亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于心率變異性的聯(lián)合收割機(jī)駕駛員疲勞分析與評(píng)價(jià)

        2016-04-09 03:16:52祝榮欣王金武周文琪潘振偉多天宇東北農(nóng)業(yè)大學(xué)工程學(xué)院哈爾濱50030黑龍江科技大學(xué)機(jī)械工程學(xué)院哈爾濱50022

        祝榮欣,王金武,唐 漢,周文琪,潘振偉,王 奇,多天宇(.東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱50030;2.黑龍江科技大學(xué)機(jī)械工程學(xué)院,哈爾濱50022)

        ?

        基于心率變異性的聯(lián)合收割機(jī)駕駛員疲勞分析與評(píng)價(jià)

        祝榮欣1,2,王金武1※,唐漢1,周文琪1,潘振偉1,王奇1,多天宇1
        (1.東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱150030;2.黑龍江科技大學(xué)機(jī)械工程學(xué)院,哈爾濱150022)

        摘要:為探究聯(lián)合收割機(jī)駕駛員的疲勞變化規(guī)律,應(yīng)用RM6240C多通道生理信號(hào)采集系統(tǒng),在約翰迪爾S660型聯(lián)合收割機(jī)上進(jìn)行了駕駛疲勞監(jiān)測(cè)試驗(yàn),采集了10名駕駛員120 min收獲駕駛的心電數(shù)據(jù)。選取非線性動(dòng)力學(xué)指標(biāo)樣本熵作為疲勞監(jiān)測(cè)的特征參數(shù),分析樣本熵隨駕駛時(shí)間的變化規(guī)律,確定駕駛疲勞發(fā)生時(shí)間段,對(duì)比不同作業(yè)環(huán)節(jié)的疲勞程度。結(jié)果表明:樣本熵值隨駕駛時(shí)間的增加呈下降趨勢(shì);樣本熵值與主觀駕駛疲勞程度的皮爾遜相關(guān)系數(shù)為-0.824,兩者顯著負(fù)相關(guān);根據(jù)樣本熵值判定,駕駛疲勞于50 min后開(kāi)始出現(xiàn),100 min后疲勞程度加深;轉(zhuǎn)向行駛階段比直線行駛階段的駕駛疲勞程度高?;跇颖眷氐鸟{駛疲勞判定方法可客觀的反映聯(lián)合收割機(jī)駕駛員的體力和精神疲勞狀況。

        關(guān)鍵詞:農(nóng)業(yè)機(jī)械;聯(lián)合收割機(jī);監(jiān)測(cè);駕駛疲勞;心率變異性;樣本熵

        祝榮欣,王金武,唐漢,周文琪,潘振偉,王奇,多天宇.基于心率變異性的聯(lián)合收割機(jī)駕駛員疲勞分析與評(píng)價(jià)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(01):77-83.doi:10.11975/j.issn.1002-6819.2016.01.010 http://www.tcsae.org

        Zhu Rongxin, Wang Jinwu, Tang Han, Zhou Wenqi, Pan Zhenwei, Wang Qi, Duo Tianyu.Analysis and evaluation of combine harvester driver fatigue based on heart rate variability[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(01): 77-83.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.010 http://www.tcsae.org

        0 引言

        聯(lián)合收割機(jī)是農(nóng)業(yè)生產(chǎn)中一種重要的收獲機(jī)械。與交通運(yùn)輸車(chē)輛相比,聯(lián)合收割機(jī)作業(yè)環(huán)境較差,顛簸嚴(yán)重,且駕駛員連續(xù)工作時(shí)間長(zhǎng),勞動(dòng)強(qiáng)度大,使駕駛員容易產(chǎn)生生理和心理上疲勞,駕駛機(jī)能下降,影響工作效率。目前,中國(guó)在農(nóng)業(yè)機(jī)械駕駛員疲勞方面的研究尚處于起步階段,多數(shù)生產(chǎn)企業(yè)注重于產(chǎn)品性能和質(zhì)量的提高,較少考慮駕駛舒適性;科研機(jī)構(gòu)在農(nóng)機(jī)駕駛員疲勞領(lǐng)域的研究成果也較少。趙永超根據(jù)表面肌電信號(hào)(surface electromyography,sEMG)的變化規(guī)律描述拖拉機(jī)倒車(chē)作業(yè)駕駛員頸部疲勞狀態(tài),發(fā)現(xiàn)積分肌電值、平均功率頻率、小波分解系數(shù)等特征量在疲勞前后存在顯著性差異,頭部轉(zhuǎn)動(dòng)角度對(duì)積分肌電值和平均功率頻率有明顯影響[1-2]??椎聞傄孕穆剩╤eart rate,HR)和作業(yè)時(shí)間綜合評(píng)價(jià)方法對(duì)比了機(jī)械化播種作業(yè)中駕駛進(jìn)口大功率和國(guó)產(chǎn)拖拉機(jī)的勞動(dòng)強(qiáng)度和最長(zhǎng)作業(yè)時(shí)間[3]。田曉峰等基于HR和sEMG研究了振動(dòng)對(duì)拖拉機(jī)駕駛員全身及腰部疲勞的影響,分析HR和腰部sEMG特征值隨駕駛時(shí)間、振動(dòng)頻率和振動(dòng)加速度增加的變化規(guī)律[4-6]。

        目前國(guó)內(nèi)學(xué)者多對(duì)拖拉機(jī)駕駛員的疲勞進(jìn)行分析和評(píng)價(jià),對(duì)于聯(lián)合收割機(jī)等其他農(nóng)機(jī)的駕駛疲勞研究較少,且上述研究多在模擬駕駛平臺(tái)上采集駕駛員的生理信號(hào),雖然可排除一些干擾因素,但與實(shí)際駕駛獲得的結(jié)果有所差別。評(píng)價(jià)駕駛疲勞的手段主要有HR和sEMG,這2種生理信號(hào)監(jiān)測(cè)法具有對(duì)駕駛影響較小,對(duì)測(cè)量者無(wú)傷害的優(yōu)點(diǎn),在疲勞評(píng)價(jià)領(lǐng)域有所應(yīng)用[7-14]。研究表明,精神負(fù)荷的增加對(duì)HR信號(hào)的影響不明顯,多將HR作為衡量體力疲勞的指標(biāo),不能較好地反映體力和腦力綜合的駕駛疲勞狀況[15-16]。對(duì)于sEMG,雖可無(wú)損傷的實(shí)時(shí)反映局部肌肉活動(dòng)水平和功能狀態(tài),但同樣無(wú)法反映精神疲勞的影響。心率變異性(heart rate variability,HRV)是心電信號(hào)的另一重要分析手段,通過(guò)將每個(gè)心動(dòng)周期的心率差異數(shù)量化來(lái)評(píng)價(jià)自主神經(jīng)性活動(dòng),定量評(píng)估工作負(fù)荷中心臟交感和迷走神經(jīng)張力及其平衡性,可同時(shí)表達(dá)體力疲勞和精神疲勞對(duì)人體的影響,已有研究使用HRV反映人在駕駛工作中綜合疲勞程度的變化[17-20],該方法預(yù)期能夠更為科學(xué)地描述聯(lián)合收割機(jī)駕駛員的疲勞變化規(guī)律。HRV是典型的非線性時(shí)間序列,非線性動(dòng)力學(xué)方法有助于精確捕捉HRV信號(hào)的本質(zhì)特征,在眾多非線性分析方法中樣本熵計(jì)算方便快捷,適用于試驗(yàn)獲得的短時(shí)數(shù)據(jù),因此選取樣本熵作為駕駛疲勞分析的特征參數(shù)。

        本文基于HRV序列,通過(guò)主觀和客觀方法探究聯(lián)合收割機(jī)駕駛員的疲勞產(chǎn)生與變化機(jī)理,分析駕駛員在實(shí)際收獲駕駛中樣本熵隨駕駛時(shí)間的變化規(guī)律,探討樣本熵與駕駛疲勞程度之間的聯(lián)系,期望對(duì)聯(lián)合收割機(jī)駕駛疲勞進(jìn)行客觀的判斷與評(píng)測(cè),為進(jìn)一步開(kāi)展農(nóng)機(jī)駕駛疲勞實(shí)時(shí)檢測(cè)技術(shù)的研究提供參考。

        1 基本原理

        1.1HRV及其研究方法

        心臟搏動(dòng)在體表形成電位變化從而形成心電信號(hào)(electrocardiogram,ECG)[21],正常ECG波形如圖1所示,每個(gè)心動(dòng)周期包括P波、P-R間期、QRS波、S-T段、T波、Q-T間期和U波7個(gè)階段,QRS波群中的R波波形陡峭,幅度高,變化最劇烈,常作為ECG特征檢測(cè)的標(biāo)志。相鄰2個(gè)R波之間的時(shí)間間隔稱為R-R間期,表示心臟逐次心跳的時(shí)間差距。健康人體逐次心跳間期存在微小的變異,這種變異稱為HRV,具體體現(xiàn)為連續(xù)心跳間R-R間期時(shí)間值的微小漲落,這種微小漲落是由于腦的高級(jí)神經(jīng)活動(dòng)、中樞神經(jīng)系統(tǒng)的自發(fā)性節(jié)律活動(dòng)、呼吸活動(dòng)以及由壓力、化學(xué)感受器傳入的心血管反射活動(dòng)等因素對(duì)心臟交感神經(jīng)和副交感神經(jīng)的綜合調(diào)節(jié)作用而產(chǎn)生的,蘊(yùn)含了有關(guān)心血管調(diào)節(jié)的大量信息,可作為心血管疾病的早期診斷、病中監(jiān)護(hù)及預(yù)后評(píng)估的輔助工具,同時(shí)HRV序列也可定量評(píng)估駕駛環(huán)境中在不同負(fù)荷水平和疲勞程度下心臟交感神經(jīng)和迷走神經(jīng)活動(dòng)的緊張性、均衡性及其對(duì)心血管系統(tǒng)活動(dòng)的影響,綜合反映體力和腦力負(fù)荷產(chǎn)生疲勞的狀況[22]。

        圖1 心電信號(hào)波形圖Fig.1 Waveform of ECG

        HRV的分析方法有時(shí)域分析法、頻域分析法和非線性動(dòng)力學(xué)分析法。時(shí)域分析法是通過(guò)統(tǒng)計(jì)學(xué)離散趨勢(shì)分析法的指標(biāo)來(lái)表達(dá)R-R間期的變化[23],此種方法計(jì)算簡(jiǎn)單,但無(wú)法表達(dá)出數(shù)據(jù)中蘊(yùn)含的時(shí)間規(guī)律。頻域分析法是應(yīng)用FFT(fast fourier transformation)的經(jīng)典譜估計(jì)或自回歸AR(auto regressive)模型的現(xiàn)代譜估計(jì)方法獲得R-R間期變化曲線的功率譜密度,并按不同頻段描述HRV信號(hào)能量的分布情況[24],該法雖然能反映交感神經(jīng)、副交感神經(jīng)活動(dòng)對(duì)心率的調(diào)制作用,但將R-R間期時(shí)間序列看作是平穩(wěn)的離散信號(hào),尚屬于線性分析范疇。非線性分析法是從基于混沌和分形理論的角度,應(yīng)用回歸映象(散點(diǎn)圖)、分形維數(shù)、復(fù)雜度、熵等非線性動(dòng)力學(xué)特征量分析自主神經(jīng)系統(tǒng)的復(fù)雜性,探究HRV信號(hào)時(shí)間順序中的有用信息。HRV信號(hào)被普遍認(rèn)為是混沌或含有混沌成分的非線性、非平穩(wěn)信號(hào)[25-26],具有非周期性和非隨機(jī)性,用非線性動(dòng)力學(xué)分析法研究HRV信號(hào),沒(méi)有丟失信號(hào)中所包含的非線性信息,能夠反映心血管系統(tǒng)調(diào)節(jié)模式的變化,并能較完整地描述包含非線性成份的HRV信號(hào)本質(zhì)特征。

        1.2樣本熵

        樣本熵是一種時(shí)間序列復(fù)雜程度的度量方法[27],是在近似熵算法的基礎(chǔ)提出的,這種改進(jìn)的算法具有方法簡(jiǎn)單、運(yùn)算快速、抗干擾能力強(qiáng)、適合于短時(shí)數(shù)據(jù)等優(yōu)點(diǎn),更適合心電等生物時(shí)間序列的分析,廣泛應(yīng)用在生物醫(yī)學(xué)工程領(lǐng)域。心臟被認(rèn)為是一個(gè)復(fù)雜的非線性動(dòng)力學(xué)系統(tǒng),具有混沌特征,其交感神經(jīng)和迷走神經(jīng)相互調(diào)節(jié)的有序程度可通過(guò)HRV序列的復(fù)雜度來(lái)體現(xiàn)。研究表明[26],樣本熵可表征HRV序列的復(fù)雜程度,其數(shù)值大小能夠反映HRV序列復(fù)雜度的高低。樣本熵值越大,HRV序列的復(fù)雜度越大,說(shuō)明人體心臟的交感神經(jīng)與迷走神經(jīng)相互調(diào)節(jié)的能力高,自身調(diào)節(jié)能力強(qiáng),能夠更好地隨著外界環(huán)境的變化調(diào)整自己的狀態(tài)。樣本熵具體計(jì)算步驟如下:

        已知長(zhǎng)度為N的R-R間期時(shí)間序列{x(i),i=1,2,…,N},從任意點(diǎn)開(kāi)始,任意選取連續(xù)的m個(gè)數(shù)據(jù),構(gòu)造一組m維向量Xm(i),記為Xm(i)=[x(i),x(i+1),…,x(i+m-1)],其中i=1,2,…,N-m+1。

        定義向量Xm(i)和Xm(j)之間的距離d為向量對(duì)應(yīng)元素之差的最大絕對(duì)值,即

        HRV信號(hào)的樣本熵定義為:

        在上述計(jì)算過(guò)程中,m為重構(gòu)相空間的維數(shù),稱為嵌入維數(shù),前期研究建議選擇m=2[28];r為任意給定的距離,稱為相似容限,經(jīng)驗(yàn)得出r=(0.1-0.25)Std(Std表示數(shù)據(jù)的標(biāo)準(zhǔn)差),這里選擇r=0.15 Std。

        2 試驗(yàn)方案與數(shù)據(jù)處理

        2.1試驗(yàn)對(duì)象與設(shè)備

        為避免年齡與疾病等外部條件對(duì)心率變異性的影響,駕駛疲勞監(jiān)測(cè)試驗(yàn)選取黑龍江省農(nóng)墾總局北安分局格球山農(nóng)場(chǎng)10名職工(男性)作為試驗(yàn)樣本,年齡(34.2±7.39)歲,身高(173.6±4.16)cm,質(zhì)量(72.5±10.6)kg,且具有5a以上聯(lián)合收割機(jī)的駕駛經(jīng)驗(yàn)。所有樣本均身體健康,無(wú)心腦血管疾病,睡眠充足,且在試驗(yàn)前無(wú)疲勞癥狀,情緒穩(wěn)定,不飲含咖啡因、酒精的飲料。

        試驗(yàn)機(jī)型選擇約翰迪爾S660型聯(lián)合收割機(jī)如圖2a所示。試驗(yàn)測(cè)試儀器為RM-6240C多通道生理信號(hào)采集處理系統(tǒng),由成都儀器廠生產(chǎn),共有4個(gè)通道和1個(gè)12導(dǎo)聯(lián)ECG接口,適用于對(duì)人體心電、血壓、肌張力等體表生理信號(hào)的多道同步檢測(cè)、記錄和分析處理。心電信號(hào)采樣頻率為1 Hz~100 kHz,掃描速度為0.02~20 cm/s,靈敏度為20 μV~10 mV,儀器可通過(guò)參數(shù)設(shè)置實(shí)現(xiàn)心電信號(hào)的高通和低通濾波,同時(shí)具備強(qiáng)大的數(shù)字濾波功能,供試驗(yàn)后處理波形時(shí)使用。

        圖2 駕駛疲勞監(jiān)測(cè)試驗(yàn)現(xiàn)場(chǎng)Fig.2 Test site in monitoring experiment of driver fatigue

        2.2試驗(yàn)條件與方法

        收獲作業(yè)在黑龍江省農(nóng)墾總局北安分局格球山農(nóng)場(chǎng),收獲作物為大豆。測(cè)試時(shí)間為2014年10月1日—10 月7日,測(cè)試期間氣溫0~10℃??紤]時(shí)間和天氣等因素對(duì)試驗(yàn)的影響,選擇天氣晴朗的工作日,上午8:00—11:00點(diǎn)之間進(jìn)行試驗(yàn)。試驗(yàn)過(guò)程中駕駛室溫度變化不大,對(duì)測(cè)試結(jié)果不會(huì)產(chǎn)生影響。

        試驗(yàn)前對(duì)被試者貼電極片處皮膚進(jìn)行去死皮和去油脂等預(yù)處理工作。采用三電極的方式測(cè)量心電信號(hào),將電極片貼在左腋前線第四肋間、右側(cè)鎖骨中點(diǎn)下緣和劍突下偏右3處[29],并分別與正極、負(fù)極和參考極導(dǎo)線連接,如圖2b所示。設(shè)置多通道生理信號(hào)采集系統(tǒng)的采樣頻率為1 kHz,掃描速度為0.2 cm/s,靈敏度為1 mV。

        在收割地塊起點(diǎn)處,被試者填寫(xiě)試驗(yàn)前主觀疲勞調(diào)查問(wèn)卷,并靜坐在駕駛室中5 min,獲得駕駛前安靜時(shí)的心電數(shù)據(jù),作為基礎(chǔ)數(shù)據(jù);然后被試者開(kāi)始收獲駕駛,時(shí)速保持在8~10 km/h,測(cè)試時(shí)間為120 min,每隔20 min填寫(xiě)一次主觀疲勞調(diào)查問(wèn)卷,多通道生理信號(hào)采集儀實(shí)時(shí)采集心電信號(hào)(如圖3所示),并存儲(chǔ)在計(jì)算機(jī)中,供后續(xù)數(shù)據(jù)處理時(shí)使用;試驗(yàn)結(jié)束后再次填寫(xiě)主觀疲勞調(diào)查問(wèn)卷。

        圖3 心電信號(hào)示例(直行路段)Fig.3 ECG signal sample(straight section)

        2.3數(shù)據(jù)預(yù)處理

        試驗(yàn)結(jié)束后,將駕駛過(guò)程采集的120 min心電數(shù)據(jù)進(jìn)行分段處理,每段10 min,共12段。對(duì)每段心電信號(hào)采用bior6.8小波進(jìn)行9尺度的小波分解消除噪聲,除去工頻干擾和基線漂移;然后進(jìn)行心電信號(hào)的QRS波群檢測(cè),標(biāo)定R波的峰值點(diǎn);最后計(jì)算相鄰R波峰值點(diǎn)的時(shí)間間隔,得到每段信號(hào)的R-R間期數(shù)據(jù)。

        3 試驗(yàn)結(jié)果與分析

        3.1駕駛疲勞主觀評(píng)價(jià)

        采用被試自我疲勞評(píng)價(jià)的方式進(jìn)行疲勞主觀評(píng)測(cè)。調(diào)查問(wèn)卷的駕駛疲勞程度等級(jí)劃分為7級(jí):非常舒服、比較舒服、有點(diǎn)舒服、無(wú)影響、有點(diǎn)疲勞、比較疲勞、非常疲勞,對(duì)應(yīng)的分值為:-3、-2、-1、0、1、2、3。每等級(jí)對(duì)應(yīng)的疲勞狀態(tài)特征如表1所示。試驗(yàn)中每個(gè)樣本共填寫(xiě)7份主觀疲勞調(diào)查問(wèn)卷,對(duì)應(yīng)時(shí)刻為0、20、40、60、80、100、120 min。根據(jù)調(diào)查問(wèn)卷的結(jié)果求得各個(gè)時(shí)刻主觀疲勞程度得分的平均值,如圖4所示。

        表1 駕駛疲勞等級(jí)狀態(tài)特征Table 1 Characteristics of driver fatigue grade

        圖4 主觀疲勞程度調(diào)查結(jié)果Fig.4 Result of subjective fatigue investigation

        由圖4可知,隨著時(shí)間的增加,主觀疲勞程度逐漸加深,并且呈現(xiàn)先快后慢再快的趨勢(shì)。0~40 min曲線上升較快,說(shuō)明疲勞程度積累迅速,40~100 min疲勞程度積累較慢,而100~120 min疲勞程度積累加快。從調(diào)查問(wèn)卷可得,60 min時(shí)大多數(shù)被試者(80%)感覺(jué)到有點(diǎn)疲勞,100 min 時(shí)90%的被試者感覺(jué)到比較疲勞,120 min時(shí)90%的被試者感覺(jué)到非常疲勞。

        3.2樣本熵變化趨勢(shì)分析

        將獲得的R-R間期數(shù)據(jù)按樣本熵求解過(guò)程計(jì)算得出各個(gè)樣本各時(shí)段的樣本熵值,并取每個(gè)時(shí)段的平均值。收獲駕駛過(guò)程中樣本熵均值的變化趨勢(shì)如圖5所示。

        圖5 樣本熵變化趨勢(shì)圖Fig.5 Variation trend of SampEn

        從圖5可以看出,樣本熵隨駕駛時(shí)間的增加呈下降趨勢(shì),表明HRV序列的復(fù)雜度降低,隨著駕駛疲勞程度的加深,駕駛員心臟調(diào)控變化的能力減弱,對(duì)外界環(huán)境變化的辨別與適應(yīng)能力降低,根據(jù)收獲地塊的不同及各種儀表刺激的差異來(lái)調(diào)整自身狀態(tài)的能力下降。但是曲線在駕駛初期震蕩較大,這是由于駕駛員初期對(duì)作業(yè)地形、作物含水量等收獲條件不熟悉,需要做復(fù)雜的調(diào)試工作,情緒較緊張,因此樣本熵下降較快;隨著駕駛時(shí)間的推移,駕駛條件逐漸適應(yīng),曲線有所回升,波動(dòng)減小。

        3.3樣本熵與疲勞程度相關(guān)性分析

        為探究樣本熵的變化與駕駛疲勞程度的關(guān)系,對(duì)10~20、30~40、50~60、70~80、90~100、110~120 min時(shí)間段的樣本熵值和第2~6次主觀疲勞程度得分進(jìn)行相關(guān)性分析,利用SPSS18.0軟件,計(jì)算皮爾遜相關(guān)系數(shù)。從結(jié)果可知,樣本熵值與主觀駕駛疲勞的皮爾遜相關(guān)系數(shù)為-0.824,顯著性水平為0.006,說(shuō)明兩者之間存在顯著的線性關(guān)系且相關(guān)程度高。在聯(lián)合收割機(jī)駕駛過(guò)程中,HRV序列的樣本熵值對(duì)駕駛員疲勞的反應(yīng)較為敏感,可以反應(yīng)駕駛疲勞程度。

        3.4駕駛疲勞發(fā)生時(shí)間的確定

        通過(guò)上述樣本熵反映駕駛疲勞程度的有效性驗(yàn)證得知,樣本熵指標(biāo)可以反映駕駛疲勞,即當(dāng)某一時(shí)段樣本熵值與對(duì)比時(shí)段樣本熵值出現(xiàn)顯著性變化時(shí),說(shuō)明該時(shí)段駕駛產(chǎn)生疲勞。

        首先采用單樣本K-S檢驗(yàn)方法對(duì)試驗(yàn)獲得的各樣本各時(shí)段樣本熵值的分布規(guī)律進(jìn)行檢驗(yàn),結(jié)果表明樣本熵值(樣本數(shù)為120)為正態(tài)分布(雙側(cè)檢驗(yàn)Z=0.718,顯著性概率P=0.639>0.05)。然后選取安靜時(shí)段的樣本熵值作為參考數(shù)據(jù),記為s0,將該時(shí)段與其他12個(gè)時(shí)段的樣本熵值(記為s1,s2,...,s12)進(jìn)行配對(duì)T檢驗(yàn),分析配對(duì)樣本的平均數(shù)是否有差異,結(jié)果如表2所示。

        從表2可以看出,隨著時(shí)間的變化,t值有逐漸變大的趨勢(shì),這說(shuō)明,各時(shí)段與安靜時(shí)段樣本熵值的差異逐漸變大。根據(jù)配對(duì)T檢驗(yàn)的結(jié)果可知,50 min時(shí)樣本熵值開(kāi)始出現(xiàn)顯著性差異(顯著性水平P<0.05),說(shuō)明駕駛開(kāi)始產(chǎn)生疲勞,100 min后,樣本熵值的顯著性差異非常明顯(顯著性水平P<0.01),說(shuō)明駕駛疲勞程度進(jìn)一步加深。樣本熵值平均數(shù)差異性檢驗(yàn)表明50 min后產(chǎn)生疲勞,而駕駛疲勞主觀評(píng)測(cè)結(jié)果表明駕駛員60 min后產(chǎn)生疲勞,這主要是由于主觀疲勞評(píng)測(cè)的間隔時(shí)間與心電信號(hào)分段處理的時(shí)間不同造成的,考慮主觀疲勞評(píng)測(cè)對(duì)駕駛有影響,且較短時(shí)間主觀感受差別不大,因此填寫(xiě)調(diào)查問(wèn)卷的時(shí)間與信號(hào)分段處理時(shí)間選擇不同。

        表2 樣本熵值配對(duì)樣本檢驗(yàn)結(jié)果Table 2 Results of paired-samples T test for SampEn

        3.5不同作業(yè)環(huán)節(jié)疲勞程度對(duì)比

        聯(lián)合收割機(jī)收獲駕駛包括直線收獲行駛、田邊轉(zhuǎn)向行駛2個(gè)階段,直線收獲行駛階段駕駛員需要使割臺(tái)對(duì)齊壟臺(tái),保持收割機(jī)直線行駛,而田邊轉(zhuǎn)向行駛階段駕駛員需要完成升降割臺(tái)、收割機(jī)轉(zhuǎn)向、對(duì)齊壟臺(tái),操作過(guò)程相對(duì)較多。

        將收獲駕駛過(guò)程采集的心電數(shù)據(jù)按照作業(yè)環(huán)節(jié)進(jìn)行分段,分成直行和轉(zhuǎn)向交替的若干個(gè)階段,按照前述處理過(guò)程計(jì)算各段的R-R間期數(shù)據(jù)和樣本熵,并分別取所有直行和轉(zhuǎn)向階段樣本熵的平均值,對(duì)兩者進(jìn)行比較。為判斷直行和轉(zhuǎn)向階段樣本熵平均數(shù)與安靜時(shí)段是否有差異,分別將直行和轉(zhuǎn)向階段的樣本熵值(記為ss和st)與安靜時(shí)段的樣本熵值進(jìn)行配對(duì)T檢驗(yàn),結(jié)果如表3所示。

        表3 不同作業(yè)環(huán)節(jié)樣本熵值配對(duì)T檢驗(yàn)結(jié)果Table 3 Results of paired-samples T test for SampEn in different sections

        聯(lián)合收割機(jī)駕駛員直線行駛和轉(zhuǎn)向行駛HRV序列的樣本熵均值不同,直線行駛階段的樣本熵均值為1.534±0.27,轉(zhuǎn)向行駛階段的樣本熵均值為1.312±0.14,轉(zhuǎn)向階段的樣本熵均值比直行階段的小,說(shuō)明在轉(zhuǎn)向階段心臟HRV序列的復(fù)雜度比直行階段低,駕駛員心臟調(diào)控變化的能力略弱,情緒緊張,操作復(fù)雜費(fèi)力。此外由表3可知,直行階段與安靜時(shí)段樣本熵值無(wú)顯著性差異(顯著性水平P>0.05),轉(zhuǎn)向階段與安靜時(shí)段樣本熵值存在顯著性差異(顯著性水平P<0.05),表明與安靜時(shí)段相比,轉(zhuǎn)向行駛階段產(chǎn)生駕駛疲勞,勞動(dòng)強(qiáng)度較大,而直線行駛階段的疲勞不明顯,轉(zhuǎn)向行駛階段比直線行駛階段駕駛疲勞程度高。

        4 結(jié)論

        1)基于HRV序列分析駕駛員在收獲駕駛中樣本熵隨駕駛時(shí)間的變化規(guī)律可知,隨著疲勞程度的增加,樣本熵值呈下降趨勢(shì),駕駛員對(duì)外界環(huán)境變化的辨別與適應(yīng)能力降低。

        2)樣本熵值與主觀駕駛疲勞程度的皮爾遜相關(guān)系數(shù)為-0.824,兩者顯著相關(guān),可以反映駕駛疲勞;根據(jù)駕駛過(guò)程樣本熵值判定,聯(lián)合收割機(jī)駕駛疲勞于50 min后開(kāi)始出現(xiàn),100 min后疲勞程度加深;轉(zhuǎn)向行駛階段的樣本熵均值比直行行駛階段的小,且與安靜時(shí)段存在顯著差異,轉(zhuǎn)向行駛階段比直線行駛階段的駕駛疲勞程度高。

        3)與駕駛疲勞主觀評(píng)測(cè)法相比,根據(jù)樣本熵值的變化判定疲勞的方法,可以客觀的反映聯(lián)合收割機(jī)駕駛疲勞產(chǎn)生和加深的時(shí)段,有效地分析與評(píng)價(jià)聯(lián)合收割機(jī)駕駛疲勞的產(chǎn)生和變化規(guī)律。

        [參考文獻(xiàn)]

        [1]趙永超,孔德剛.拖拉機(jī)駕駛員頸部疲勞的肌電評(píng)價(jià)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):146-150.Zhao Yongchao, Kong Degang.Evaluation of tractor drivers’neck fatigue by surface electromyogram[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(3): 146-150.(in Chinese with English abstract)

        [2]趙永超,孔德剛,劉立意.基于表面肌電信號(hào)的拖拉機(jī)駕駛員頸部疲勞研究[J].農(nóng)機(jī)化研究,2010,32(2):129-132.Zhao Yongchao, Kong Degang, Liu LiYi.Study on the fatigue of tractor drivers' neck based on SEMG[J].Journal of Agricultural Mechanization Research, 2010, 32(2): 129-132.(in Chinese with English abstract)

        [3]孔德剛,張帥,朱振英,等.機(jī)械化播種作業(yè)中駕駛員疲勞分析與評(píng)價(jià)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(8):74-78.Kong Degang, Zhang Shuai, Zhu Zhenying, et al.Driver's fatigue evaluation and analysis in mechanized sowing work [J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8): 74-78.(in Chinese with English abstract)

        [4]田曉峰,孔德剛,劉立意,等.長(zhǎng)時(shí)間振動(dòng)對(duì)拖拉機(jī)駕駛員腰部疲勞的影響研究[J].農(nóng)機(jī)化研究,2011,33(2):193-196.Tian Xiaofeng, Kong Degang, Liu LiYi, et al.Study on the influence of long-time vibration to tractor driver' low back fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(2): 193-196.(in Chinese with English abstract)

        [5]劉軍,孔德剛,劉立意,等.拖拉機(jī)座椅振動(dòng)對(duì)駕駛員腰部疲勞影響研究[J].農(nóng)機(jī)化研究,2011,33(1):53-56.Liu Jun, Kong Degang, Liu LiYi, et al.The study on the effect of tractor seat vibration to driver lumbar fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(1): 53-56.(in Chinese with English abstract)

        [6]蘇錦濤,孔德剛,李紫輝,等.拖拉機(jī)座椅振動(dòng)加速度對(duì)駕駛疲勞的影響[J].農(nóng)機(jī)化研究,2011,33(1):161-164.Su Jintao, Kong Degang, Li Zihui, et al.The impact of tractor seats vibration acceleration on drivers' driving fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(1): 161-164.(in Chinese with English abstract)

        [7]付榮榮,王宏,王琳,等.基于無(wú)線體域網(wǎng)中多生理信號(hào)駕駛疲勞檢測(cè)[J].東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,35(6):850-853.Fu Rongrong, Wang Hong,Wang Lin, et al.Detection of driver fatigue based on multi-physiological signals in wireless body area network[J].Journal of Northeastern University(Natural Science), 2014, 35(6): 850 -853.(in Chinese with English abstract)

        [8]焦昆,李增勇,陳銘,等.模擬駕駛過(guò)程中腰部疲勞的表面肌電信號(hào)分析[J].人類(lèi)工效學(xué),2004,10(3):10-12.Jiao Kun, Li Zengyong, Chen Ming, et al.sEMG analysis of lumbar fatigue during simulated driving[J].Chinese Journal of Ergonomics,2004,10(3):10-12.(in Chinesewith Englishabstract)

        [9]羅仕鑒.基于生物學(xué)反應(yīng)的駕駛舒適度研究[D].杭州:浙江大學(xué),2005.Luo Shijian.Study On Driving Comfort Based On Biological Response[D].Hangzhou: Zhejiang University, 2005.(in Chinese with English abstract)

        [10] Chen Xiaojing, Qi Chunhua, Zhu Shoulin.On study of driver’s shoulder fatigue in manual and automatic on grassland highway [J].Advanced Materials Research,2014, 3470(1030): 2054-2060.

        [11] Hostens I,Ramon H.Assessment of muscle matigue in low level monotonous task performance during car driving [J].Journal of Electromyography and KineSiology, 2005, 15(2): 266-274.

        [12]張祖懷.基于人體生理信號(hào)的駕駛疲勞研究方法及其應(yīng)用[D].哈爾濱:哈爾濱工業(yè)大學(xué),2006.Zhang Zuhuai.A Research Method for Driving Fatigue Based on Physiological Signal and Its Application[D].Harbin: Harbin Institute of Technology, 2006.(in Chinese with English abstract)

        [13]徐冬青.草原公路環(huán)境下連續(xù)駕駛時(shí)間對(duì)疲勞的影響研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2011.Xu Dongqing.Study on the Effect of the Continuous Driving Time on the Driving Fatigue Under Environment of Prairie Highway[D].Hohhot:InnerMongoliaAgriculturalUniversity,2011.(in Chinese with English abstract)

        [14]王琳虹,李世武,高振海,等.基于粒子群優(yōu)化與支持向量機(jī)的駕駛員疲勞等級(jí)判別[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2014,46 (12):102-107.Wang Linhong, Li Shiwu, Gao Zhenhai, et al.A driver fatigue level recognition model based on particle swarm optimization and support vector machine[J].Journal of Harbin Institute of Technology, 2014, 46(12): 102-107.(in Chinese with English abstract)

        [15] Lee D H,Park K S.Multivariate analysis of mental and physical load components in sinus arrhythmia scores [J].Ergonomics.1990,33(1):35-47.

        [16]董占勛,孫守遷,吳群,等.心率變異性與駕駛疲勞相關(guān)性研究[J].浙江大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,44(1):46-50.Dong Zhanxun, Sun Shouqian, Wu Qun, et al.Study of correlation between heart rate variability and driving fatigue[J].Journal of Zhejiang University(Natural Science), 2010, 44(1): 46-50.(in Chinese with English abstract)

        [17] Jiao Kun,Li Zengyong,Chen Ming.Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers[J].Int Arch Occup Environ Health,2004,77(5):205-212.

        [18]付川云.疲勞狀態(tài)下駕駛?cè)松砑把蹌?dòng)特征研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2011.Fu Chuanyun.Research on Physiological and Eye Movement Characteristics of Driver Under Fatigue Condition [D].Haerbin: Harbin Institute of Technology, 2011.(in Chinese with English abstract)

        [19]楊程程.駕駛疲勞檢測(cè)研究[D].沈陽(yáng):遼寧師范大學(xué),2014.Yang Chengcheng.The Study on the Detection of Driving Fatigue[D].Shengyang: Liaoning Normal University, 2014.(in Chinese with English abstract)

        [20] Zuz.ewicz K, Roman-Liu D, Konarska M, et al.Heart rate variability(HRV)and muscular system activity(EMG)in cases of crash threat during simulated driving of a passenger car[J].International Journal of Occupational Medicine and Environmental Health,2013,26(5):710-723.

        [21]寧新寶.生物醫(yī)學(xué)電子學(xué)[M].長(zhǎng)沙:湖南科學(xué)技術(shù)出版社,1988:20-30.

        [22]霍鋮宇.基于龐加萊散點(diǎn)圖和遞歸圖的心率變異性研究[D].南京:南京大學(xué),2014.Huo Chengyu.The Study of Heart Rate Variability Based on Poincare Scatterplot and Recursive Figure[D].Nanjing: Nanjing University, 2014.(in Chinese with English abstract)

        [23]董紅生,張愛(ài)華,邱天爽,等.基于Hilbert譜的心率變異信號(hào)時(shí)頻分析方法[J].儀器儀表學(xué)報(bào),2011,32(2):271-278.Dong Hongsheng, Zhang Aihua, Qiu Tianshuang, et al.Timefrequency analysis method of heart rate variability signal based on the Hilbert spectrum [J].Chinese Journal of Scientific Instrument, 2011, 32(2): 271-278.(in Chinese with English abstract)

        [24]彭葳,王篤明,尹爽,等.駕駛疲勞的心電和肌電信號(hào)分析[J].人類(lèi)工效學(xué),2013,19(1):24-27.Peng Wei, Wang Duming, Yin Shuang, et al.Exploring the characters of physiological signals for fatigued drivers [J].Chinese Journal of Ergonomics, 2013, 19(1): 24-27.(in Chinese with English abstract)

        [25]吳群.基于心電信號(hào)的駕駛疲勞檢測(cè)方法研究[D].杭州:浙江大學(xué),2008.Wu Qun.An ECG-based Approach to Driving Fatigue Detection [D].Hangzhou: Zhejiang University, 2008.(in Chinese with English abstract)

        [26]劉紅奪兒,朱逸,湛萍,等.短時(shí)非線性方法用于心率變異性分析[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2015,34(2):229-236.Liu Hongduoer, Zhu Yi, Zhan Ping, et al.The application of short-term nonlinear methods to heart rate variability analysis[J].Chinese Journal of Biomedical Engineering, 2015, 34(2): 229-236.(in Chinese with English abstract)

        [27] Richman J S,Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology:Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.

        [28]趙曉華,許士麗,榮建,等.基于ROC曲線的駕駛疲勞腦電樣本熵判定閾值研究[J].西南交通大學(xué)學(xué)報(bào),2013, 48(1): 178-183.Zhao Xiaohua, Xu Shili, Rong Jian, et al.Discriminating threshold of driving fatigue based on the electroencephalography sample entropy by receiver operating characteristic curve analysis[J].Journal of Southwest Jiaotong University, 2013, 48 (1): 178-183.(in Chinese with English abstract)

        [29]潘大明.心電圖學(xué)教程[M].杭州:浙江大學(xué)出版社,2008:10-15.

        Analysis and evaluation of combine harvester driver fatigue based on heart rate variability

        Zhu Rongxin1, 2, Wang Jinwu1※, Tang Han1, Zhou Wenqi1, Pan Zhenwei1, Wang Qi1, Duo Tianyu1
        (1.Engineering Institute, Northeast Agricultural University, Harbin 150030, China; 2.Mechanical Engineering Institute, Heilongjiang University of Science and Technology, Harbin 150022, China)

        Abstract:The study on combine harvester driver fatigue is important and necessary to reduce the accidents, improve the operation efficiency and protect the health of the driver.In order to explore the change rule of combine harvester driver fatigue, monitoring experiment of combine harvester driver fatigue was carried out with John Deere S660 at Gegiushan farm of Bei'an Agricultural Reclamation Administration in Heilongjiang province from October 1, 2014 to October 7, 2014.The experiment was performed in sunny day during the forenoon to eliminate the influences of time and weather on the experiment.The crops harvested were soybean, and the conditions of test land were similar.The noise of cab was 95 dB(A), of which temperature basically remain unchanged.The monitoring equipment was RM-6240C multi-channel physiological signal acquisition processing system produced by Chengdu Instrument Factory with four channels and one interface of 12 lead ECG, which is suitable for multi-channel synchronous detection, records and analysis of human body physiological signal such as Electrocardiogram(ECG), blood pressure, muscle tension.Before the test, skin preparation work was carried out such as removing dead skin, oil and grease.ECG signals were measured by three electrodes method; The electrodes were pasted on three places, for instance between the fourth rib on the left armpit front, below the right clavicle middle and the lower right of xiphoid process, which were connected with the positive(red), the negative(green)and the reference (black)wire respectively.The sampling frequency of multi-channel physiological signal acquisition system was 1 kHz, scanning speed 0.2 cm/s, sensitivity 1 mV.The ECG data of 10 male drivers sitting quietly in the cab were recorded for 5 minutes before harvesting(marked as quiet segment), at the same time subjective fatigue questionnaire were finished.Then the ECG data of drivers were recorded for 120 minutes when combine harvester running at the speed of 8~10 km/h.Subjective fatigue questionnaire were filled in every 20minutes.The ECG data collected in driving were divided into 12 parts with 10 minutes per part.The ECG data both of quiet segment and 12 parts were denoised and detected for R waveform by the way of Wavelet Transform, and then the R-R interval value of each part was computed.Nonlinear dynamic index SampEn was selected as the characteristic parameter of fatigue testing which characterizes the complexity of heart rate variability.Firstly, the change curve of SampEn along with driving time and the scores of subjective fatigue degree at specified moment were achieved, and correlation analysis was researched between SampEn and scores of subjective fatigue degree.Secondly, driver fatigue occurred time was determined by the results of paired-samples T test of SampEn between quiet segment and other 12 parts.Finally, degrees of fatigue in straight section and that of turn section were compared by the results of paired-samples T test of SampEn between each section and quiet segment respectively.The results showed that the average values of SampEn significantly declined with the increase of the driving time.Pearson correlation coefficient between SampEn and subjective fatigue score was -0.824, which showed that their relationship was negatively significant.According to the results of paired-samples T test of SampEn between quiet segment and other 12 parts, the values of SampEn of the fifth part was significantly different from that of quiet segment(P<0.05), and the values of SampEn of tenth part was very significantly different from that of quiet segment(P<0.01), which indicated that combine harvester driver fatigue began to appear after 50 minutes, and deeped after 100 minutes.The values of SampEn in turn section was significantly different from that of quiet segment(P<0.05), there was not significant difference between straight section and quiet segment(P>0.05), and the values of SampEn in turn section was smaller than that of straight section, which indicated that degree of fatigue of the former was higher than that of the latter.Compared with the subjective evaluation method of driver fatigue, determining diver fatigue method according to the change of the value of SampEn can more accurately reflect the beginning and deepening period of combine harvester driver fatigue, and objectively reflect the driver's physical and mental fatigue status.

        Keywords:agricultural machinery; combine harvester; monitoring; driver fatigue; heart rate variability; SampEn

        通信作者:※王金武,男,教授,博士生導(dǎo)師,從事田間機(jī)械與機(jī)械可靠性方面的研究。哈爾濱東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。Email:jinwuw@163.com

        作者簡(jiǎn)介:祝榮欣,女,講師,博士生,主要從事車(chē)輛人機(jī)工程方面的研究。哈爾濱東北農(nóng)業(yè)大學(xué)工程學(xué)院,150030。Email:zhu-rongxin@126.com

        基金項(xiàng)目:國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2014BAD06B04);國(guó)家自然科學(xué)基金資助項(xiàng)目(51205056)

        收稿日期:2015-08-16

        修訂日期:2015-11-12

        中圖分類(lèi)號(hào):TB18

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1002-6819(2016)-01-0077-07

        doi:10.11975/j.issn.1002-6819.2016.01.010

        亚洲s色大片在线观看| 国产亚洲精品日韩香蕉网| 国产精品亚洲精品日韩动图| 亚洲中文字幕剧情类别| 国产伦精品一区二区三区妓女| 亚洲视频在线一区二区| 精品www日韩熟女人妻| 欧美中文字幕在线| 人妻丰满少妇一二三区| 国产精品国产自产自拍高清av| 国产精品亚洲а∨天堂2021| 亚洲国产中文在线二区三区免 | 少妇厨房愉情理伦bd在线观看| 84pao强力打造免费视频34| 日本一区二区三区啪啪| 伊人久久大香线蕉综合av| 亚洲久悠悠色悠在线播放| 少妇无码吹潮| 美女一级毛片免费观看97| 偷拍一区二区三区黄片| 亚洲av不卡无码国产| 人妻少妇看a偷人无码精品| 亚洲欧美成人中文在线网站| 99蜜桃在线观看免费视频| 国产精品 亚洲 无码 在线| 中国极品少妇videossexhd| 久久精品国产亚洲av桥本有菜| 亚洲av无一区二区三区久久蜜桃| 欧美 国产 综合 欧美 视频| 日本丰满妇人成熟免费中文字幕| 手机免费在线观看日韩av| 蜜桃av精品一区二区三区| 亚洲色欲久久久久综合网 | 人人妻人人澡人人爽欧美一区| 日日猛噜噜狠狠扒开双腿小说 | 国产一级一厂片内射视频播放 | 成熟丰满熟妇高潮xxxxx视频| 亚洲韩国在线| 天堂丝袜美腿在线观看| 国产精品久线在线观看| 人妻丰满多毛熟妇免费区|