亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于機(jī)插晚稻分蘗成穗特性獲取基本苗定量參數(shù)

        2016-04-09 03:16:42呂偉生曾勇軍石慶華潘曉華商慶銀譚雪明李木英胡水秀江西農(nóng)業(yè)大學(xué)雙季稻現(xiàn)代化生產(chǎn)協(xié)同創(chuàng)新中心作物生理生態(tài)與遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室江西省作物生理生態(tài)與遺傳育種重點(diǎn)實(shí)驗(yàn)室南昌330045
        關(guān)鍵詞:高產(chǎn)水稻

        呂偉生,曾勇軍,石慶華,潘曉華,黃 山,商慶銀,譚雪明,李木英,胡水秀(江西農(nóng)業(yè)大學(xué)/雙季稻現(xiàn)代化生產(chǎn)協(xié)同創(chuàng)新中心/作物生理生態(tài)與遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室/江西省作物生理生態(tài)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,南昌330045)

        ?

        基于機(jī)插晚稻分蘗成穗特性獲取基本苗定量參數(shù)

        呂偉生,曾勇軍※,石慶華,潘曉華,黃山,商慶銀,譚雪明,李木英,胡水秀
        (江西農(nóng)業(yè)大學(xué)/雙季稻現(xiàn)代化生產(chǎn)協(xié)同創(chuàng)新中心/作物生理生態(tài)與遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室/江西省作物生理生態(tài)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,南昌330045)

        摘要:為精確定量機(jī)插晚稻適宜的群體起點(diǎn),合理利用分蘗成穗,以3個(gè)晚稻(H優(yōu)518、H優(yōu)159和五優(yōu)308)高產(chǎn)品種(組合)為材料,研究了機(jī)插晚稻分蘗成穗特性及基本苗公式參數(shù)。結(jié)果表明,機(jī)插晚稻1次分蘗集中在主莖第3~7葉位,第3~6葉位為分蘗發(fā)生與成穗的優(yōu)勢(shì)葉位;2次分蘗在3/0~5/0上均有發(fā)生,但成穗以1/3和1/4為主;主要依靠1次分蘗成穗,2次分蘗成穗較少;單株分蘗成穗數(shù)4.5個(gè)左右;主莖及優(yōu)勢(shì)蘗位穗部性狀較好,穗粒結(jié)構(gòu)協(xié)調(diào),產(chǎn)量較高,對(duì)群體產(chǎn)量貢獻(xiàn)大。晚稻在4葉1心期機(jī)插,移栽分蘗缺位葉齡(bn,blemish number)為0.7~0.8,校正系數(shù)(a)為0.6左右,有效分蘗發(fā)生率(r)在0.8左右。生產(chǎn)中機(jī)插晚稻應(yīng)在保證合理基本苗的基礎(chǔ)上,爭(zhēng)取分蘗早生快發(fā),在充分發(fā)揮1次分蘗的分蘗成穗優(yōu)勢(shì)的同時(shí),合理利用低位2次分蘗成穗,以獲取適宜的穗數(shù)而實(shí)現(xiàn)高產(chǎn)。該研究揭示了高產(chǎn)條件下機(jī)插晚稻分蘗成穗規(guī)律及基本苗公式參數(shù),為大面積生產(chǎn)中機(jī)插秧基本苗精確定量及分蘗高效利用提供技術(shù)參考。

        關(guān)鍵詞:農(nóng)業(yè)機(jī)械;農(nóng)作物;機(jī)械化;機(jī)插晚稻;分蘗特性;成穗規(guī)律;基本苗;參數(shù)

        呂偉生,曾勇軍,石慶華,潘曉華,黃山,商慶銀,譚雪明,李木英,胡水秀.基于機(jī)插晚稻分蘗成穗特性獲取基本苗定量參數(shù)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(01):30-37.doi:10.11975/j.issn.1002-6819.2016.01.004 http://www.tcsae.org

        Lü Weisheng, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Huang Shan, Shang Qingyin, Tan Xueming, Li Muying, Hu Shuixiu.Calculation of quantitative parameters of basic population of machine-transplanted late rice based on its tillering and panicle formation characteristics[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32 (01): 30-37.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.004 http://www.tcsae.org

        0 引言

        水稻是中國(guó)的主要糧食作物,近年來(lái),隨著農(nóng)村勞動(dòng)力的大量轉(zhuǎn)移,水稻的栽培方式正由傳統(tǒng)的手工移栽和拋栽向機(jī)插發(fā)展。與一季稻以及移栽和拋栽雙季稻相比,雙季機(jī)插稻由于生育期短、穗型相對(duì)較小,獲得適宜的穗數(shù)對(duì)于機(jī)插稻高產(chǎn)至關(guān)重要。適宜的穗數(shù)由合理的基本苗和分蘗成穗數(shù)共同決定,合理利用分蘗成穗,是水稻高產(chǎn)栽培的重要途徑[1-2]。凌啟鴻等提出,合理基本苗為適宜穗數(shù)除以單株成穗數(shù),特定品種在特定地區(qū)適宜穗數(shù)較為穩(wěn)定,是可以求得的已知數(shù),而單株成穗數(shù)取決于移栽后的有效分蘗葉齡期內(nèi)所能產(chǎn)生的理論分蘗數(shù)及其發(fā)生率,并由此擬合了基本苗計(jì)算公式[3]。水稻出葉與分蘗遵循N-3的同伸規(guī)律(即水稻第N葉與第N-3葉的分蘗同步分化、同時(shí)伸出的生長(zhǎng)規(guī)律),據(jù)此也有學(xué)者相繼提出了理論分蘗數(shù)的計(jì)算方法[4-6]。在基本苗公式共性原理的指導(dǎo)下,各稻區(qū)先后進(jìn)行了許多本土化研究,并分別建立了相應(yīng)的基本苗公式及參數(shù)指標(biāo)。凌啟鴻等[3]通過(guò)后續(xù)研究,明確了江蘇地區(qū)5個(gè)伸長(zhǎng)節(jié)間以上的品種不同移栽方式下基本苗公式參數(shù);蔣彭炎等[7]在凌啟鴻基本苗公式基礎(chǔ)上增加了秧田帶3葉以上大分蘗成活率及大田有效分蘗期內(nèi)符合葉蘗同伸規(guī)律的分蘗發(fā)生率等指標(biāo),提出了適合早、晚手栽稻的基本苗公式;潘曉華等[8]發(fā)現(xiàn)水稻塑盤(pán)旱育拋栽存在非同伸蘗現(xiàn)象,且同伸蘗的成穗規(guī)律與濕潤(rùn)水育秧移栽也有較大差異,并據(jù)此提出了塑盤(pán)旱育拋秧基本苗公式及相關(guān)參數(shù);李剛?cè)A等[6]對(duì)云南水稻特殊高產(chǎn)生態(tài)區(qū)水稻葉蘗動(dòng)態(tài)進(jìn)行調(diào)查分析,建立了水稻單株成穗數(shù)通式與有效分蘗葉位理論分蘗數(shù)函數(shù),并確定了相關(guān)參數(shù);霍中洋[9]將基本苗公式簡(jiǎn)化,提出了雙季雜交早稻超高產(chǎn)濕潤(rùn)育秧基本苗公式及其參數(shù)。但關(guān)于雙季機(jī)插稻分蘗成穗特性及基本苗公式參數(shù)的研究目前還未見(jiàn)有報(bào)道。本研究擬通過(guò)對(duì)高產(chǎn)管理?xiàng)l件下雙季機(jī)插晚稻分蘗發(fā)生及成穗特性的分析,并在前人基本苗研究的基礎(chǔ)上,明確相關(guān)基本苗公式參數(shù),以期為雙季機(jī)插稻分蘗合理利用及適宜群體起點(diǎn)的確定提供參考依據(jù)。

        1 材料與方法

        1.1供試材料

        以H優(yōu)159(雜交秈稻,總?cè)~片數(shù)N=15,伸長(zhǎng)節(jié)間數(shù)n=5)、H優(yōu)518(雜交秈稻,總?cè)~片數(shù)N=15,伸長(zhǎng)節(jié)間數(shù)n=5)、五優(yōu)308(雜交秈稻,總?cè)~片數(shù)N=15,伸長(zhǎng)節(jié)間數(shù)n=5)等3個(gè)主推的晚稻高產(chǎn)品種(組合)為材料。

        1.2試驗(yàn)設(shè)計(jì)

        試驗(yàn)于2013-2014年在江西農(nóng)業(yè)大學(xué)產(chǎn)學(xué)研合作與人才培養(yǎng)上高創(chuàng)新基地進(jìn)行,大田土壤肥力中等,土壤含全氮2.42 g/kg、速效氮187.94 mg/kg、有機(jī)質(zhì)37.84 mg/kg、速效磷40.04 mg/kg、速效鉀78.36 mg/kg,pH值5.28。大區(qū)試驗(yàn)設(shè)計(jì),每個(gè)品種種植334 m2;2013年于6月26日播種,7月17日機(jī)插,2014年6月27日播種,7月18日機(jī)插;機(jī)械勻播,落谷密度為20 000粒/m2;硬盤(pán)基質(zhì)旱育,培育適齡壯秧(表1);采用井關(guān)乘坐式高速窄行插秧機(jī)栽插,抓秧面積1.8 cm2,栽插規(guī)格25 cm×14 cm(行距×株距),機(jī)插后及時(shí)進(jìn)行去余補(bǔ)缺(表1);氮(N)、磷(P2O5)、鉀(K2O)施用量分別為195、90、180 kg/hm2,其中磷全作基肥1次性施用,氮和鉀均按基肥∶分蘗肥∶穗肥=5∶2∶3的質(zhì)量比例分3次施用,分蘗肥與穗肥分別在機(jī)插后7 d和倒二葉抽出期施用;水分管理及其它栽培措施按高產(chǎn)方案進(jìn)行。

        表1 晚稻秧苗素質(zhì)及機(jī)插質(zhì)量Table 1 Quality of seedling and machine transplanting of late rice

        1.3調(diào)查與測(cè)定方法

        1.3.1分蘗發(fā)生及成穗狀況調(diào)查

        栽插后當(dāng)天調(diào)查機(jī)插質(zhì)量,每個(gè)品種選取3個(gè)調(diào)查點(diǎn),每點(diǎn)選取與機(jī)插質(zhì)量相近且長(zhǎng)勢(shì)較為一致的連續(xù)10穴作為追蹤調(diào)查的樣本。從栽插當(dāng)天起每3天標(biāo)記葉齡一次,并對(duì)每個(gè)莖蘗掛上標(biāo)牌(分蘗的計(jì)數(shù)標(biāo)準(zhǔn)為分蘗葉尖伸出其母莖葉鞘1 cm以上),在標(biāo)牌上記載分蘗的級(jí)次和葉位。成熟期根據(jù)各分蘗的標(biāo)牌將各級(jí)成穗的分蘗分開(kāi),單獨(dú)收獲,記錄各級(jí)次和葉位分蘗的發(fā)生數(shù)和成穗數(shù),以計(jì)算對(duì)應(yīng)的發(fā)生率和成穗率;將樣品置于尼龍網(wǎng)袋內(nèi)風(fēng)干,風(fēng)干后考種,分別測(cè)定穗長(zhǎng)、一次枝粳數(shù)、二次枝粳數(shù)、每穗粒數(shù)、結(jié)實(shí)率、千粒重等穗部性狀,并單獨(dú)稱(chēng)量各蘗位穗重及籽粒產(chǎn)量。

        分蘗發(fā)生率(%)=分蘗實(shí)際發(fā)生數(shù)/觀察株數(shù)×100%(1)分蘗成穗率(%)=分蘗成穗數(shù)/分蘗實(shí)際發(fā)生數(shù)×100%(2)

        分蘗節(jié)位用X/N表示(圖1),其中N為0時(shí)指主莖第X葉位上的一次分蘗,N為1、2……時(shí)表示主莖第N葉位一次分蘗的第X葉位上的二次分蘗。

        圖1 水稻分蘗節(jié)位示意圖[10]Fig.1  Sketch of tilling positions in rice plant

        1.3.2莖蘗動(dòng)態(tài)調(diào)查

        結(jié)合葉齡標(biāo)記和分蘗掛牌,調(diào)查記載每穴莖蘗的消長(zhǎng)動(dòng)態(tài),每3 d調(diào)查1次,一直到齊穗期,以明確始蘗葉齡期和有效分蘗臨界葉齡期。

        1.4分析與統(tǒng)計(jì)方法

        用Microsoft Excel2003軟件進(jìn)行數(shù)據(jù)輸入、計(jì)算及制圖,DPS軟件進(jìn)行統(tǒng)計(jì)分析。2 a試驗(yàn)結(jié)果趨勢(shì)基本一致,本文以2 a試驗(yàn)數(shù)據(jù)的平均值進(jìn)行分析。

        2 結(jié)果與分析

        2.1分蘗發(fā)生葉位及發(fā)生率

        表2 晚稻分蘗發(fā)生葉位及發(fā)生率Table 2  Tiller leaf position and emerging rate of late rice(%)

        由表2可知,晚稻分蘗發(fā)生葉位及各葉位分蘗的發(fā)生率在各品種間略有差異,但總體趨勢(shì)較為一致。機(jī)插稻為小苗移栽,晚稻在20 d左右秧齡時(shí)平均葉齡約4葉1心,主莖第1、2葉位分蘗全部缺位。分蘗發(fā)生起始葉位為第3葉,發(fā)生率較高,平均86.1%;最高蘗位為第9葉,發(fā)生率較低,僅7.8%;1次分蘗葉位數(shù)7個(gè),分蘗發(fā)生率約72.2%,3/0~7/0發(fā)生率較高,基本在80%以上,其中4/0、5/ 0幾乎全部發(fā)生。2次分蘗發(fā)生葉位數(shù)也較多,3/0~5/0上均有發(fā)生,平均發(fā)生率為47.5%,其中1/3和1/4發(fā)生率較高,在75.0%左右。3次分蘗等高次分蘗則未見(jiàn)發(fā)生。群體分蘗發(fā)生率58.3%~62.4%,平均60.8%。

        2.2分蘗成穗葉位及成穗率

        表3為晚稻分蘗成穗葉位及成穗率,從中可以看出,各品種分蘗成穗葉位數(shù)較發(fā)生葉位數(shù)少。其中1次分蘗成穗葉位數(shù)比發(fā)生葉位數(shù)少2個(gè),8/0、9/0等高位葉位未能成穗,2次分蘗成穗葉位數(shù)較發(fā)生葉位數(shù)少3個(gè),3/3、2/4、1/5均未見(jiàn)成穗。1次分蘗成穗率平均為75.8%,以3/0、4/0、5/0、6/0較高,平均分別為96.0%、100.0%、100.0%、91.9%,其中4/0、5/0幾乎全部發(fā)生,7/0成穗率則相對(duì)較低,僅33.2%。2次分蘗成穗率平均為29.2%,遠(yuǎn)低于1次分蘗,成穗以1/3、1/4為主,成穗率40.6%~59.2%,2/3也有部分成穗,但成穗率較低。群體成穗率在60.0%左右。從表2、表3綜合來(lái)看,各品種在3/ 0~6/0等1次分蘗葉位上不僅分蘗發(fā)生率較高,且分蘗成穗率也較高。

        表3 晚稻分蘗成穗葉位及成穗率Table 3  Panicle leaf position and panicle rate of late rice(%)

        2.3成穗莖蘗組成及其對(duì)群體產(chǎn)量的貢獻(xiàn)

        機(jī)插晚稻成穗莖蘗組成及其對(duì)群體產(chǎn)量的貢獻(xiàn)在各蘗位間有所差異,總體表現(xiàn)為隨葉位的升高呈先增后減的趨勢(shì)(表4、表5)。單株成穗數(shù)為5.44~5.83個(gè);單株產(chǎn)量13.73~15.16 g。主莖占單株穗數(shù)及單株產(chǎn)量的比例較低,平均分別為17.66%、23.18%;1次分蘗成穗數(shù)及其群體產(chǎn)量的比例分別集中在66.01%~70.37%和63.36%~68.57%,但各葉位之間差異也較大,低位和高位葉位顯著低于各中位葉位。方差分析可知,主莖第3~6葉為優(yōu)勢(shì)葉位,占單株穗數(shù)及單株產(chǎn)量的比例達(dá)77.72%、73.54%,且主要是這4個(gè)葉位上的1次分蘗,產(chǎn)量占單株產(chǎn)量的61.99%;2次分蘗穗以1/3、1/4為主,但總體比例較低。

        表4 晚稻成穗莖蘗組成Table 4  Panicles composition of stems and tillers of late rice

        表5 晚稻各葉位成穗莖蘗對(duì)群體產(chǎn)量的貢獻(xiàn)Table 5 Contribution of stems and tillers in each leaf position to population yield of late rice

        2.4成穗莖蘗的穗部性狀

        對(duì)穗部性狀的考察表明,主莖及不同葉位成穗莖蘗之間存在一定差異(表6)。各品種主莖穗在各穗部性狀上總體優(yōu)于各分蘗穗,1次分蘗穗的穗部性狀又明顯優(yōu)于2次分蘗穗,其中在枝梗數(shù)、每穗粒數(shù)、穗質(zhì)量及著粒密度等穗部性狀上差異顯著,而千粒質(zhì)量并無(wú)明顯差異。隨著分蘗葉位的升高,各穗部性狀以6/0為轉(zhuǎn)折點(diǎn),均表現(xiàn)出先變大后變小的趨勢(shì);3/0~6/0等各中部?jī)?yōu)勢(shì)葉位上的分蘗穗部性狀較好,穗粒結(jié)構(gòu)表現(xiàn)協(xié)調(diào),部分性狀與其余葉位差異顯著。

        表6 晚稻各葉位成穗莖蘗的穗部性狀Table 6 Panicle traits of stems and tillers in each leaf position of late rice

        2.5基本苗公式參數(shù)

        根據(jù)凌啟鴻[3]水稻基本苗計(jì)算基本公式,合理基本苗數(shù)(X)是適宜穗數(shù)(Y)除以每根主莖的成穗數(shù)(ES)。公式為:

        單株成穗數(shù)(ES)取決于移栽后的有效分蘗葉齡期內(nèi)產(chǎn)生的理論分蘗數(shù)(A),以及對(duì)應(yīng)的有效分蘗發(fā)生率(r)。對(duì)機(jī)插分蘗成穗特性深入分析可知,機(jī)插秧秧田期一般不產(chǎn)生分蘗,主莖數(shù)即為基本苗數(shù)。因此,單株成穗數(shù)(ES)的計(jì)算公式為:

        有效分蘗葉位數(shù)(E)與主莖總?cè)~齡(N)、伸長(zhǎng)節(jié)間數(shù)(n)、移栽葉齡(SN)、移栽分蘗缺位(bn)和校正系數(shù)(a)等有關(guān)[3],公式為:

        由上可知,機(jī)插晚稻大田期遵循N-3的葉蘗同伸規(guī)律,且大田期的有效分蘗葉位數(shù)(E)不超過(guò)9,不產(chǎn)生4次分蘗。因此,大田期主莖有效分蘗理論值(A)可選用李剛?cè)A的計(jì)算公式進(jìn)行求取[6]。公式為:

        本文在前人以上研究的基礎(chǔ)上,并根據(jù)葉蘗動(dòng)態(tài)及分蘗成穗特性,明確分蘗缺位葉齡數(shù)(bn)、夠苗葉齡、校正系數(shù)(a)及分蘗發(fā)生率(r)等主要參數(shù)。由圖2可知,晚稻在4葉1心期移栽(SN=4.5),葉齡呈近似直線的增長(zhǎng),總?cè)~齡(N)平均為15葉,伸長(zhǎng)節(jié)間數(shù)(n)為5個(gè)(表7)。雜交晚稻大田分蘗缺位時(shí)間短,大約3~6 d,bn=0.7~0.8;之后分蘗開(kāi)始迅猛增長(zhǎng),至栽后15~18天即可夠苗,夠苗葉齡為9.4~9.5(N-n葉齡期),校正系數(shù)(a)為0.5~0.6;有效分蘗葉位數(shù)E為4.2~4.3,理論分蘗數(shù)為5.6~5.8,實(shí)際成穗分蘗數(shù)4.4~4.8,有效分蘗發(fā)生率(r)0.79~0.83,穗數(shù)型品種(H優(yōu)518、H優(yōu)159)略大于大穗型品種(五優(yōu)308)。

        圖2 不同晚稻品種葉蘗動(dòng)態(tài)Fig.2 Leaf-tiller dynamic of late rice

        綜合本研究的結(jié)果,機(jī)插晚稻基本苗公式的有關(guān)參數(shù)見(jiàn)表7。高產(chǎn)實(shí)踐表明,H優(yōu)159和H優(yōu)518等穗型較小的雜交稻品種適宜穗數(shù)為360×104/hm2左右,五優(yōu)308穗型較大,適宜穗數(shù)為345×104/hm2左右。因此,在本試驗(yàn)條件下,相應(yīng)的適宜基本苗數(shù)平均為65×104/hm2左右。

        表7 晚稻基本苗公式參數(shù)Table 7 Parameter values of basic seedling calculation for machine transplanted late rice

        3 討論

        3.1機(jī)插晚稻分蘗發(fā)生與成穗規(guī)律

        水稻分蘗與成穗既受自身遺傳特性調(diào)控,又受外界環(huán)境的影響,是一個(gè)十分復(fù)雜的生物學(xué)過(guò)程[11]。在適宜的條件下,水稻出葉與分蘗遵循N-3的同伸規(guī)律,促使分蘗早生多發(fā),充分利用有效蘗位,提高成穗數(shù)和成穗率,是培育高產(chǎn)優(yōu)質(zhì)群體的一個(gè)重要環(huán)節(jié)[2,12]。李杰[12]等研究認(rèn)為,手栽稻能充分利用有效分蘗葉位,而機(jī)插稻則存在較多的有效分蘗葉位缺位。袁奇[13]、喬晶[14]、凌勵(lì)[15]、韓正光[16]、郭振華[17]等研究也表明,機(jī)插稻普遍存在低位分蘗缺位。本研究表明,在基質(zhì)旱育、播種量20 000粒/m2、秧齡為20 d左右(4葉1心期)的條件下,機(jī)插晚稻主莖第1~2葉位分蘗基本缺位,第3葉位也有部分缺位。這可能與機(jī)插秧播種量大、機(jī)插植傷重及小苗抗逆性弱等有關(guān)[3,18]。宋云生等[10]研究表明,在適宜單穴苗數(shù)及秧齡條件下,機(jī)插缽苗秧田期已有分蘗發(fā)生,且栽后緩苗期短、發(fā)苗快,呈秧田、本田兩段高峰型分蘗模式。潘曉華等[8]研究還發(fā)現(xiàn),塑盤(pán)旱育拋栽稻秧苗期存在未能按N-3規(guī)律發(fā)生的潛伏芽,可在大田分蘗前期恢復(fù)生長(zhǎng)后形成非同伸蘗。本試驗(yàn)觀察發(fā)現(xiàn),大田始蘗后遵循N-3的葉蘗同伸規(guī)律,始蘗葉位為第3葉,且葉蘗同伸性強(qiáng),說(shuō)明第1、2葉位缺位主要發(fā)生在秧田期。如果在保證正常茬口及較低漏蔸率的條件下,播種量適當(dāng)下降、移栽秧齡適當(dāng)延長(zhǎng),是否可能出現(xiàn)秧田分蘗或大田非同伸蘗,則還需要進(jìn)一步研究。

        水稻分蘗發(fā)生與成穗普遍存在優(yōu)勢(shì)葉位現(xiàn)象[12-14,19-20],在不同栽培方式下有所差異,但均表現(xiàn)為中部?jī)?yōu)勢(shì)葉位分蘗發(fā)生及成穗率高,且穗部性狀優(yōu),對(duì)群體產(chǎn)量貢獻(xiàn)大[10,21-22]。因此,充分利用有效蘗位,提高優(yōu)勢(shì)蘗位的比重,有利于優(yōu)化群體質(zhì)量,提高產(chǎn)量[12,14,23-25]。本研究顯示,晚稻分蘗發(fā)生和成穗主要在主莖第3~7葉位的1次分蘗及少量1/3和1/4等2次分蘗上;第3~6葉位的1次分蘗為優(yōu)勢(shì)葉位,分蘗發(fā)生率及成穗率均較高,穗部性狀總體較好,對(duì)群體產(chǎn)量貢獻(xiàn)較大。這與前人[12-17]的研究結(jié)果有些類(lèi)似,有所不同的是,相比一季稻雙季稻生育期短,葉片數(shù)少,有效分蘗葉位少,分蘗的發(fā)生及成穗主要為1次分蘗。可見(jiàn),雙季機(jī)插稻群體調(diào)控空間較小,應(yīng)配套合理的栽培調(diào)控措施,促使分蘗早生多發(fā),充分利用有效蘗位尤其是中部?jī)?yōu)勢(shì)蘗位,同時(shí)及時(shí)控制后期的無(wú)效分蘗,從而構(gòu)建高質(zhì)量群體。

        3.2機(jī)插晚稻莖蘗穗對(duì)產(chǎn)量的貢獻(xiàn)

        關(guān)于水稻莖蘗對(duì)產(chǎn)量的貢獻(xiàn),主要存在依靠主莖、莖蘗并重和依靠分蘗3種觀點(diǎn)。隨著肥料用量的增加及品種的改良,人們逐漸認(rèn)識(shí)到充分利用分蘗,提高群體分蘗成穗率更利于高產(chǎn)[2]。蔣彭炎[26]研究提出,水稻單株以利用4個(gè)分蘗成穗增產(chǎn)顯著,超過(guò)4個(gè)則增產(chǎn)不明顯。眾多研究表明[12,22-23,27],手栽稻分蘗穗對(duì)總產(chǎn)貢獻(xiàn)在85%左右。李杰[12]、郭振華[17]等研究認(rèn)為,機(jī)插稻分蘗產(chǎn)量對(duì)總產(chǎn)的貢獻(xiàn)低于手栽稻,為75%左右。本研究表明,機(jī)插晚稻分蘗穗產(chǎn)量占總產(chǎn)的比例為77%,其中1次分蘗穗產(chǎn)量的比例約65%,而2次分蘗僅有部分成穗,產(chǎn)量貢獻(xiàn)在10%左右??傮w來(lái)看,晚稻分蘗力相對(duì)較強(qiáng),其分蘗穗尤其是2次分蘗穗產(chǎn)量對(duì)總產(chǎn)量的貢獻(xiàn)較大,這在一定意義上說(shuō)明分蘗對(duì)其高產(chǎn)群體形成及調(diào)控的作用不可忽視。因此,機(jī)插晚稻應(yīng)在保證合理基本苗的基礎(chǔ)上,爭(zhēng)取分蘗早生快發(fā),在充分發(fā)揮1次分蘗穗對(duì)群體產(chǎn)量的貢獻(xiàn)的同時(shí),合理利用低位2次分蘗成穗,以獲取適宜的有效穗數(shù)而實(shí)現(xiàn)高產(chǎn)。

        3.3機(jī)插晚稻基本苗公式參數(shù)

        基本苗公式的提出有力促進(jìn)了水稻基本苗計(jì)算的規(guī)范化與定量化,為高光效群體起點(diǎn)的建立奠定了基礎(chǔ)。公式原理具有普遍指導(dǎo)意義,但不同稻區(qū)生態(tài)條件、栽培方式及品種類(lèi)型多樣,因此基本苗公式參數(shù)有所差異。目前關(guān)于基本苗公式及參數(shù)的研究較多[5-9],但主要集中在手栽和拋栽方式上,針對(duì)機(jī)插秧的研究較少。凌啟鴻等[5]明確了江蘇地區(qū)5個(gè)伸長(zhǎng)節(jié)間以上的品種(總?cè)~片數(shù)N 14~20葉,伸長(zhǎng)節(jié)間數(shù)n 5~7個(gè))機(jī)插小苗移栽的基本苗公式參數(shù):bn=2,a=1,r=0.7~0.8。李剛?cè)A[28]對(duì)機(jī)插粳稻的研究表明,bn機(jī)插常規(guī)粳稻為1.5,雜交粳稻為0.5;矯正系數(shù)a常規(guī)粳稻為1.5,雜交粳稻為1.0;分蘗發(fā)生率r表現(xiàn)基本一致,均為0.8左右。本研究通過(guò)對(duì)雙季機(jī)插晚稻葉蘗動(dòng)態(tài)及分蘗成穗特性的分析,初步明確了相關(guān)基本苗公式參數(shù):晚稻在4葉1心期移栽,bn=0.7~0.8,a=0.5~0.6,r=0.79~0.83。田間觀察還發(fā)現(xiàn),早稻品種(N 11~12葉,n 4個(gè))分蘗葉位較少且發(fā)生率也較低,加之bn值普遍較大,群體在N-n+1葉齡期或稍后夠苗,矯正系數(shù)較小,這有利于充分利用動(dòng)搖分蘗成穗,獲取較多的有效穗及總穎花量;而晚稻品種(N 15葉,n 5個(gè))分蘗葉位較多且發(fā)生率較高,基本在N-n葉齡期的前半期夠苗,矯正系數(shù)較大,在保證足量穗數(shù)的同時(shí)增大穗型,有利于構(gòu)建適宜的高產(chǎn)群體[3]。

        當(dāng)前推廣的機(jī)插稻,是在日本小苗寬行(30 cm)帶土機(jī)插秧技術(shù)的基礎(chǔ)上再創(chuàng)新發(fā)展起來(lái)的,這在江西、湖南等雙季稻區(qū)普遍反映機(jī)插行距偏大,穴數(shù)較少,基本苗偏低,導(dǎo)致有效穗數(shù)不足,制約雙季機(jī)插稻產(chǎn)量潛力[29-31]。同時(shí),為了降低育秧成本,雙季稻機(jī)插秧生產(chǎn)上往往是秧田播種量大、大田抓秧量少,不僅秧苗素質(zhì)差、成苗率低、秧齡彈性小,還存在秧苗帶土少、漏蔸率高、傷秧嚴(yán)重、返青慢等問(wèn)題,造成基本苗不足、成穗質(zhì)量差[31]。而針對(duì)秧苗素質(zhì)差、基本苗偏低等問(wèn)題,生產(chǎn)上則習(xí)慣采取“一炮轟”的施肥策略,既不利于高產(chǎn)群體的形成,又降低了肥料利用率。因此,本研究基于基質(zhì)旱育秧、高性能窄行插秧機(jī)栽插的農(nóng)機(jī)農(nóng)藝高產(chǎn)技術(shù),提出了適合機(jī)插晚稻高產(chǎn)的基本苗公式參數(shù)值。機(jī)插晚稻宜在提高秧苗素質(zhì)(即培育適齡壯秧)的基礎(chǔ)上保證適宜的基本苗,同時(shí)優(yōu)化肥料運(yùn)籌,從而優(yōu)化群體質(zhì)量。

        水稻分蘗發(fā)生及成穗受施肥水平、秧苗素質(zhì)、栽插規(guī)格及氣候條件等多方面的影響[1],相應(yīng)的基本苗參數(shù)也有所變化。本研究是以目前主推的高產(chǎn)品種為材料,結(jié)合生產(chǎn)實(shí)際并按高產(chǎn)栽培管理要求進(jìn)行,因此相關(guān)參數(shù)值還將做進(jìn)一步的完善和驗(yàn)證。

        4 結(jié)論

        1)在本試驗(yàn)條件下,機(jī)插晚稻1次分蘗主要發(fā)生在主莖第3~7葉位,第3~6葉位為優(yōu)勢(shì)葉位;2次分蘗在3/0~5/0上均有發(fā)生,但成穗以1/3和1/4為主;主要依靠1次分蘗成穗,2次分蘗成穗較少;單株分蘗成穗數(shù)4.5個(gè)左右;主莖及優(yōu)勢(shì)蘗位穗部性狀較好,穗粒結(jié)構(gòu)協(xié)調(diào),產(chǎn)量較高,對(duì)群體產(chǎn)量貢獻(xiàn)大。

        2)晚稻在4葉1心期移栽,移栽分蘗缺位葉齡(bn)為0.7~0.8,校正系數(shù)(a)約0.6,有效分蘗發(fā)生率(r)在0.8左右。

        3)機(jī)插晚稻應(yīng)在保證合理基本苗的基礎(chǔ)上,爭(zhēng)取分蘗早生快發(fā),充分發(fā)揮1次分蘗的分蘗成穗優(yōu)勢(shì),并合理利用低位2次分蘗成穗,以獲取適宜的有效穗而實(shí)現(xiàn)高產(chǎn)。

        [參考文獻(xiàn)]

        [1]詹可,鄒應(yīng)斌.水稻分蘗特性及成穗規(guī)律研究進(jìn)展[J].作物研究,2007,21(5):588-592.Zhan Ke, Zou Yingbin.Research progress in tillering characteristics and panicle laws of rice[J].Crop Research, 2007, 21(5): 588-592.(in Chinese with English abstract)

        [2]凌啟鴻.作物群體質(zhì)量[M].上海:上海科學(xué)技術(shù)出版社.2000: 107-144.

        [3]凌啟鴻.水稻精確定量栽培理論與技術(shù)[M].北京:中國(guó)農(nóng)業(yè)出版社,2007:76-91.

        [4]莫惠棟.根據(jù)主莖葉齡計(jì)算稻麥理論分蘗數(shù)的公式[J].中國(guó)農(nóng)業(yè)科學(xué),1983,16(2):33-36.Mo Huidong.Formulae for calculating the theoretic number of tillers in rice, wheat and barley according to main culm leaf-age [J].Chinese Journal of Rice Science, 1983, 16(2): 33-36.(in Chinese with English abstract)

        [5]莫惠棟.關(guān)于稻麥理論分蘗數(shù)計(jì)算公式的一些補(bǔ)充[J].作物學(xué)報(bào),1992,18(4):312-316.Mo Huidong.A Supplement for the calculation of theoretical number of tillers in riee, wheat and barley[J].Acta Agronomica Sinica, 1992, 18(4): 312-316.(in Chinese with English abstract)

        [6]李剛?cè)A,王紹華,楊從黨,等.超高產(chǎn)水稻適宜單株成穗數(shù)的定量計(jì)算[J].中國(guó)農(nóng)業(yè)科學(xué),2008,41(11):3556-3562.Li Ganghua, Wang Shaohua, Yang Congdang, et al.Quantitative calculation of optimum panicle number per plant of super highyield rice[J].Chinese Journal of Rice Science, 2008, 41(11): 3556-3562.(in Chinese with English abstract)

        [7]蔣彭炎,姚長(zhǎng)溪,任正龍.水稻高產(chǎn)新技術(shù):稀、少、平栽培的原理與應(yīng)用[M].杭州:浙江科學(xué)技術(shù)出版社,1989:26-30.

        [8]潘曉華,陳小榮,楊福孫.雙季水稻塑盤(pán)旱育拋栽基本苗公式的建立[J].中國(guó)水稻科學(xué),2006,20(3):290-294.Pan Xiaohua, Chen Xiaorong, Yang Fusun.Formula about basic population under scattered-Planting with dry-raised seedling in plastic trays for double-season rice[J].Chinese Journal of Rice Science, 2006, 20(3): 290-294.(in Chinese with English abstract)

        [9]霍中洋.長(zhǎng)江中游地區(qū)雙季早稻超高產(chǎn)形成特征及精確定量栽培關(guān)鍵技術(shù)研究[D].揚(yáng)州:揚(yáng)州大學(xué),2010.Huo Zhongyang.Study on Super-high Yield Formational Characteristics of Early Rice in the Double-cropping System in the Middle Reaches of the Yangtze River and its KeyTechniques of Precise and Quantitative Cultivation[D].Yangzhou: Yangzhou University, 2010.(in Chinese with English abstract)

        [10]宋云生,張洪程,戴其根,等.水稻機(jī)栽缽苗單穴苗數(shù)對(duì)分蘗成穗及產(chǎn)量的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):37-47.Song Yunsheng, Zhang Hongcheng, Dai Qigen, et al.Effect of rice potted-seedlings per hole by mechanical transplanting on tillers emergence, panicles formation and yield[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(10): 37-47.(in Chinese with English abstract)

        [11]李榮田,崔成煥,姜廷波,等.水稻品種分蘗特性對(duì)產(chǎn)量影響分析[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),1996,27(1):9-14.Li Rongtian, Cui Chenghuan, Jiang Tingquan, et al.Analysis of effect of tillering traits on yielding among rice varieties [J].Journal of Northeast Agricultural University, 1996, 27(1): 9-14.(in Chinese with English abstract)

        [12]李杰,張洪程,龔金龍,等.稻麥兩熟地區(qū)不同栽培方式超級(jí)稻分蘗特性及其與群體生產(chǎn)力的關(guān)系[J].作物學(xué)報(bào),2011,37:309-320.Li Jie, Zhang Hongcheng, Gong Jinlong, et al.Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas[J].Acta Agronomica Sinica, 2011, 37: 309-320.(in Chinese with English abstract)

        [13]袁奇,于林惠,石世杰,等.機(jī)插秧每穴栽插苗數(shù)對(duì)水稻分蘗與成穗的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2007,23(10):121-125.Yuan Qi, Yu Linhui, Shi Shijie, et al.Effects of different quantities of planting seedlings per hill on outgrowth and tiller production for machine-transplanted rice [J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2007, 23(10): 121-125.(in Chinese with English abstract)

        [14]喬晶,王強(qiáng)盛,王紹華,等.機(jī)插雜交粳稻基本苗數(shù)對(duì)分蘗發(fā)生與成穗的影響[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,33(1):6-10.Qiao Jing, Wang Qiangsheng, Wang Shaohua, et al.Effects of basic seedlings on tiller emerging and earbearing of machinetransplanted hybrid japonica rice[J].Journal of Nanjing Agricultural University, 2010, 33(1): 6-10.(in Chinese with English abstract)

        [15]凌勵(lì).機(jī)插水稻分蘗發(fā)生特點(diǎn)及配套高產(chǎn)栽培技術(shù)改進(jìn)的研究[J].江蘇農(nóng)業(yè)科學(xué),2005,(3):14-19,126.Ling Li.Study on tillering characteristics and improvement of the matching high-yielding cultivation techniques for mechanical transplanting rice[J].Jiangsu Agricultural Sciences, 2005,(3): 14-19, 126.(in Chinese with English abstract)

        [16]韓正光,韓國(guó)華,于秀梅,等.機(jī)插水稻分蘗發(fā)生特點(diǎn)及其成穗規(guī)律研究[J].上海農(nóng)業(yè)科技,2003,(5):24-25.Han Zhengguang, Han Guohua, Yu Xiumei, et al.Study on characteristics of tillering emerging and panicle law of mechanical transplanting rice[J].Shanghai Agriculture Science and Technology, 2003,(5): 24-25.(in Chinese with English abstract)

        [17]郭振華,荊愛(ài)霞,李華,等.南方粳型超級(jí)稻不同方式超高產(chǎn)栽培的分蘗特性及其與產(chǎn)量形成的關(guān)系[J].中國(guó)稻米,2012,18(1):45-49.Guo Zhenhua, Jing Aixia, Li Hua, et al.Tillering characteristics and its relationships with population productivity of super japonica rice under different cultivation methods in south [J].China Rice, 2012, 18(1): 45-49.(in Chinese with English abstract)

        [18]張洪程,龔金龍.中國(guó)水稻種植機(jī)械化高產(chǎn)農(nóng)藝研究現(xiàn)狀及發(fā)展探討[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(7):1273-1289.Zhang Hongcheng, Gong Jinlong.Research status and development discussion on high-yielding agronomy of mechanized planting rice in China[J].Chinese Journal of Rice Science, 2014, 47(7): 1273-1289.(in Chinese with English abstract)

        [19]陳惠哲,朱德峰,林賢青,等.稀植條件下雜交稻分蘗成穗規(guī)律和穗粒結(jié)構(gòu)研究[J].雜交水稻,2004,19(6):51-54.Chen Huizhe, Zhu Defeng, Lin Xianqing, et al.Studies on the tillering dynamics and panicle formation and composition of panicles of hybrid rice under sparse transplanting density [J].Hybrid Rice, 2004, 19(6): 51-54.(in Chinese with English abstract)

        [20]祁玉良,石守設(shè),魯偉林,等.不同栽植密度雜交稻分蘗成穗規(guī)律及其穗部性狀研究[J].中國(guó)農(nóng)學(xué)通報(bào),2006,22(5):177-181.Qi Yuliang, Shi Shoushe, Lu Weilin, et al.Studies on the characters of panicle and its formation rules from tillers of hybrid rice at different transplanting densities[J].Chinese Agricultural Science Bulletin, 2006, 22(5): 177-181.(in Chinese with English abstract)

        [21]周漢良,王玉珍,甄英肖.水稻蘗位優(yōu)勢(shì)的形成規(guī)律與高產(chǎn)利用研究[J].華北農(nóng)學(xué)報(bào),1998,13(1):57-60.Zhou Hanliang, Wang Yuzhen, Zhen Yingxiao, et al.Formation of the superiority of rice tillering positions and its utilization for high yield[J].Acta Agriculturae Boreali-Sinice, 1998, 13(1): 57-60.(in Chinese with English abstract)

        [22]周漢良,魯學(xué)林,鄭秋玲.水稻中位蘗的分蘗規(guī)律與生產(chǎn)力研究[J].華北農(nóng)學(xué)報(bào),2000,15(2):112-117.Zhou Hanliang, Lu Xuelin, Zheng Qiuling.Studies on tiller regularity of middle tillering part and productive forces of rice[J].Acta Agriculturae Boreali-Sinice, 2000, 15(2): 112-117.(in Chinese with English abstract)

        [23]韋還和,李超,張洪程,等.水稻甬優(yōu)12超高產(chǎn)群體分蘗特性及其與群體生產(chǎn)力的關(guān)系[J].作物學(xué)報(bào),2014,40(10):1819-1829.Wei Huanhe, Li Chao, Zhang Hongcheng, et al.Tillering characteristics and its relationship with population productivity of super-high yield rice population of Yongyou 12[J].Acta Agronomica Sinica, 2014, 40(10): 1819-1829.(in Chinese with English abstract)

        [24] Samonte S O P B, Wilson L T, Tabien R E.Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice[J].Filed Crops Res.2006, 96:313-319.

        [25] Mohapatra P K, Kariali E.Time of emergence determines the pattern of dominance of rice tillers[J].Australian Journal of Crop Science.2008, 1(2): 53-62.

        [26]蔣彭炎.科學(xué)種稻新技術(shù)[M].北京:金盾出版社,1999:5-8.

        [27]李冬霞,隗溟,廖學(xué)群.水稻不同節(jié)位和數(shù)量分蘗對(duì)經(jīng)濟(jì)產(chǎn)量的作用[J].西南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,28(3):366-368.Li Dongxia, Wei Ming, Liao Xuequn.Effects of tillering position and tiller number on economic yield of paddy rice[J].Journal of Southwest Agricultural University(natural science edition), 2006, 28(3): 366-368.(in Chinese with English abstract)

        [28]李剛?cè)A,于林惠,侯朋福,等.機(jī)插水稻適宜基本苗定量參數(shù)的獲取與驗(yàn)證[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(8):98-104.Li Ganghua, Yu Linhui, Hou Pengfu, et al.Calculation and verification of quantitative parameters of optimal planting density of machine-transplant rice[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(8): 98-104.(in Chinese with English abstract)

        [29]葉厚專(zhuān),李艷大,沈顯華,等.不同機(jī)插行距對(duì)水稻產(chǎn)量的影響[J].中國(guó)農(nóng)機(jī)化,2012(4):59-62.Ye Houzhuan, Li Yanda, Shen Xianhua, et al.Effects of different machine-transplanted row spacing on rice yield [J].Chinese Agricultural Mechanization, 2012(4): 59-62.(in Chinese with English abstract)

        [30]胡雅杰,邢志鵬,龔金龍,等.適宜機(jī)插株行距提高不同穗型粳稻產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):33-44.Hu Yajie, Xing Zhipeng, Gong Jinlong, et al.Suitable spacing in and between rows of plants by machinery improves yield of different panicle type japonica rices[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(14): 33-44.(in Chinese with English abstract)

        [31]朱德峰,陳惠哲,徐一成,等.我國(guó)雙季稻生產(chǎn)機(jī)械化制約因子與發(fā)展對(duì)策[J].中國(guó)稻米,2013,19(4):1-4.Zhu Defeng, Chen Huizhe, Xu Yicheng, et al.The countermeasures for development and constricting factors of mechanization of double rice planting in China[J].China Rice, 2013, 19(4): 1-4.(in Chinese with English abstract)

        Calculation of quantitative parameters of basic population of machinetransplanted late rice based on its tillering and panicle formation characteristics

        LüWeisheng, Zeng Yongjun※, Shi Qinghua, Pan Xiaohua, Huang Shan, Shang Qingyin, Tan Xueming, Li Muying, Hu Shuixiu
        (Collaborative Innovation Center for the Modernization Production of Double Cropping Rice, Jiangxi Agricultural University/ Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding,Nanchang 330045, China)

        Abstract:Mechanically transplanted rice has many advantages, such as stable yield, high efficiency, saving cost and freeing labor, and the area of mechanically transplanted double-rice has been larger and larger in China in recent years.However, the combination of agricultural machinery with its supporting agronomy technology, such as the optimal basic population and the rule of tillers, still needs to be further studied.In order to accurately determine planting density and make reasonable use of tillers for mechanically transplanted late rice, we examined the characteristics of tillering and panicle formation and the parameters related to basic population formulae using the combination of 3 high-yield late rice (Hyou 518, Hyou 159 and Wuyou 308)as study material.The 3 experimental materials were grown in the field of Shanggao, Jiangxi Province, China in 2013 and 2014.And the experiment was conducted under the condition of mechanically seeding and transplanting with high-yield agronomy technology during the whole growth period of late rice, and 3 replicates were for each treatment.Using the method of the tillering tracking, 10 holes of seedlings were set in each replicate to investigate the leaves and tillers emerging, panicles formation, and panicles traits on different nodes of each stem.The results showed that the primary tillers of the mechanically transplanted late rice were initiated mainly from the leaf positions of 3~7 on main stems, and the leaf positions of 3, 4, 5 and 6 was the superior positions for tiller initiation and panicle formation.The secondary tillers emerged from 3/0 to 5/0, such as 1/3, 2/3, 3/3, 1/4, 2/4 and 1/5, but panicles were formed mainly in 1/3 and 1/4.The panicle formation was mainly from the primary tillers, and the secondary tillers could form a few panicles.The panicle number per plant was about 4.5 for late hybrid rice in mechanically transplanting.Panicles on both main stems and tillers of superior leaf positions showed better properties and higher productivity, thus making greater contributions to the group yield.Appropriate number of panicles per stem, especially the panicle number of tillers of superior leaf positions is the premise of high-yield cultivation, which particularly increases the grain yield, not only for the panicle number, the branch number, the grain number, the setting percentage, the grain weight, and the spike weight, but also for more harmonious yield factors.For late hybrid rice mechanically transplanted at the stage with 4~5 leaves, the leaf age without tillering was 0.7~0.8, with the adjusting factor of 0.6 and the effective tillering rate of 0.8.In conclusion, in order to obtain a high yield of mechanically transplanted late rice, the key strategy is to ensure a reasonable number of basic seedlings, and then promote tillering as early and as much as possible, by increasing the effective tillering rate.The experiment indicates the rules of tillers emergence and panicles formation for late rice in mechanically transplanting, which provides a theoretical reference for the accurate density of planting and efficient utilization of the farm equipment in field production.According to the tilling characteristics of late rice transplanted by machine, the optimal management measures of seedling, manure, water and planting density should be further studied for giving full play to the middle tillers(tillers of superior leaf positions)of main stems.In addition, this study just includes the experimental datum of 2 years in the same late rice field, and further studies about the validation and perfection of multiple years and sites should be considered.

        Keywords:agricultural machinery; crops; mechanization; machine-transplanted late rice; tillering characteristics; rules of panicle formation; basic population; parameters

        通信作者:※曾勇軍(1978-),男,江西龍南人,副教授,主要從事水稻高產(chǎn)理論與技術(shù)研究。南昌江西農(nóng)業(yè)大學(xué)/雙季稻現(xiàn)代化生產(chǎn)協(xié)同創(chuàng)新中心/作物生理生態(tài)與遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室/江西省作物生理生態(tài)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,330045。Email:zengyj2002@163.com

        作者簡(jiǎn)介:呂偉生(1987-),男,江西信豐人,博士生,主要從事水稻機(jī)插高產(chǎn)栽培技術(shù)研究。南昌江西農(nóng)業(yè)大學(xué)/雙季稻現(xiàn)代化生產(chǎn)協(xié)同創(chuàng)新中心/作物生理生態(tài)與遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室/江西省作物生理生態(tài)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,330045。Email:Lvweisheng2008@163.com

        基金項(xiàng)目:國(guó)家科技支撐計(jì)劃(2011BAD16B04);公益性行業(yè)科研專(zhuān)項(xiàng)(201303102);國(guó)家農(nóng)業(yè)科技成果轉(zhuǎn)化資金項(xiàng)目(2013GB2C500244);江西省高等學(xué)??萍悸涞赜?jì)劃(KJLD12003);江西省水稻產(chǎn)業(yè)體系專(zhuān)項(xiàng)(JXARS-02-03);江西省研究生創(chuàng)新專(zhuān)項(xiàng)資金項(xiàng)目(YC2014-B034);中國(guó)農(nóng)業(yè)科學(xué)院水稻高效栽培技術(shù)創(chuàng)新團(tuán)隊(duì)項(xiàng)目資助

        收稿日期:2015-08-23

        修訂日期:2015-11-21

        中圖分類(lèi)號(hào):S359

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1002-6819(2016)-01-0030-08

        doi:10.11975/j.issn.1002-6819.2016.01.004

        猜你喜歡
        高產(chǎn)水稻
        什么是海水稻
        有了這種合成酶 水稻可以耐鹽了
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
        小麥高產(chǎn)栽培技術(shù)探討
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        水稻花
        文苑(2019年22期)2019-12-07 05:29:00
        秋茬蔬菜高產(chǎn)有妙招
        洋蔥高產(chǎn)栽培技術(shù)
        蘋(píng)果元蔥高產(chǎn)栽培技術(shù)
        成人免费毛片立即播放| 老少交欧美另类| 国产一区二区三区小说| 中文字幕av日韩精品一区二区| a级毛片免费观看视频| 99RE6在线观看国产精品| 久久久国产精品五月天伊人| 亚洲精品一区二在线观看| 亚洲成a∨人片在线观看无码| 欧美日韩一区二区综合| 十八岁以下禁止观看黄下载链接| 久久精品国产亚洲AV成人公司| 99精品视频69v精品视频免费| 国产在线a免费观看不卡| 白白色发布会在线观看免费| 日本大骚b视频在线| 无码精品人妻一区二区三区影院| 精品视频在线观看免费无码| 欧美性受xxxx狂喷水| 我的极品小姨在线观看| 亚洲一区二区三区2021| 小sao货水好多真紧h无码视频| 国产精品多人P群无码| 99国产精品无码专区| 色婷婷av一区二区三区丝袜美腿 | 久久综合伊人有码一区中文字幕| 日本顶级metart裸体全部| 国产精品理论片| 丰满岳乱妇在线观看中字无码 | 欧美日本国产三级在线| 欧美日韩国产乱了伦| 国产精品第一区亚洲精品| 妺妺窝人体色777777| 亚洲人成电影在线播放| 日韩在线不卡免费视频| 无码久久精品蜜桃| 成人av综合资源在线| 国产精品成熟老女人| 中文字幕人妻丝袜美腿乱| 免费观看一区二区| 日韩精品av在线一区二区|