)重系數(shù)越大,表示缺水對(duì)產(chǎn)量影響越大,屬于需水關(guān)鍵期;水分敏感指數(shù)權(quán)重系數(shù)越小,表示缺水對(duì)產(chǎn)量影響越小,屬于需水非關(guān)鍵期。將水分敏感指數(shù)權(quán)重系數(shù)引入多階段隨機(jī)規(guī)劃模型中,假定各階段需水量已確定時(shí),建立灌區(qū)多水源多階段隨機(jī)規(guī)劃模型:

        約束條件:

        1)供水約束

        2)余水約束

        3)配水量約束

        4)非負(fù)約束

        式中f為灌溉凈效益,元;i為供水工程,其中i=1,2,3分別代表引水工程、提水工程、井灌工程;為配水周期即作物生育階段,與式(1)相同;Wit為i供水工程t配水周期的供水目標(biāo),m3;ηi為i供水工程渠系水利用系數(shù);ai為t配水周期水分敏感指數(shù)權(quán)重系數(shù);R為灌溉水分生產(chǎn)率,kg/ m3;A為作物市場(chǎng)單價(jià),元/kg;Ui為i供水工程供水成本,元/m3;bt為t配水周期外調(diào)水成本,元/m3;B為缺水懲罰,元/m3;Qt為t配水周期可用來(lái)水總量,是隨機(jī)變量,m3;SitQt為可用水量為Qt時(shí),供水量未達(dá)到初始目標(biāo)Wit的外調(diào)水量,m3;CitQt為可用水量為Qt時(shí),供水量未達(dá)到初始目標(biāo)Wit的缺水量,m3;E(t)為隨機(jī)變量的期望值;yitQt為i供水工程t配水周期的剩余水量,m3;Wtx為灌溉需水量下限值,m3;Wts為灌溉需水量上限值,m3。

        除考慮可用水量Qt的不確定性外,作物的初始供水目標(biāo)(Wit),作物市場(chǎng)價(jià)格(A),產(chǎn)量的高低(R),調(diào)、配水成本(bt、Ui),以及缺水懲罰系數(shù)(B),都是不確定的,因此為了表述這些參數(shù)的不確定性,將區(qū)間參數(shù)引入模型中,區(qū)間參數(shù)的上、下限值分別對(duì)應(yīng)著不確定性變量的上、下限值,這樣灌區(qū)多水源區(qū)間多階段隨機(jī)規(guī)劃模型可變?yōu)?

        1.2模型求解

        約束條件:

        約束條件:

        模型優(yōu)化結(jié)果:

        最優(yōu)配水量:

        2 案例研究

        2.1灌區(qū)概況

        和平灌區(qū)位于黑龍江省綏化市慶安縣中部,呼蘭河左岸的干支流河漫灘及一級(jí)階地上,灌區(qū)范圍由東向西呈帶狀分布。該灌區(qū)主要水源有地表水與地下水,取水方式又可分為3個(gè)供水工程,即引水工程、提水工程和井灌工程,井灌工程由地下水提供,其他兩個(gè)供水工程由地表水提供,同時(shí)有柳河水庫(kù)作為外調(diào)水源。

        2.2參數(shù)確定

        和平灌區(qū)是黑龍江省水稻灌溉試驗(yàn)基地,以水稻作為主要的生產(chǎn)作物,因此,本文選取水稻作為典型作物,進(jìn)行配水研究。由于返青期稻苗較小、黃熟期自然落干,水稻的騰發(fā)量都較小,本文只選取分蘗期、拔節(jié)期、抽穗期、乳熟期4個(gè)生育階段進(jìn)行水分敏感指數(shù)及配水計(jì)算[20],因此,作物生育階段取t=1,2,3,4分別代表分蘗期、拔節(jié)期、抽穗期、乳熟期。Jensen模型的輸入數(shù)據(jù)來(lái)源于國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD08B05)采用公式(1)和(11)計(jì)算作物水分敏感指數(shù)及水分敏感指數(shù)權(quán)重系數(shù),見(jiàn)表1;根據(jù)《呼蘭河灌區(qū)工程初期設(shè)計(jì)報(bào)告》以及當(dāng)?shù)厮畡?wù)局提供的調(diào)研數(shù)據(jù),對(duì)水稻不同生育階段需水量以及各個(gè)供水工程灌溉控制面積分析,得到各供水工程的初始供水目標(biāo)以及水稻充分灌溉條件下的需水上、下限值,見(jiàn)表2;綜合分析灌區(qū)內(nèi)多年降雨和徑流統(tǒng)計(jì)資料,假設(shè)不同生育階段來(lái)水水平的可能情況為高、中、低3種,其中,高來(lái)水水平和低來(lái)水水平出現(xiàn)的概率大致相同,中來(lái)水水平的概率高于其他2種來(lái)水水平,因此,假設(shè)不同生育階段3種來(lái)水水平出現(xiàn)的概率分別為0.2、0.6、0.2。由上述資料可獲得不同生育階段各供水工程在不同概率水平下的可用水量區(qū)間值,見(jiàn)表3。

        表1 水分敏感指數(shù)及水分敏感指數(shù)權(quán)重系數(shù)Table 1 Water sensitive index and Water sensitive index weight coefficient

        表2 不同生育階段各供水工程的初始配水目標(biāo)Table 2  Initial water supply targets for water supply projects in different growth stages

        表3 不同生育階段各供水工程的可用水量Table 3 Available water of water supply projects in different growth stages

        不同供水工程的其他相關(guān)參數(shù),見(jiàn)表4。本文中相關(guān)經(jīng)濟(jì)參數(shù)作物價(jià)格、外調(diào)水成本、缺水懲罰、水分生產(chǎn)率的取值區(qū)間分別為:[3.4,3.56]、[1.8,2]、[7.2,8]、[3,3.2],其中取外調(diào)水成本在各生育階段都相等。

        表4 不同供水工程其他相關(guān)參數(shù)Table 4 Other relevant parameters of different water supply projects

        2.3情境分析

        在此,可根據(jù)隨機(jī)變量Qt的可能概率構(gòu)建分支結(jié)構(gòu)為1-3-3-3-3的四情境樹(shù),每個(gè)供水工程可產(chǎn)生一個(gè)周期為4(5階)的情境樹(shù),且各情境樹(shù)具有相同的結(jié)構(gòu)。由起始時(shí)刻0開(kāi)始,第1周期分出3個(gè)節(jié)點(diǎn);第2周期,在第1周期的基礎(chǔ)上,每個(gè)節(jié)點(diǎn)繼續(xù)分出3個(gè)節(jié)點(diǎn),以此類(lèi)推,第2周期為9個(gè)節(jié)點(diǎn),3、4周期分別為27個(gè)節(jié)點(diǎn)和81個(gè)節(jié)點(diǎn)。本文有3個(gè)供水工程,因此,第1周期就會(huì)產(chǎn)生9個(gè)節(jié)點(diǎn),形成3-9-27-81-243的情境樹(shù),如圖1所示,由于運(yùn)行結(jié)果數(shù)據(jù)量過(guò)大,本文在每個(gè)生育階段各供水工程,只選取3種典型來(lái)水情境進(jìn)行分析[13],分蘗期(t=1),選?。↙,M,H)作為典型來(lái)水情境,分別表示低、中、高來(lái)水情境;拔節(jié)期(t=2),選取(L-L,M-M,H-H)作為典型來(lái)水情境,分別表示t=1、2時(shí)均處于低、中、高來(lái)水情境;抽穗期(t=3)選取(L-L-L,M-M-M,H-H-H)作為典型來(lái)水情境,分別表示t=1、2、3時(shí)均處于低、中、高來(lái)水情境;乳熟期(t=4)選?。↙-L-L-L,M-M-M-M,H-H-H-H)作為典型來(lái)水情境,分別表示t=1、2、3、4時(shí)均處于低、中、高來(lái)水情境。

        3 模型結(jié)果與分析

        運(yùn)用Matlab和Lingo11編程求解灌區(qū)多水源區(qū)間多階段隨機(jī)規(guī)劃模型。由模型運(yùn)行結(jié)果可得:

        在t=1和t=2時(shí),決策變量zitopt分別為z11opt=1,z21opt=1,z31opt=1和z12opt=1,z22opt=1,z32opt=1,均使最優(yōu)供水目標(biāo)W±itopt達(dá)到初始配水目標(biāo)W±it的上限值,分別為:W11opt=629.97萬(wàn)m3,W21opt=156.46萬(wàn)m3,W31opt=139.44萬(wàn)m3和W12opt=546.48 萬(wàn)m3,W22opt=135.72萬(wàn)m3,W32opt=120.96萬(wàn)m3;

        在t=3和t=4時(shí),z13opt=0.5,z23opt=0.2,z33opt=1和z14opt=0,z24opt=0,z34opt=1,則存在最優(yōu)供水目標(biāo)未達(dá)到初始配水目標(biāo)W±it上限值的情況,且z14opt=0和z24opt=0時(shí),最優(yōu)供水目標(biāo)取W±it的下限值,其最優(yōu)供水目標(biāo)分別為:W13opt=159.82 萬(wàn)m3,W23opt=44.75萬(wàn)m3,W33opt=52.84萬(wàn)m3和W14opt=189.75 萬(wàn)m3,W24opt=47.13萬(wàn)m3,W34opt=57.12萬(wàn)m3。

        圖1 灌區(qū)多水源作物生育期配水多階段情境樹(shù)Fig.1 Multi-stage scenario tree of water distribution in the growing stage of multiple water resources in irrigation district

        上述模型優(yōu)化結(jié)果表明:在作物需水關(guān)鍵期時(shí)(t=1 和t=2),為達(dá)到高產(chǎn)的目的,模型選擇了充分滿足作物需水,在需水非關(guān)鍵期時(shí)(t=3和t=4),為了提高灌溉水利用效率,節(jié)約水資源以及降低供水成本,模型則選擇了減少作物供水量。在來(lái)水量不確定的情況下,滿足高用水需求的風(fēng)險(xiǎn)大,用水量得不到滿足時(shí)的懲罰也大,而滿足低用水需求的風(fēng)險(xiǎn)小,懲罰也小,但低用水需求時(shí)產(chǎn)生的經(jīng)濟(jì)效益會(huì)更少,說(shuō)明供水量、風(fēng)險(xiǎn)與經(jīng)濟(jì)效益三者緊密相連。

        最優(yōu)配水量是由最優(yōu)供水目標(biāo)與缺水量之間的差值確定的,可由公式求得,分蘗期(t=1)和拔節(jié)期(t=2),處于需水關(guān)鍵期,管理者希望充分滿足作物的用水需求,保證產(chǎn)量,因此,在這2個(gè)生育階段內(nèi),模型選擇不缺水,缺水量值均為0,即在不同典型來(lái)水情境下,當(dāng)灌區(qū)內(nèi)來(lái)水量不能滿足供水需求時(shí),各個(gè)供水工程會(huì)根據(jù)模型的選擇存在不同程度的外調(diào)水量,以滿足各生育階段內(nèi)配水目標(biāo);而抽穗期(t=3)和乳熟期(t=4),屬于需水非關(guān)鍵期,缺水對(duì)作物產(chǎn)量的影響很小,因此,為了降低供水成本,節(jié)約資源,模型做出了缺水的選擇,對(duì)于同一供水工程而言,隨著來(lái)水量的增加,灌區(qū)內(nèi)供水量會(huì)不斷增加,缺水量會(huì)逐漸減小,最優(yōu)配水量則逐漸增大。

        外調(diào)水量的大小取決于灌區(qū)內(nèi)水源能滿足最優(yōu)配水量的程度。結(jié)合模型運(yùn)行結(jié)果,繪制不同配水周期,不同典型供水情境下,各個(gè)供水工程最優(yōu)配水量、外調(diào)水量以及灌區(qū)供水量的變化情況,如圖2所示。由圖2a、2b知,在分蘗期(t=1),對(duì)同一個(gè)供水工程而言,不同來(lái)水情境下,最優(yōu)配水量相同,隨著來(lái)水水平的增加,外調(diào)水量呈現(xiàn)出遞減的趨勢(shì),而灌區(qū)供水量則呈現(xiàn)逐漸遞增的趨勢(shì)。由圖2c、2d知,在拔節(jié)期(t=2),3種典型來(lái)水情境下,灌區(qū)供水量取下限值時(shí),各供水工程都有外調(diào)水量,且隨供水量的增加而減小;灌區(qū)供水量取上限值時(shí),在高來(lái)水情境(HH)下,外調(diào)水量為0,最優(yōu)配水量均由灌區(qū)提供。由圖2e、2f知,在抽穗期(t=3),只有灌區(qū)供水量為下限值時(shí),引水工程與井灌工程的低來(lái)水情境(L-L-L)有少量的外調(diào)水。由圖2g、2h知,在乳熟期(t=4),不同來(lái)水情境時(shí)的來(lái)水量略低于抽穗期(t=3),因此,灌區(qū)供水量下限值,除高水平情境(H-H-H-H)外,其他來(lái)水情境均有外調(diào)水量,而灌區(qū)供水量為上限值時(shí),只有引水工程低來(lái)水情境(L-L-L-L)時(shí),有外調(diào)水量。可見(jiàn),對(duì)于作物需水非關(guān)鍵期(t=3和t=4),模型選擇了減少灌溉水量,但各供水工程仍然存在外調(diào)水,這是因?yàn)榧词构芾碚哌x擇了缺水的情況,也要滿足作物的最低需水量,確保作物的基本生理需求,因此,在模型選擇缺水的情況下,仍存在一定量的外調(diào)水補(bǔ)給。

        結(jié)合圖2h和表3,該模型不僅可在同一生育階段內(nèi)進(jìn)行水量調(diào)配,還能在4個(gè)生育階段間水量調(diào)配。由于來(lái)水量年內(nèi)分布不均,在來(lái)水量高,配水目標(biāo)小時(shí),會(huì)有一定的余水量,這時(shí)可以將余水量攔蓄起來(lái),供給下一階段來(lái)水量小的生育階段,例如乳熟期(t=4),在高來(lái)水情境(HH-H-H)時(shí),引水工程和井灌工程沒(méi)有外調(diào)水量,但最優(yōu)配水量的上限值分別為189.75萬(wàn)m3和57.12萬(wàn)m3,均大于該來(lái)水情境的最大來(lái)水量184.56萬(wàn)m3和52.85萬(wàn)m3,原因就是,抽穗期(t=3)存在余水量,并將余水量調(diào)配給乳熟期(t=4),這樣不僅減小了引水工程和井灌工程在該來(lái)水情境下缺水的經(jīng)濟(jì)懲罰,同時(shí)有效的解決了水資源時(shí)間上分布不均的問(wèn)題,避免了由于來(lái)水大于需水造成的水資源浪費(fèi),實(shí)現(xiàn)水資源時(shí)間與空間上的實(shí)時(shí)動(dòng)態(tài)配置。

        模型求解得到的最終灌區(qū)灌溉效益值為:fopt=[2 568.88, 4 033.34]萬(wàn)元。由于不同的配水形式以及系統(tǒng)的不確定性,使最終的灌溉效益以區(qū)間值給出,以適應(yīng)不同配水決策,灌區(qū)最終收益會(huì)在該區(qū)間內(nèi)取得。

        圖2 不同生育階段不同來(lái)水情境下各供水工程的灌區(qū)供水量Fig.2 Irrigation water supply at different growth stages in different water conditions of water supply project/104m3

        4 結(jié)論

        1)本文針對(duì)作物不同生育階段需水敏感程度的差異,將水分敏感指數(shù)權(quán)重系數(shù)引入?yún)^(qū)間多階段隨機(jī)規(guī)劃模型,用概率密度函數(shù)以及離散區(qū)間來(lái)表示水資源系統(tǒng)中存在的不確定性,多階段隨機(jī)規(guī)劃表示配水過(guò)程的動(dòng)態(tài)特性,建立適用于灌區(qū)多水源的區(qū)間多階段隨機(jī)規(guī)劃模型,并以離散情境樹(shù)的形式反映水資源配置過(guò)程,將和平灌區(qū)水稻不同生育階段水資源配置作為實(shí)例進(jìn)行研究。

        2)根據(jù)水分敏感指數(shù)權(quán)重系數(shù)判斷作物需水關(guān)鍵期與需水非關(guān)鍵期,模型求解結(jié)果表明,當(dāng)灌區(qū)內(nèi)供水不足時(shí),在需水關(guān)鍵期,即分蘗期(t=1)和拔節(jié)期(t=2),選擇外調(diào)水;在需水非關(guān)鍵期,即抽穗期(t=3)和乳熟期(t=4),選擇缺水,但在來(lái)水量少時(shí)的來(lái)水情境下,為滿足作物的基本生理需水,仍會(huì)存在一定量的外調(diào)水。管理者可以依據(jù)模型在外調(diào)水與缺水之間做出決策,這樣在保證作物產(chǎn)量的同時(shí),減少不必要的灌溉水量,不僅能夠降低供水成本,還可使水資源得到合理高效的利用,提高了灌溉水利用效率。

        3)通過(guò)分析各個(gè)供水工程最優(yōu)配水量、外調(diào)水量以及灌區(qū)供水量之間的變化關(guān)系,得到該模型可同時(shí)在同一生育階段內(nèi)和不同生育階段間進(jìn)行水量調(diào)配,從空間與時(shí)間的角度,實(shí)現(xiàn)了灌區(qū)多水源不同生育階段灌溉水優(yōu)化配置的動(dòng)態(tài)過(guò)程。

        [參考文獻(xiàn)]

        [1]齊學(xué)斌,黃仲冬,喬冬梅,等.灌區(qū)水資源合理配置研究進(jìn)展[J].水科學(xué)進(jìn)展,2015,26(02):287-295.Qi Xuebin, Huang Zhongdong, Qiao Dongmei, et al.Research advances on the reasonable water resources allocation in irrigation district [J].Advances in Water Science, 2015, 26(02): 287-295.(in Chinese with English abstract)

        [2]張展羽,高玉芳,李龍昌,等.沿海缺水灌區(qū)水資源優(yōu)化調(diào)配耦合模型[J].水利學(xué)報(bào),2006,37(10):1246-1252+1258.Zhang Zhanyu, Gao Yufang, Li longchang, et al.Optimal utilization of water resource in coastal water-deficient irrigation region[J].Journal of Hydraulic Engineering, 2006, 37(10): 1246-1252+1258.(in Chinese with English abstract)

        [3]陳衛(wèi)賓,董增川,張運(yùn)鳳.基于記憶梯度混合遺傳算法的灌區(qū)水資源優(yōu)化配置[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(6):10-13.Chen Weibin, Dong Zengchuan, Zhang Yunfeng.Optimization the allocation of irrigated areas water resources based on memory gradient hybrid genetic algorithm[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 24(6): 10-13.(in Chinese with English abstract)

        [4]代鋒剛,蔡煥杰,劉曉明,等.利用地下水模型模擬分析灌區(qū)適宜井渠灌水比例[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):45-51.Dai Fenggang, Cai Huanjie, Liu Xiaoming, et al.Analysis of suitable irrigation water ratio of well to channel based on groundwater model [J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28 (15): 45-51.(in Chinese with English abstract)

        [5]陳述,邵東國(guó),李浩鑫,等.基于粒子群人工蜂群算法的灌區(qū)渠-塘-田優(yōu)化調(diào)配耦合模型[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30 (20):90-97.Chen Shu, Shao Dongguo, Li Haoxin, et al.Coupled allocation model for optimizing water in canal-pond-field based on artificial bee colony and particle swarm algorithm [J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(20): 90-97.(in Chinese with English abstract)

        [6] Parsinejad M, Yazdi A B, Araghinejad S, et al.Optimal water allocation in irrigation networks based on real time climatic data [J].Agricultural Water Management, 2013, 117: 1-8.

        [7] Maqsood I, Huang G H, Huang Y F, et al.ITOM: an intervalparameter two-stage optimization model for stochastic planning of water resources systems[J].Stochastic Environmental Research and Risk Assess, 2005, 19(2): 125-133.

        [8] Lu H W, Huang G H, Li H.Inexact rough-interval two-stage stochastic programming for conjunctive water allocation problems[J].Journal of Environmental Management, 2009, 91(1): 261-269.

        [9]張靜,黃國(guó)和,劉燁,等.不確定條件下的多水源聯(lián)合供水調(diào)度模型[J].水利學(xué)報(bào),2009,40(2):160-165.Zhang Jing, Huang Guohe, Liu Ye, et al.Dispatch model for combined water supply of multiple sources under the conditions of uncertainty[J].Journal of Hydraulic Engineering, 2009, 40(2): 160-165.(in Chinese with English abstract)

        [10]付銀環(huán),郭萍,方世奇,等.基于兩階段隨機(jī)規(guī)劃方法的灌區(qū)水資源優(yōu)化配置[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):73-81.Fu Yinhuan, Guo Ping, Fang Shiqi, et al.Optimal water resources planning based on interval-parameter two-stage stochastic programming[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(5): 73-81.(in Chinese with English abstract)

        [11] Li Y P, Huang G H.Inexact multistage stochastic quadratic programming method for planning water resources systems under uncertainty [J].Environmental Engineering Science, 2007, 24 (10): 1361-1377.

        [12] Li Y P, Huang G H, Nie S L, et al.Inexact multistage stochastic integer programming for water resources management under uncertainty[J].Journal of Environmental Management, 2008, 88 (1): 93-107.

        [13] Dai Z Y, Li Y P.A multistage irrigation water allocation model for agricultural land-use planning under uncertainty [J].Agricultural Water Management, 2013, 129: 69-79.

        [14]莫淑紅,段海妮,沈冰,等.考慮不確定性的區(qū)間多階段隨機(jī)規(guī)劃模型研究[J].水利學(xué)報(bào),2014,45(12):1427-1434.Mo Shuhong, Duan Haini, Shen Bing, et al.Study on an interval multi-stage stochastic programming approach[J].Journal of Hydraulic Engineering, 2014, 45(12): 1427-1434.(in Chinese with English abstract)

        [15] Li Y P, Huang G H, Nie S L.An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty [J].Advances in Water Resources, 2006, 29 (5): 776-789.

        [16]崔遠(yuǎn)來(lái),茆智,李遠(yuǎn)華.水稻水分生產(chǎn)函數(shù)時(shí)空變異規(guī)律研究[J].水科學(xué)進(jìn)展,2002,13(4):484-491.Cui Yuanlai, Mao Zhi, Li Yuanhua.Study on temporal and spatial variation of rice water production function[J].Advances in Water Science, 2002, 13(4): 484-491.(in Chinese with English abstract)

        [17]王克全,付強(qiáng),季飛,等.查哈陽(yáng)灌區(qū)水稻水分生產(chǎn)函數(shù)模型及其應(yīng)用試驗(yàn)研究[J].灌溉排水學(xué)報(bào),2008,27(3):109-111.Wang Kequan, Fu Qiang, Ji Fei, et al.Water production function of rice and its application in Cha ha yang Irrigation area [J].Journal of Irrigation and Drainage, 2008, 27(3): 109-111.(in Chinese with English abstract)

        [18]程衛(wèi)國(guó),盧文喜,安永凱.吉林省水稻水分生產(chǎn)函數(shù)模型的適應(yīng)性研究[J].灌溉排水學(xué)報(bào),2015,34(2):61-66.Cheng Weiguo, Lu Wenxi, An Yongkai.Adaptability of water production function model for rice Jilin Province [J].Journal of Irrigation and Drainage, 2015, 34(2): 61-66.(in Chinese with English abstract)

        [19] Huang G H, Baetz B W, Patry G G.Capacity planning for municipal solid waste management systems under uncertainty—a grey fuzzy dynamic programming(GFDP)approach[J].J Urban Plan, 1994, 120: 132-156.

        [20]峁智,崔遠(yuǎn)來(lái),李遠(yuǎn)華.水稻水分生產(chǎn)函數(shù)及其時(shí)空變異理論與應(yīng)用[M].北京:科學(xué)出版社,2003.

        Optimal allocation of multi-water resources in irrigation area based on interval-parameter multi-stage stochastic programming model

        Fu Qiang, Liu Yinfeng, Liu Dong, Li Tianxiao, Liu Wei, Amgad Osman
        (College of Water Conservancy and Architecture, Northeast Agricultural University, Harbin 150030, China)

        Abstract:There are many uncertain factors in the multi-source water irrigation system, along with the changes in the system environment and the effects of uncertainty, leading to dynamic characteristics of the water distribution process.Based on the water distribution characteristics of irrigation system, interval-parameter multi-stage stochastic programming model was constructed and improved to consider effect of sensitive index of various stages and water irrigation on crop production, which introduced water sensitivity index weights and made a case study over rice at different growth stages in Heping irrigation area.The study area of this paper had two water sources: the surface water and the ground water, which also could be divided into three different projects by the water intake mode: water diversion project, water lifting project and well irrigation project.At the same time, Liuhe reservoir was taken as a water external source, where all the water system constituted a complex multi-water source supply system.In this study, four stages of rice growth were selected as the research period, i.e.tillering stage, jointing stage, heading stage and milk stage.The water sensitive index weight coefficients in each growth stage were 0.37, 0.46, 0.11 and 0.06 respectively.Inflow level of different growing stage was random variables and closely related to hydrological factors such as rainfall and runoff, hence the probability density function was introduced to represent uncertainty, and discrete interval was used to show other hydrologic and economic uncertainty.Multi-stage stochastic programming model could allocate water between different phases and different growing stages under a series of inflow level.Because of the uncertainty of inflow water, a four-period(five-stage)scenario tree and improved interval-parameter multi-stage stochastic programming model were used to carry out dynamic distribution of water in multiple stages of growth.Research results showed that in the context of different inflow level, managers could determine the water sensitive index of crop growth in different stages in accordance with the weight coefficient in each growth stage.The greater weight coefficient of the water sensitive index was, the greater the impact of water shortage had on the output, hence it belonged to the key water requirement stage; the smaller weight coefficient of the water sensitive index was, the smaller the impact of water shortage had on the output, hence it belonged to the non-key water requirement stage.When inflow water was excessive, excess water could be allocated to the next stage; when inflow water was insufficient, managers needed to seek a trade-off between reducing irrigation water and increasing transfer water.Tillering stage(t=1)and elongation stage(t=2)belonged to the key water requirement stage, managers wanted to fully satisfy the water needs of crops to ensure production, hence, in these two growth stages, no water deficiency existed, water deficiency value was 0.In different inflow level, when the irrigation water could not meet the demand for water, water supply project would transfer water from external water sources to meet the distribution targets in various growth stage; heading stage(t=3)and milk stage (t=4)belonged to non-key water requirement stage, so water deficiency had little effects on crop yield, and water supply project would make water deficit choice.When inflow level was not determined, it would take a lot of risk to meet the high water demand, and also increase the punishment of water deficiency; as for the low water demand, it took less risks, meanwhile, the punishment and water use benefit was also lower, which means water supply, risk and economic benefits are interwoven with each other.Through the analysis of optimal allocation of water supply project, the relationship between external water and irrigation water supply quantity, this paper realized the dynamic distribution of multi-water source irrigation system.This model can ensure the crop yield when the irrigation water resources are rationally configured in the growing period of the crop, and effectively avoid the waste of water resources, and improve the efficiency of irrigation water, which is of great significance for sustainable use of water resources.

        Keywords:models; irrigation; crops; multi-water source in irrigation area; uncertainty; interval-parameter multi-stage stochastic programming model; optimal allocation

        作者簡(jiǎn)介:付強(qiáng),男,遼寧錦州人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土資源系統(tǒng)分析、凍融土壤水熱作用機(jī)理等方面研究。哈爾濱東北農(nóng)業(yè)大學(xué)水利與建筑學(xué)院,150030。Email:fuqiang0629@126.com。

        基金項(xiàng)目:國(guó)家自然科學(xué)基金(51479032,51279031);水利部公益性行業(yè)科研專(zhuān)項(xiàng)經(jīng)費(fèi)項(xiàng)目(201301096);黑龍江省高校長(zhǎng)江學(xué)者后備支持計(jì)劃項(xiàng)目;黑龍江省水利廳科技項(xiàng)目(201318,201503)。

        收稿日期:2015-08-17

        修訂日期:2015-11-06

        中圖分類(lèi)號(hào):TV213.9

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1002-6819(2016)-01-0132-08

        doi:10.11975/j.issn.1002-6819.2016.01.018

        猜你喜歡
        模型
        一半模型
        一種去中心化的域名服務(wù)本地化模型
        適用于BDS-3 PPP的隨機(jī)模型
        提煉模型 突破難點(diǎn)
        函數(shù)模型及應(yīng)用
        p150Glued在帕金森病模型中的表達(dá)及分布
        函數(shù)模型及應(yīng)用
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        3D打印中的模型分割與打包
        亚洲成AⅤ人在线观看无码| 97se亚洲国产综合自在线图片| 免费国精产品自偷自偷免费看 | 少妇高潮潮喷到猛进猛出小说| aaaaa级少妇高潮大片免费看 | 亚洲国产欧美日韩一区二区| 国产精品黑色丝袜在线播放 | 久久精品国产亚洲不卡| 在线亚洲日本一区二区| 中文字字幕在线中文乱码解| 国产亚洲成人av一区| 草草地址线路①屁屁影院成人| 丰满爆乳在线播放| 中国老妇女毛茸茸bbwbabes| 免费啪啪视频一区| 亚洲国产精品午夜电影| 国产一区二区三区av免费观看| 亚洲综合有码中文字幕| 日本饥渴人妻欲求不满| 少妇人妻在线无码天堂视频网| 久久国产精品-国产精品 | 国产精品爆乳在线播放| 亚洲综合天堂一二三区| 日本精品一区二区三区试看| 国产免码va在线观看免费| 午夜福利啪啪片| 大地资源中文在线观看官网第二页| 色综合另类小说图片区| 蜜桃视频网站在线免费观看| 久久精品熟女亚洲av香蕉| 天天干天天日夜夜操| 香蕉久久福利院| 99国产免费热播视频| 欧美手机在线视频| 精品国产麻豆一区二区三区| 青青草中文字幕在线播放| 乱码av麻豆丝袜熟女系列| 国产午夜亚洲精品午夜鲁丝片| 久久青青草原国产精品最新片| 亚洲精品中文字幕乱码| av狠狠色丁香婷婷综合久久|