李玉軍,趙 燕,湯 賓,張學(xué)文
(湖南農(nóng)業(yè)大學(xué)生物科學(xué)技術(shù)學(xué)院,長(zhǎng)沙410128)
?
花發(fā)育干細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)及基因調(diào)控研究進(jìn)展
李玉軍,趙 燕,湯 賓,張學(xué)文*
(湖南農(nóng)業(yè)大學(xué)生物科學(xué)技術(shù)學(xué)院,長(zhǎng)沙410128)
摘 要:植物干細(xì)胞的調(diào)控是一個(gè)動(dòng)態(tài)的、網(wǎng)絡(luò)化的過程。近年來植物干細(xì)胞相關(guān)研究已經(jīng)有了較大進(jìn)展,不斷有新的參與干細(xì)胞調(diào)控的基因和機(jī)理被發(fā)現(xiàn)。綜述了近年來植物干細(xì)胞調(diào)控相關(guān)研究進(jìn)展,重點(diǎn)針對(duì)信號(hào)轉(zhuǎn)導(dǎo)途徑和植物花器官發(fā)育干細(xì)胞調(diào)控網(wǎng)絡(luò)進(jìn)行了闡述,歸納出較清晰的基因調(diào)控路徑和模型,便于認(rèn)識(shí)植物花器官發(fā)育中干細(xì)胞的時(shí)空調(diào)控方式。
關(guān)鍵詞:花發(fā)育;干細(xì)胞;信號(hào)通路;基因調(diào)控
植物干細(xì)胞又稱為胚性細(xì)胞,是一類具有自我更新和分化能力的細(xì)胞。植物發(fā)育過程的重大事件都涉及對(duì)干細(xì)胞的調(diào)控,包括植物胚胎發(fā)育、根的生長(zhǎng)、葉的起始、花的發(fā)育以及胚珠的形成。這些事件中對(duì)干細(xì)胞的調(diào)控方式大體是相同的,都需要在分化的組織中抑制干細(xì)胞相關(guān)基因的表達(dá)使其進(jìn)入分化發(fā)育模式,而在確定的位置繼續(xù)維持干細(xì)胞的活性。
花發(fā)育干細(xì)胞調(diào)控是一個(gè)復(fù)雜的網(wǎng)絡(luò)式調(diào)控過程。細(xì)胞分裂素是干細(xì)胞重要的內(nèi)源信號(hào),而最終信號(hào)調(diào)控的關(guān)鍵是靶向WUSCHEL(WUS)基因[1]。WUS基因最早由Laux發(fā)現(xiàn)并確定其功能。WUS是特異性維持莖尖、花分生組織結(jié)構(gòu)和功能完整性的一轉(zhuǎn)錄因子,保守性的抑制干細(xì)胞分化因子的表達(dá),WUS通過調(diào)控干細(xì)胞的分裂維持干細(xì)胞數(shù)量的相對(duì)穩(wěn)定[2,3]。目前對(duì)植物干細(xì)胞的調(diào)控研究都指向?qū)US基因的相關(guān)調(diào)控研究上,在花發(fā)育過程中WUS更多的是作為負(fù)調(diào)控角色激活其他花發(fā)育參與因子,反饋抑制干細(xì)胞的活動(dòng)維持花發(fā)育模式[4,5]。WUS的調(diào)控涉及多個(gè)方面,包括基因表達(dá)所需的所有過程:內(nèi)源信號(hào)的產(chǎn)生、信號(hào)的傳遞和信號(hào)的轉(zhuǎn)導(dǎo)、信號(hào)調(diào)節(jié)作用、轉(zhuǎn)錄過程、翻譯過程以及其mRNA的降解(轉(zhuǎn)錄后調(diào)控)等,這一系列過程都將影響WUS的表達(dá),形成對(duì)植物干細(xì)胞的時(shí)空調(diào)控網(wǎng)。但近年來諸多研究表明,與干細(xì)胞調(diào)控相關(guān)因子并非都作用于WUS維持干細(xì)胞數(shù)量的平衡及分裂模式[6],可能還存在多條并行的干細(xì)胞調(diào)控途徑,WUS也并非唯一能使細(xì)胞維持干細(xì)胞特征的因子,這也說明植物干細(xì)胞的調(diào)控比預(yù)期的更加復(fù)雜。
1.1 胞外信號(hào)肽研究
體細(xì)胞胚胎發(fā)生的研究發(fā)現(xiàn),胚細(xì)胞與周邊細(xì)胞存在物理性隔離現(xiàn)象,即干細(xì)胞群外周包圍著一層較厚的細(xì)胞壁與相鄰細(xì)胞形成顯著的界線[7]?;ǚ稚M織靜止中心之上的中心區(qū)由三層細(xì)胞形成嵌套結(jié)構(gòu):L1層細(xì)胞參與防御機(jī)制的建立,L2層細(xì)胞涉及DNA修復(fù)和端粒的維護(hù),L3層細(xì)胞負(fù)責(zé)維護(hù)分生組織內(nèi)的離子平衡。其中CLV-WUS反饋調(diào)節(jié)機(jī)制就發(fā)生在這三層嵌套結(jié)構(gòu)的細(xì)胞中[8]。CLV-WUS反饋調(diào)節(jié)環(huán)路是最早被發(fā)現(xiàn)的與WUS調(diào)控相關(guān)的信號(hào)通路,CLV-WUS為受體蛋白激酶信號(hào)通路[2,9],CLAVATA3(CLV3)是分泌型的多肽,分泌到質(zhì)外后其C端經(jīng)多種蛋白酶的剪切加工以及糖基化修飾,形成具有多對(duì)內(nèi)二硫鍵的糖肽結(jié)合在細(xì)胞膜上作為胞外信號(hào)受體[10,11]。WUS信號(hào)傳遞通路中除了CLV3作為胞外信號(hào)受體外,與CLV3同屬多肽配體家族的CLEs也具有同樣的功能,多個(gè)CLEs基因的過表達(dá)可以在一定程度上修復(fù)clv3的突變表型[12,13]。CLEs偶聯(lián)多種環(huán)境響應(yīng)信號(hào)以及生理脅迫信號(hào)參與一系列植物生理反應(yīng)信號(hào)途徑[14]。在擬南芥花發(fā)育過程中有19個(gè)CLEs成員參與其發(fā)育過程,其中CLE4、CLE10、CLE17、CLE27參與花的發(fā)育過程,這些基因的缺失突變或多或少的導(dǎo)致分生組織干細(xì)胞調(diào)控的混亂,出現(xiàn)不同程度的花發(fā)育異常[15]。這說明CLEs在一定程度與CLV3存在功能冗余,即CLEs可能作為CLV3的補(bǔ)充性信號(hào)受體存在,以完善植物系統(tǒng)性修復(fù)機(jī)制,降低不可控因素對(duì)植物的危害,保證植物體自身正常的生長(zhǎng)生殖發(fā)育的進(jìn)行。此外,Engstrom研究揭示GARS家族轉(zhuǎn)錄因子HAIRY MERISTEM(HAM)參與CLV3和干細(xì)胞表達(dá)的空間位置信息的監(jiān)控過程,Atham1,2,3導(dǎo)致CLV3和WUS表達(dá)部位的細(xì)胞層整體下移;有趣的是ant ail6中的CLV3和WUS的分布位置發(fā)生了互換,且ant/ail6、ham都表現(xiàn)分生組織分布向周邊區(qū)域擴(kuò)展現(xiàn)象,但HAM與ANT/AIL6是否存在交互作用目前尚不清楚[16]。Zhou最近的研究證實(shí)HAM與WUS存在互作關(guān)系,HAM和WUS交互作用于相同的靶基因推動(dòng)下游調(diào)控事件的進(jìn)行,促進(jìn)干細(xì)胞的增值;兩者重疊表達(dá)模式中顯現(xiàn)的差異是多元干細(xì)胞微環(huán)境建立的基礎(chǔ),關(guān)于分生組織干細(xì)胞產(chǎn)生的調(diào)控機(jī)理還需要進(jìn)一步的研究[17]。
1.2 信號(hào)跨膜轉(zhuǎn)導(dǎo)復(fù)合物研究
參與CLV-WUS通路跨膜信號(hào)轉(zhuǎn)導(dǎo)中間體大多以復(fù)合物形式存在。目前已揭示的參與這一過程的復(fù)合物有5類:CLV1復(fù)合體由具有跨膜結(jié)構(gòu)的受體蛋白激酶CLV1和CLE2配體形成[18,19];CLV2信號(hào)傳導(dǎo)復(fù)合物由CLV2和CORYNE/(CRN/SOL2)組成,其中CRN/SOL2CRN是不具備胞外結(jié)構(gòu)的受體蛋白激酶[20]。CRN/SOL2復(fù)合物作為CLV2胞內(nèi)結(jié)構(gòu)域的補(bǔ)充協(xié)同CLV2完成信號(hào)轉(zhuǎn)導(dǎo)以及與其他信號(hào)傳遞復(fù)合物互作實(shí)現(xiàn)信息共享,crn/sol2出現(xiàn)與clv相似的突變表型,花分生組織WUS的表達(dá)范圍擴(kuò)大,雌蕊群異常擴(kuò)張,形成更多的雄蕊和花瓣,crn clv1出現(xiàn)明顯的表現(xiàn)累加效應(yīng),sol2在擬南芥花的第4輪長(zhǎng)出更多的心皮,同時(shí)Miwa的研究表明,CRN/SOL2復(fù)合體還參與CLEs的信號(hào)轉(zhuǎn)導(dǎo)過程[21,22]。信號(hào)由胞內(nèi)到核內(nèi)的傳遞過程涉及兩個(gè)途徑:一條是CLV1和CLV2復(fù)合物自磷酸化激活蛋白激酶MAPKs引起級(jí)聯(lián)反應(yīng),最終將信號(hào)傳遞給核內(nèi)靶基因WUS[23];另一條傳遞路徑涉及下游的一個(gè)中間信號(hào)傳遞復(fù)合體POLTERGEIST(POL1/PLL1),POL1/PLL1編碼蛋白磷酸酶,POL1/PLL1在體外磷脂PI(4)P誘導(dǎo)下結(jié)合到質(zhì)膜上與CLV1、CLV2復(fù)合物進(jìn)行互作,通過對(duì)目標(biāo)蛋白的?;屯榛揎椬饔猛瓿尚盘?hào)的靶向傳遞,POL1/ PLL1的過表達(dá)導(dǎo)致分生組織干細(xì)胞的累積[24~26]。Song研究發(fā)現(xiàn),pol1/pll1可以抑制clv突變表型,Yu的進(jìn)一步觀察發(fā)現(xiàn),pol1幾乎完全抑制clv1的突變表型,而對(duì)clv2的突變性狀只能起到部分抑制效果,這表明CLV1、CLV2共同作用于POL1/PLL1復(fù)合體參與的信號(hào)傳導(dǎo)通路,同時(shí)也提示CLV2復(fù)合物可能參與獨(dú)立于CLV1的未知信號(hào)傳遞通路,所以clv1、clv2突變表型弱于clv3[27,28]。
其他三個(gè)信號(hào)傳遞復(fù)合物是BARELY ANY MERISTEM(BAM)、RECEPTOR-LIKE2/TOADSTOOL2(RKP2/TOAD2)和ERECTA(ER)。Young等發(fā)現(xiàn),bam1bam2bam3表現(xiàn)出與clv1類似的突變表型;進(jìn)一步研究表明,BAM復(fù)合物與CLV3存在相互作用,同時(shí)BAM也參與CLEs的信號(hào)轉(zhuǎn)導(dǎo)過程,說明BAM是獨(dú)立于CLV1存在的信號(hào)轉(zhuǎn)導(dǎo)復(fù)合物[29,30]。最新研究發(fā)現(xiàn),BAM和CLV1之間表現(xiàn)的功能冗余實(shí)際上是因?yàn)樵谡G闆r下CLV1抑制BAM的表達(dá),BAM可能是CLV1表達(dá)調(diào)控機(jī)制的一環(huán),保證CLV-WUS信號(hào)通路的相對(duì)穩(wěn)定[31]。RKP2/TOAD2編碼受體蛋白激酶。有研究發(fā)現(xiàn),RKP2/TOAD2也是獨(dú)立的參與CLV3的信號(hào)轉(zhuǎn)導(dǎo)復(fù)合體之一,rpk2花分生組織突變表型弱于clv,rpk2-2在花的基部產(chǎn)生新的花序,rpk2-4通常會(huì)在心皮中形成更多的雌蕊,RKP2/TOAD2與CLV的雙突變體性狀顯現(xiàn)出較clv更嚴(yán)重的干細(xì)胞累積和WUS表達(dá)部位的異位現(xiàn)象[32,33]。Urano等證實(shí)RKP2/TOAD2與異三聚體G蛋白共同組成信號(hào)模塊將CLV3的信號(hào)傳遞到胞內(nèi),擬南芥中轉(zhuǎn)錄編碼G蛋白的基因AGB1的缺失突變體agb1表現(xiàn)出與clv相似的干細(xì)胞分布區(qū)域擴(kuò)大表型,agb1 clv2雙突變體較clv2的心皮變短而數(shù)目增多[34]。BAM和RKP2/TOAD2都是廣泛性的信號(hào)傳遞中間體,同時(shí)可以接收CLV3和CLEs信息,參與包括干細(xì)胞調(diào)控在內(nèi)的諸多植物生理信號(hào)傳導(dǎo)過程,BAM和RKP2/TOAD2可能在CLV-WUS干細(xì)胞調(diào)控信號(hào)跨膜轉(zhuǎn)導(dǎo)過程中起補(bǔ)充作用[35]。ERECTA(ER)是富含亮氨酸的類受體蛋白激酶,ER具備實(shí)現(xiàn)信號(hào)由胞外到胞內(nèi)傳遞功能的跨膜結(jié)構(gòu)域和胞外結(jié)構(gòu)域。目前的研究表明,ER作為第二條受體蛋白激酶信號(hào)通路參與花分生組織細(xì)胞中WUS表達(dá)的調(diào)控,間接影響花原基形成確定[36,37]。Uchida等研究證實(shí),ER參與的信號(hào)調(diào)控影響了干細(xì)胞的分化,從而導(dǎo)致分生組織中的干細(xì)胞積累,CLV3參與干細(xì)胞的分裂過程,clv3因?yàn)楦杉?xì)胞分裂活動(dòng)的失控而出現(xiàn)干細(xì)胞累積[38]。ER和CLV3可能參與對(duì)分生組織內(nèi)細(xì)胞分裂素緩沖機(jī)制的建立,在多種信號(hào)作用下實(shí)現(xiàn)對(duì)干細(xì)胞數(shù)量的精確調(diào)控[39]。
細(xì)胞信號(hào)調(diào)控通路對(duì)干細(xì)胞調(diào)控是非細(xì)胞自主性的。正?;òl(fā)育過程中干細(xì)胞信號(hào)調(diào)控通路(圖1)首先是保證信號(hào)的有效傳遞,響應(yīng)外界各種物理和生理性脅迫信號(hào)以及內(nèi)源信號(hào),然后將這些信號(hào)進(jìn)行綜合、解析、處理,傳遞到胞內(nèi)使干細(xì)胞分裂分化,從而保證干細(xì)胞在時(shí)間和空間上處于最適宜狀態(tài),使植物各項(xiàng)發(fā)育活動(dòng)正常進(jìn)行。
圖1 植物干細(xì)胞調(diào)控的信號(hào)轉(zhuǎn)導(dǎo)Fig.1 The pathways of stem cell signal transduction in plant
2.1 以AP2為核心偶聯(lián)細(xì)胞信號(hào)調(diào)控通路的干細(xì)胞調(diào)控網(wǎng)
大量的研究表明,分生組織與相應(yīng)的發(fā)育器官的細(xì)胞命運(yùn),取決于發(fā)育細(xì)胞的空間位置信息而非遺傳信息,對(duì)特定細(xì)胞命運(yùn)的確立依賴對(duì)特定細(xì)胞群的一系列精確而有序的調(diào)控,從而保證器官發(fā)育的正確有序進(jìn)行。在花發(fā)育初期,干細(xì)胞因WUS在中心區(qū)域的小范圍內(nèi)被激活,而CLV-WUS反饋調(diào)節(jié)環(huán)實(shí)現(xiàn)了干細(xì)胞在中心區(qū)域的數(shù)量和空間位置的穩(wěn)態(tài)。在隨后的花發(fā)育事件中對(duì)干細(xì)胞的空間、時(shí)間調(diào)控是花器官各原基正確起始的關(guān)鍵,參與花發(fā)育干細(xì)胞調(diào)控的相關(guān)因子形成了兩個(gè)相對(duì)獨(dú)立的調(diào)控網(wǎng),花發(fā)育前中期形成了以APETALA 2(AP2)為核心偶聯(lián)細(xì)胞信號(hào)調(diào)控通路的干細(xì)胞調(diào)控網(wǎng)。SQUINT(SQN)是細(xì)胞親環(huán)素CYP40的同源基因,早期的研究認(rèn)為SQN參與對(duì)AG的表達(dá)調(diào)控,Prunet等發(fā)現(xiàn)rbl-1 sqn-1 ult-1第四輪花器官中的AGAMOUS(AG)表達(dá)量下降[40]。最近的研究證實(shí),SQN是microRNA172的上游調(diào)控基因,SQN的缺失突變體表型與miRNA172具有相似之處,都出現(xiàn)花序發(fā)育異常,還發(fā)現(xiàn)ap-2的表型弱于sqn,sqn-4 ag-6較ag-6產(chǎn)生更多的花器官,且花萼花瓣的相間出現(xiàn)。這表明SQN通過miRNA172影響了花同源轉(zhuǎn)換基因的表達(dá),間接影響了干細(xì)胞的活動(dòng)[41]。巧合的是,sqn的諸多表型與表型較弱的clv相似,而在clv背景下SQN的缺失對(duì)clv的影響卻很小,因此SQN可能參與對(duì)CLV的調(diào)控,而miRNA165/166-HD-Zip III-CLV是目前已證實(shí)涉及對(duì)CLV的調(diào)控通路,所以筆者推測(cè)SQN也可能影響microRNA165/166的表達(dá)。ARGONAUTE(AGO)編碼EIF2C蛋白,研究發(fā)現(xiàn)AGO1和AGO10參與對(duì)miRNA165/166調(diào)控以及miRNA172對(duì)AP2的調(diào)控過程,其中AGO1作為miRNA的效應(yīng)蛋白通過PIWI和PAZ結(jié)構(gòu)域與HESO1(miRNA甲基化轉(zhuǎn)移酶)相互作用,結(jié)合到miRNA的3′端,形成對(duì)miRNA甲基化保護(hù)性機(jī)制[42~44];Zhu等則證實(shí)AGO10通過與AGO1的競(jìng)爭(zhēng)性結(jié)合作用解除對(duì)miRNA165/166的甲基化,并作為誘導(dǎo)劑維持miRNA165/166在分生組織干細(xì)胞中的表達(dá),因此AGO10的缺失導(dǎo)致分生組織的發(fā)育受阻甚至消失,ago10-13表現(xiàn)出雌蕊原基的異位表達(dá),心皮膨大變短,ag-10 ago10-13出現(xiàn)更為嚴(yán)重的花突變表型,花器官變少,心皮膨大更明顯甚至導(dǎo)致異位心皮的暴露[45]。Williams等闡明了JABBA(JBA)、miRNA 166、HD-ZipⅢ型轉(zhuǎn)錄因子之間的調(diào)控路徑,JBA在RNaseⅢ和RNA解旋酶的協(xié)同作用下導(dǎo)致miRNA 166的過表達(dá)從而使PHB、PHV、CAN的表達(dá)下調(diào),造成jba-1D出現(xiàn)花分生組織簇生、花序異常、雌蕊發(fā)育不良等現(xiàn)象[46]。POWERDRESS (PWR)編碼具有SANT結(jié)構(gòu)域的蛋白,Yumul等發(fā)現(xiàn)PWR促進(jìn)miRNA172和CRC的表達(dá),導(dǎo)致干細(xì)胞累積和心皮發(fā)育異常。ag-10 pwr-1的雌蕊柄伸長(zhǎng),較ag-10心皮變短且內(nèi)含異位心皮致使心皮的膨大,pwr-1和pwr-2的心皮頂端變寬;pwr-1、pwr-2、Col的相關(guān)基因的定量分析比較發(fā)現(xiàn)miRNA172和CRC的表達(dá)明顯下調(diào)[47]。
Wu等證實(shí)miRNA172參與了對(duì)AP2的負(fù)調(diào)控過程,miRNA172的過表達(dá)導(dǎo)致第2、3輪花器官的形成出現(xiàn)混亂[48]。Wollmann等認(rèn)為miRNA172通過監(jiān)管AP2的表達(dá)使第2、3輪花器官形成過程中AP2和AG的活動(dòng)處在相對(duì)平衡狀態(tài),以保證花瓣和雄蕊形態(tài)和位置的正確性,pAP3∶MIM172的部分雄蕊轉(zhuǎn)換成花瓣,pAP3∶amiR-AP2出現(xiàn)異常形態(tài)的花瓣[49]。在其他多個(gè)物種的相關(guān)研究也證實(shí)了miRNA172對(duì)AP2的表達(dá)調(diào)控是保守性的,miRNA172的缺失都會(huì)導(dǎo)致花發(fā)育的異常[50]。Grigorova等和Sitaraman等在miRNA172與AP2之間發(fā)現(xiàn)一個(gè)由SEUSS/LEUNIG(SEU/LUG)以及SPOROCYTELESS(SPL)構(gòu)成的反饋調(diào)節(jié)環(huán),在第一輪花器官的形成過程中AP2招募SEU和LUG抑制miRNA172的表達(dá),使AP2的表達(dá)上調(diào)為第二輪花器官的形成做前期準(zhǔn)備[51,52]。在SEU和LUG存在的植物細(xì)胞瞬時(shí)表達(dá)體系中,Sridhar等發(fā)現(xiàn)AG的順式作用元件驅(qū)動(dòng)的報(bào)告基因可以響應(yīng)APETALA1 (AP1)和SEPALLATA3(SEP3)介導(dǎo)的轉(zhuǎn)錄抑制活動(dòng),這表明AP1、SEP3是SEU和LUG的靶向DNA結(jié)合基因[53]。miRNA165的過表達(dá)導(dǎo)致HD-Zip III型轉(zhuǎn)錄因子(PHB、PHV、REV、ATHB-8,ATHB -15)的轉(zhuǎn)錄水平下調(diào),并影響生長(zhǎng)素合成以及生長(zhǎng)素響應(yīng)基因的表達(dá),HD-ZipⅢ過表達(dá)植株心皮極性的建立出現(xiàn)異常,著生異位心皮,心皮內(nèi)胚珠暴露,phb phv can還出現(xiàn)了多心皮現(xiàn)象[54,55]。Jia等利用短串聯(lián)目標(biāo)模擬技術(shù)(STTM)對(duì)miRNA165/166的研究發(fā)現(xiàn),miRNA165/166通過HD-Zip III影響非生物脅迫信號(hào)途徑,STTM165/166通過抑制miRNA165/166上調(diào)HD-ZipⅢ的轉(zhuǎn)錄水平,其擬南芥轉(zhuǎn)基因植株因雄蕊變短而導(dǎo)致不育[56]。
PHABULOSA(PHB)、PHAVOLUTA(PHV)、CORONA(CNA)是相互之間存在功能冗余的HD-ZipⅢ型轉(zhuǎn)錄因子。該轉(zhuǎn)錄因子包含4個(gè)功能結(jié)構(gòu)域,其中HD結(jié)構(gòu)域參與對(duì)靶基因的表達(dá)調(diào)控。Lee認(rèn)為PHB、PHV、CNA三者是通過非WUS調(diào)控途徑對(duì)干細(xì)胞進(jìn)行調(diào)控,但其機(jī)制目前尚不清楚[57]。也有資料表明HD-ZipⅢ型轉(zhuǎn)錄因子作用于生長(zhǎng)素響應(yīng)因子ARF影響分生組織區(qū)域內(nèi)的生長(zhǎng)素濃度和分布,進(jìn)而參與干細(xì)胞的調(diào)控;Lee等推測(cè)PHB、PHV、CNA三者可能與CLV表達(dá)相關(guān),HD-ZipⅢ型轉(zhuǎn)錄因子串聯(lián)CLV-WUS信號(hào)通路間接參與花發(fā)育干細(xì)胞的調(diào)控[58];Landau等證實(shí)HD-ZipⅢ也可以協(xié)同ER參與花分生組織細(xì)胞的信號(hào)傳導(dǎo)通路[59]。總之,HD-ZipⅢ型轉(zhuǎn)錄因子對(duì)干細(xì)胞的調(diào)控途徑是多樣性的。在HD-ZipⅢ的調(diào)控通路中同時(shí)還存在反饋調(diào)節(jié)機(jī)制,Brandt對(duì)rev-5、rev-6表達(dá)分析時(shí)發(fā)現(xiàn)AGO10表達(dá)受到抑制,phb phv rev分生組織中幾乎沒有AGO10的表達(dá),而phb phv rev/+出現(xiàn)AGO10表達(dá)的上調(diào),這說明HD-ZipⅢ型轉(zhuǎn)錄因子REVOLUTA(REV)與AGO10的表達(dá)調(diào)控相關(guān),HD-ZipⅢ形成了對(duì)自身表達(dá)的反饋調(diào)節(jié)環(huán)[60]。JAIBA(JAB)是植物特異性HD-ZipⅡ型轉(zhuǎn)錄因子,參與植物的避蔭反應(yīng)和激素信號(hào)通路過程,對(duì)花的形態(tài)建成有重要影響。Turchi等發(fā)現(xiàn)這類轉(zhuǎn)錄因子在光途徑介導(dǎo)下實(shí)現(xiàn)了對(duì)細(xì)胞內(nèi)生長(zhǎng)素的分布和濃度的調(diào)控,從而影響分生組織干細(xì)胞的分裂和分化,參與干細(xì)胞穩(wěn)態(tài)模式的建立[61]。JAB還參與植物生殖器官的發(fā)育過程,其T-DNA插入突變體和反義抑制轉(zhuǎn)基因植株都表現(xiàn)出不同程度的雌蕊、胚珠發(fā)育受阻、花藥發(fā)育不良以及產(chǎn)生較少花粉粒[62]。Liu等證實(shí)A類基因AP2可通過調(diào)控生長(zhǎng)素響應(yīng)因子ARF3影響局部分生組織干細(xì)胞的活性,并抑制C類基因的表達(dá),從而規(guī)范花萼花瓣原基的空間位置[63]。AP2的表達(dá)受抑制的突變體會(huì)出現(xiàn)花器中萼片原基被其它原基替代的現(xiàn)象[64]。
2.2 以AG為核心的干細(xì)胞調(diào)控網(wǎng)
擬南芥C類基因AG在花器官的形成過程中扮演著重要角色,花發(fā)育中后期形成了以AG為核心的干細(xì)胞調(diào)控網(wǎng)。ULTRAPETALA1(ULT1)編碼具有SAND結(jié)構(gòu)域的蛋白,是trxG復(fù)合物的主要組成亞基。早期的研究普遍認(rèn)為ULT1與LEAFY(LFY)協(xié)同調(diào)控AG的表達(dá),保證花發(fā)育事件在空間上的穩(wěn)定性[65,66]。Engehorn等的研究從多方面的比較證實(shí)ULT1和LFY對(duì)AG的調(diào)控是相對(duì)獨(dú)立的過程。對(duì)Col、lfy-6、ult1-1、ult1-1 lfy-6花中的AG表達(dá)水平的定量分析比較發(fā)現(xiàn),lfy-6、ult1-1 lfy-6 中AG的表達(dá)水平明顯下調(diào),而AG在ult1-1和野生型擬南芥中的表達(dá)水平相當(dāng);同時(shí)還發(fā)現(xiàn)兩者表達(dá)的時(shí)間和區(qū)域也具有差異,LFY是在第3花期的干細(xì)胞周邊區(qū)域表達(dá),而ULT1主要在第6花期的干細(xì)胞分布區(qū)域表達(dá),LFY可能是在第3花期促進(jìn)AG的轉(zhuǎn)錄水平的上調(diào),ULT1則在第6花期通過解除PcG甲基化抑制作用提高AG的表達(dá)水平[67]。Bao等鑒定了2個(gè)BRI1-LIKE(BRL)T-DNA插入突變體發(fā)現(xiàn)了嚴(yán)重的花突變表型,進(jìn)一步的研究發(fā)現(xiàn),BRL是通過直接作用于AG啟動(dòng)子上的順式作用元件促進(jìn)AG的表達(dá),同時(shí)還發(fā)現(xiàn)blr-4、blr-5在高溫脅迫下導(dǎo)致突變表型加劇。這一發(fā)現(xiàn)說明AG的調(diào)控可能串聯(lián)逆境響應(yīng)途徑[68]。Das等和Maier等發(fā)現(xiàn),bZIP轉(zhuǎn)錄因子PERIANTHIA(PAN)通過調(diào)控AG的表達(dá)影響花發(fā)育干細(xì)胞的命運(yùn),pan導(dǎo)致花器官的數(shù)目變成5的基數(shù),在短日照下pan顯現(xiàn)出與ag相似的表型,而pan2 ag4未出現(xiàn)表型累加效應(yīng),因此Maier推測(cè)AG、PAN、WUS之間組成了一個(gè)負(fù)反饋調(diào)節(jié)環(huán)調(diào)控干細(xì)胞活動(dòng)[69,70]。PAN通過限定AG表達(dá)的空間分布影響整個(gè)花器官的發(fā)育,perianthia-1的心皮發(fā)育出現(xiàn)異常,pan clv的花器官數(shù)目增多,seu pan雙突變體導(dǎo)致AG在第1輪花器官的異位表達(dá),出現(xiàn)花萼轉(zhuǎn)換成花瓣現(xiàn)象[71]。
CRABS CLAW(CRC)是YABBY家族轉(zhuǎn)錄因子成員,在許多種子植物的相關(guān)研究中都證實(shí)CRC參與了心皮極性的建立和蜜腺的發(fā)育過程[72,73]。Mayo等發(fā)現(xiàn)CRC協(xié)同JAB參與花分生組織和雌蕊的發(fā)育過程[74]。Lee等在對(duì)LFY和MADSbox基因結(jié)合位點(diǎn)進(jìn)行遺傳表達(dá)分析時(shí)發(fā)現(xiàn),LFY和MADS-box基因?qū)RC的表達(dá)具有重要作用,MADSbox基因通過其保守的結(jié)合位點(diǎn)調(diào)控CRC在蜜腺的表達(dá)[75]。KNUCKLES(KNU)、SUPERMAN(SUP)同屬于C2H2鋅指蛋白。鋅指蛋白在擬南芥中是一個(gè)龐大的群體,它們主要參與植物形態(tài)建成和環(huán)境脅迫應(yīng)答。C2H2鋅指蛋白主要通過鋅指結(jié)構(gòu)結(jié)合DNA螺旋的大溝,進(jìn)而對(duì)靶基因進(jìn)行調(diào)控[76]。KNU和SUP的T-DNA插入突變體出現(xiàn)花器官異位表達(dá),但二者在干細(xì)胞調(diào)控網(wǎng)中的地位有差異,KNU是AG的下游作用基因,而SUP與AG很可能處在同一調(diào)控層面,SUP在ag背景下的雙突變體的花發(fā)育突變性狀并未得到進(jìn)一步的凸顯[77,78]。Nibau等發(fā)現(xiàn),SUP影響赤霉素在干細(xì)胞中的濃度和分布,這意味著SUP是通過獨(dú)立于WUS的另一條未知途徑對(duì)花發(fā)育干細(xì)胞進(jìn)行調(diào)控[79]。Zhao等對(duì)黃瓜同源SUP的研究表明,SUP抑制雄蕊原基與心皮原基之間干細(xì)胞的活性,促進(jìn)雄蕊形態(tài)建成和心皮邊界的確定[80]。SUP的表達(dá)時(shí)空性分析發(fā)現(xiàn),SUP在不同花期調(diào)控不同的基因群體,在花發(fā)育的早期SUP特異性參與雄蕊原基的形成,而花發(fā)育中期參與雌蕊原基細(xì)胞的分化工作[81]。
綜上所述,對(duì)干細(xì)胞直接或間接作用的因子可歸類為三個(gè)調(diào)控群體:直接作用因子、非編碼RNA和對(duì)非編碼RNA以及AG、AP2調(diào)控的基因群。這些調(diào)控因子形成了在調(diào)控方式、時(shí)間和對(duì)象上相對(duì)獨(dú)立的兩個(gè)調(diào)控網(wǎng):以AP2為核心偶聯(lián)細(xì)胞信號(hào)調(diào)控通路的干細(xì)胞調(diào)控網(wǎng)和以AG為核心的調(diào)控網(wǎng)。其中以AP2為核心偶聯(lián)細(xì)胞信號(hào)調(diào)控通路調(diào)控網(wǎng),偶聯(lián)激素信號(hào)響應(yīng)途徑和環(huán)境脅迫響應(yīng)途徑(例如溫度、光周期等),還可能涉及細(xì)胞非自主性調(diào)控機(jī)制,在花發(fā)育的前、中期形成對(duì)花器官發(fā)育的時(shí)空信息調(diào)控體系。以AG為核心的調(diào)控網(wǎng)則通過表觀遺傳調(diào)控機(jī)制和分子動(dòng)力學(xué)調(diào)控機(jī)制,在花發(fā)育中、后期形成對(duì)花發(fā)育事件起作用的時(shí)空調(diào)控信息網(wǎng)。這兩個(gè)干細(xì)胞調(diào)控網(wǎng)相互交織形成復(fù)雜的、精確的花發(fā)育事件的調(diào)控網(wǎng)絡(luò)(圖2)。
圖2 花發(fā)育干細(xì)胞基因調(diào)控網(wǎng)絡(luò)Fig.2 The gene regulation network of stem cell in floral development
在擬南芥生長(zhǎng)發(fā)育過程中H3K27me3作用的靶基因大約有7000個(gè)?;òl(fā)育干細(xì)胞調(diào)控過程中的表觀遺傳主要涉及組蛋白甲基化機(jī)制,其調(diào)控的路徑大多與AG相關(guān),目前涉及與花發(fā)育干細(xì)胞相關(guān)的甲基化/去甲基化調(diào)控路徑有3條。其一是直接由AG通過招募PcG在H3K27me3作用下將WUS甲基化抑制WUS的表達(dá),這條途徑對(duì)WUS抑制作用是相對(duì)溫和的,主要在花的4~6時(shí)期發(fā)揮作用[82]。這個(gè)過程涉及TOPOISOMERASE1a (TOP1a)Ⅰ型拓?fù)洚悩?gòu)酶的協(xié)同作用,TOP1a可以釋放DNA復(fù)制時(shí)的扭曲力保持核小體的穩(wěn)定性以及使其密度變小,以利于PcG與靶基因DNA結(jié)合完成對(duì)靶基因的甲基化[83]。Dinh的研究揭示TOP1a可以通過DNA甲基化和H3K9me3沉默轉(zhuǎn)座子活性來維持染色體的穩(wěn)定性。Liu等最新的研究也表明,TOP1a通過改變核小體的分布來影響PcG介導(dǎo)的組蛋白修飾,而決定是否促進(jìn)PCG與靶向基因的結(jié)合關(guān)鍵在于TOP1a的5′端一個(gè)功能區(qū)[84]。因此有學(xué)者推測(cè)TOP1a通過促進(jìn)PcG介導(dǎo)的H3K27me2抑制WUS的表達(dá),因此ag-10 top1a-2花分生組織異位表達(dá)以及top1a-1出現(xiàn)花序混亂現(xiàn)象。TOP1a也可以在DNA的復(fù)制階段通過調(diào)控WUS的拷貝數(shù)來影響WUS后續(xù)的表達(dá)水平。第二條途徑是AG調(diào)控KNU表達(dá)過程涉及的組蛋白甲基化機(jī)制。KNU最早是通過對(duì)EMS誘變突變體knu -1的基因定位而被發(fā)現(xiàn),KNU編碼C2H2鋅指蛋白,對(duì)knu-1突變體的形態(tài)學(xué)觀察發(fā)現(xiàn)其雄蕊、心皮出現(xiàn)異位表達(dá)現(xiàn)象和雌蕊柄伸長(zhǎng)的現(xiàn)象。Sun將35S::KNU-AR轉(zhuǎn)入ag-1形成的轉(zhuǎn)基因植株中,發(fā)現(xiàn)其花分生組織中央的圓頂形干細(xì)胞團(tuán)發(fā)育恢復(fù)正常,這證實(shí)了KNU是AG下游對(duì)WUS進(jìn)行調(diào)控的基因[85]。然而AG-KNU的表達(dá)調(diào)控在時(shí)間上出現(xiàn)了延遲,GUS組織表達(dá)特異性分析表明,KNU在5 ~6花期開始表達(dá),而AG的表達(dá)是在第3花期開始的[86]。針對(duì)這種現(xiàn)象以及基于Petruk發(fā)現(xiàn)在細(xì)胞分裂的DNA復(fù)制過程中DNA的甲基化會(huì)被忠實(shí)的復(fù)制保留現(xiàn)象,Sun提出了甲基化稀釋原理,即已被甲基化的KNU需要AG通過與PRC2的組件ENDOSPERM 1(FIE)的競(jìng)爭(zhēng)占據(jù)FIE在KNU啟動(dòng)區(qū)域的特異性結(jié)合位點(diǎn)PERs,從而抑制甲基化忠實(shí)保留機(jī)制,在經(jīng)過大約2 d時(shí)間進(jìn)行2次細(xì)胞分裂后,KNU才有足夠多的未被甲基化的DNA拷貝啟動(dòng)自身表達(dá),行使相關(guān)功能[87,88]。事實(shí)上AG的表達(dá)模式與KNU類似,AG-WUS反饋調(diào)節(jié)通路中AG的表達(dá)相對(duì)WUS的表達(dá)也是延遲的,延遲的時(shí)間也大致相同約2 d,WUS激活A(yù)G的表達(dá)涉及一個(gè)PcG抑制因子LFY參與,AG在花發(fā)育早期也可能處于甲基化抑制狀態(tài),LFY解除PcG對(duì)AG的甲基化抑制狀態(tài),激活A(yù)G的表達(dá)[89]。PcG復(fù)合物中的兩個(gè)重要甲基轉(zhuǎn)移酶基因CURLY LEAF(CLF)和SWINGER(SWN)的功能性缺失同樣會(huì)影響干細(xì)胞的表觀遺傳調(diào)控體系[90,91]。
花的發(fā)育涉及到一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò)。目前植物花的發(fā)育研究已深入到了表觀遺傳學(xué),特別是涉及WUS表觀遺傳調(diào)控的研究工作已經(jīng)有了較大進(jìn)展,不斷有新的參與干細(xì)胞調(diào)控的基因和調(diào)控機(jī)理被發(fā)現(xiàn)。其中朱健康揭示一個(gè)組蛋白乙?;窱DM1參與植物去甲基化作用機(jī)制的建立,這個(gè)發(fā)現(xiàn)對(duì)現(xiàn)有的干細(xì)胞甲基化調(diào)控體系造成了沖擊[92]。WUS和HAM交互作用的證實(shí)和AINTEGUMENTA (ANT)和AINTEGUMENTA-LIKE(AIL)基因作用機(jī)理的進(jìn)一步揭示,都需要對(duì)干細(xì)胞調(diào)控體系進(jìn)行重新歸納總結(jié);同時(shí)花發(fā)育過程中的某些突變性狀仍然無法給出合理的解釋,需要建立更為合理的調(diào)控體系給新出現(xiàn)的調(diào)控基因和調(diào)控方式預(yù)留位置。另一方面,對(duì)干細(xì)胞調(diào)控的量化也存在困難,WUS基因表達(dá)的mRNA降解過程的相關(guān)研究也十分缺乏,而WUS基因的表達(dá)量以及干細(xì)胞的數(shù)量的精確調(diào)控是實(shí)現(xiàn)花器官正確定位的保證,例如han出現(xiàn)分生組織的發(fā)育延遲,細(xì)胞分裂模式的異常,HANABA TANARU(HAN)通過監(jiān)控干細(xì)胞的數(shù)量和位置信息參與不同花器官邊界的確定,因此需要更多的研究才能對(duì)干細(xì)胞的數(shù)量和WUS基因的表達(dá)實(shí)現(xiàn)網(wǎng)絡(luò)化的構(gòu)建和量化描述[93,94]。植物的生殖發(fā)育是植物生活史上的重要事件,在種子植物發(fā)育中花器官發(fā)育在生殖發(fā)育過程中無疑占有尤為重要的地位。生殖器官發(fā)育的復(fù)雜性取決于花器官形成的精確性要求,這種精確性要求是對(duì)干細(xì)胞和WUS的位置信息、時(shí)鐘信息、量化信息三者的協(xié)調(diào)統(tǒng)一性的調(diào)控。
本文梳理了近年來植物干細(xì)胞調(diào)控相關(guān)研究進(jìn)展,構(gòu)建了較為清晰的、多方位的植物花發(fā)育干細(xì)胞調(diào)控網(wǎng)絡(luò),旨在多方面的探討、整合相關(guān)研究形成的關(guān)于植物花發(fā)育干細(xì)胞的時(shí)空調(diào)控模式,為今后的研究提供思路和框架性認(rèn)識(shí)。
參考文獻(xiàn):
[1] Naseem M,Srivastava M,Dandekar T.Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection[J].Frontiers in Plant Science,2014,5(5):1-5.
[2] Yadav RK,Perales M,Gruel J,et al.WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J].Genes&Development,2011,25 (19):2025-2030.
[3] Ikeda M,Mitsuda N,Ohme-Takagi M.Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning[J].The Plant Cell,2009,21(11):3493 -3505.
[4] Yadav RK,Perales M,Gruel J,et al.Plant stem cell maintenance involves direct transcriptional repression of differentiation program[J].Molecular Systems Biology,2013,9(1):1-13.
[5] Yadav RK,Tavakkoli M,Reddy GV.WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors[J].Development,2010,137(21):3581-3589.
[6] Daum G,Medzihradszky A,Suzaki T,et al.A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J].Proceedings of the National Academy of Sciences,2014,111(40):14619-14624.
[7] Fransz PF,Schel JHN.An ultrastructural study on the early development of Zea mays somatic embryos[J].Canadian journal of botany,1991,69(4):858-865.
[8] Yadav RK,Tavakkoli M,Xie M,et al.A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche[J].Development,2014,141(13):2735 -2744.
[9] Durbak AR,Tax FE.CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems[J].Genetics,2011,189(1):177-194.
[10]Shinohara H,Matsubayashi Y.Arabinosylated glycopeptide hormones:new insights into CLAVATA3 structure [J].Current Opinion in Plant Biology,2010,13(5):515-519.
[11]Ohyama K,Shinohara H,Ogawa-Ohnishi M,et al.A glycopeptide regulating stem cell fate in Arabidopsis thaliana [J].Nature Chemical Biology,2009,5(8):578-580.
[12]Müller R,Borghi L,Kwiatkowska D,et al.Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling[J].The Plant Cell,2006,18(5):1188-1198.
[13]Ni J,Clark SE.Evidence for functional conservation,sufficiency,and proteolytic processing of the CLAVATA3 CLE domain[J].Plant Physiology,2006,140(2):726 -733.
[14]Song XF,Guo P,Ren SC,et al.Antagonistic peptide technology for functional dissection of CLV3/ESR genes in Arabidopsis[J].Plant Physiology,2013,161(3):1076 -1085.
[15]Jun JH,F(xiàn)iume E,Roeder AHK,et al.Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis[J].Plant Physiology,2010,154(4):1721-1736.
[16]Engstrom EM.HAM proteins promote organ indeterminacy:but how[J].Plant Signaling&Behavior,2012,7 (2):227-234.
[17]Zhou Y,Liu X,Engstrom EM,et al.Control of plant stem cell function by conserved interacting transcriptional regulators[J].Nature,2015,517:377-380.
[18]Clark SE,Running MP,Meyerowitz EM.CLAVATA3 is aspecific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1[J]. Development,1995,121(7):2057-2067.
[19]Lenhard M,Laux T.Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1 [J].Development,2003,130(14):3163-3173.
[20]Bleckmann A,Weidtkamp-Peters S,Seidel CAM,et al.Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane[J].Plant Physiology,2010,152(1):166-176.
[21]Zhu Y,Wang Y,Li R,et al.Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis [J].The Plant Journal,2010,61(2):223-233.
[22]Miwa H,Betsuyaku S,Iwamoto K,et al.The receptorlike kinase SOL2 mediates CLE signaling in Arabidopsis [J].Plant and Cell Physiology,2008,49(11):1752-1757.
[23]Betsuyaku S,Takahashi F,Kinoshita A,et al.Mitogenactivated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis [J].Plant and Cell Physiology,2011,52(1):14-29.
[24]Müller R,Bleckmann A,Simon R.The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1 [J].The Plant Cell,2008,20(4):934-946.
[25]Gagne JM,Gish LA,Clark SE.The role of the acyl modification,palmitoylation,in Arabidopsis stem cell regulation[J].Plant signaling&Behavior,2010,5(8):1048 -1051.
[26]Song SK,Clark SE.POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis[J].Developmental Biology,2005,285(1):272-284.
[27]Gagne JM,Clark SE.The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated[J].The Plant Cell,2010,22(3):729-743.
[28]Song SK,Lee MM,Clark SE.POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells[J].Development,2006,133(23):4691-4698.
[29]DeYoung BJ,Bickle KL,Schrage KJ,et al.The CLAVATA1-related BAM1,BAM2 and BAM3 receptor kinase -like proteins are required for meristem function in Arabidopsis[J].The Plant Journal,2006,45(1):1-16.
[30]Shimizu N,Ishida T,Yamada M,et al.BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root[J].New Phytologist,2015,208(4):1104-1113.
[31]Nimchuk ZL,Zhou Y,Tarr PT,et al.Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases[J].Development,2015,142(6):1043 -1049.
[32]Kinoshita A,Betsuyaku S,Osakabe Y,et al.RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis[J].Development,2010,137(22):3911-3920.
[33]Perales M,Reddy GV.Stem cell maintenance in shoot apical meristems[J].Current Opinion in Plant Biology,2012,15(1):10-16.
[34]Urano D,Jones AM.Heterotrimeric G protein-coupled signaling in plants[J].Annual Review of Plant Biology,2014,65:365-384.
[35]Sawa S,Tabata R.RPK2 functions in diverged CLE signaling[J].Plant Signaling&Behavior,2011,6(1):86-88.
[36]Mandel T,Moreau F,Kutsher Y,et al.The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size,phyllotaxy and floral meristem identity[J].Development,2014,141(4):830-841.
[37]Meng X,Wang H,He Y,et al.A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation[J].The Plant Cell,2012,24 (12):4948-4960.
[38]Uchida N,Shimada M,Tasaka M.Modulation of the balance between stem cell proliferation and consumption by ERECTA-family genes[J].Plant Signaling&Behavior,2012,7(11):1506-1508.
[39]Uchida N,Shimada M,Tasaka M.ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem[J].Plant and Cell Physiology,2013,54(3):343 -351.
[40]Prunet N,Morel P,Thierry AM,et al.REBELOTE,SQUINT,and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana[J].The Plant Cell,2008,20(4):901-919.
[41]Prunet N,Morel P,Champelovier P,et al.SQUINT promotes stem cell homeostasis and floral meristem termina-tion in Arabidopsis through APETALA2 and CLAVATA signalling[J].Journal of Experimental Botany,2015,66 (21):6905-6921.
[42]Ji L,Liu X,Yan J,et al.ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis[J].PLoS Genet,2011,7(3):e1001358.
[43]Shao C,Dong A,Ma X,et al.Is Argonaute 1 the only effective slicer of small RNA-mediated regulation of gene expression in plants[J].Journal of Experimental Botany,2014,65(22):6293-63102.
[44]Ren G,Xie M,Zhang S,et al.Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′RNA fragments generated by AGO1 cleavage [J].Proceedings of the National Academy of Sciences,2014,111(17):6365-6370.
[45]Zhu H,Hu F,Wang R,et al.Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J].Cell,2011,145(2):242 -256.
[46]Williams L,Grigg SP,Xie M,et al.Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes [J].Development,2005,132(16):3657-3668.
[47]Yumul RE,Kim YJ,Liu X,et al.POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network[J].PLoS Genetics,2013,9 (1):e1003218.
[48]Wu G,Park MY,Conway SR,et al.The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J].Cell,2009,138(4):750-759.
[49]Wollmann H,Mica E,Todesco M,et al.On reconciling the interactions between APETALA2,miR172 and AGAMOUS with the ABC model of flower development[J]. Development,2010,137(21):3633-3642.
[50]Varkonyi-Gasic E,Lough RH,Moss SMA,et al.Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172[J].Plant Molecular Biology,2012,78(4-5):417-429.
[51]Grigorova B,Mara C,Hollender C,et al.LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers[J].Development,2011,138(12):2451-2456.
[52]Sitaraman J,Bui M,Liu Z.LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development[J].Plant Physiology,2008,147(2):672-681.
[53]Sridhar VV,Surendrarao A,Liu Z.APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development[J].Development,2006,133(16):3159-3166.
[54]Zhou GK,Kubo M,Zhong R,et al.Overexpression of miR165 affects apical meristem formation,organ polarity establishment and vascular development in Arabidopsis [J].Plant and Cell Physiology,2007,48(3):391-404.
[55]Zhong R,Ye ZH.Regulation of HD-ZIPⅢgenes by microRNA 165[J].Plant Signaling&Behavior,2007,2 (5):351-353.
[56]Jia X,Ding N,F(xiàn)an W,et al.Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic[J].Plant Science,2015,233:11-21.
[57]Lee C.A WUSCHEL-independent stem cell specification pathway is repressed by PHB,PHV and CNA in Arabidopsis[J].PloS One,2014,10(5):1-19.
[58]Lee C,Clark SE.Core pathways controlling shoot meristem maintenance[J].Developmental Biology,2013,2 (5):671-684.
[59]Landau U,Asis L,Williams LE.The ERECTA,CLAVATA and classⅢHD-ZIP pathways display synergistic interactions in regulating floral meristem activities[J]. PloS One,2015,10(5):1-11.
[60]Brandt R,Xie Y,Musielak T,et al.Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops[J].Mechanisms of Development,2013,130(1):25-33.
[61]Turchi L,Carabelli M,Ruzza V,et al.Arabidopsis HDZipⅡtranscription factors control apical embryo development and meristem function[J].Development,2013,140(10):2118-2129.
[62]Carabelli M,Turchi L,Ruzza V,et al.Homeodomain-Leucine ZipperⅡfamily of transcription factors to the limelight:central regulators of plant development[J]. Plant Signaling&Behavior,2013,8(9):e25447.
[63]Liu X,Dinh TT,Li D,et al.AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy[J].The Plant Journal,2014,80(4):629-641.
[64]Byzova MV,F(xiàn)ranken J,Aarts MG,et al.Arabidopsis STERILEAPETALA,a multifunctional gene regulating inflorescence,flower,and ovule development[J].Genes&Development,1999,13(8),1002-1014.
[65]Carles CC,F(xiàn)letcher JC.The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants[J].Genes&Development,2009,23 (23):2723-2728.
[66]Winter CM,Austin RS,Blanvillain-Baufume S,et al.LEAFY target genes reveal floral regulatory logic,cis motifs,and a link to biotic stimulus response[J].Developmental Cell,2011,20(4):430-443.
[67]Engehorn J,Moreau F,F(xiàn)letcher JC,et al.ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem[J].Annals of Botany,2014,114(7):1497 -1505.
[68]Bao X,F(xiàn)ranks RG,Levin JZ,et al.Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems[J].The Plant Cell,2004,16(6):1478-1489.
[69]Das P,Ito T,Wellmer F,et al.Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA[J].Development,2009,136(10):1605 -1611.
[70]Maier AT,Stehling-Sun S,Wollmann H,et al.Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression[J].Development,2009,136(10):1613-1620.
[71]Wynn AN,Seaman AA,Jones AL,et al.Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification,floral meristem termination,and gynoecial development[J].Frontiers in Plant Science,2014,434(5):1-13.
[72]Fourquin C,Primo A,Martínez-Fernández I,et al.The CRC orthologue from Pisumsativum shows conserved functions in carpel morphogenesis and vascular development[J].Annals of Botany,2014,114(7):1535-1544.
[73]Sun W,Huang W,Li Z,et al.Characterization of a Crabs Claw gene in basal eudicot species Epimedium sagittatum (Berberidaceae)[J].International Journal of Molecular Sciences,2013,14(1):1119-1131.
[74]Zúiga-Mayo VM,Marsch-Martínez N,de Folter S.The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis[J].Plant Signaling&Behavior,2012,7(11):1501-1503.
[75]Lee JY,Baum SF,Alvarez J,et al.Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis[J]. The Plant Cell,2005,17(1):25-36.
[76]Dinkins RD,Tavva VS,Palli SR,et al.Mutant and overexpression analysis of a C2H2 single zinc finger gene of Arabidopsis[J].Plant Molecular Biology Reporter,2012,30(1):99-110.
[77]Persikov AV,Wetzel JL,Rowland EF,et al.A systematic survey of the Cys2His2 zinc finger DNA-binding landscape[J].Nucleic Acids Research,2015,43(3):1965 -1984.
[78]Hiratsu K,Ohta M,Matsui K,et al.The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers[J].FEBS Letters,2002,514(2):351-354.
[79]Nibau C,Di Stilio VS,Wu H,et al.Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation[J].Journal of Experimental Botany,2011,62(3):949-961.
[80]Zhao J,Liu M,Jiang L,et al.Cucumber SUPERMAN has conserved function in stamen and fruit development and a distinct role in floral patterning[J].PloS One,2014,9 (1):e86192.
[81]Airoldi CA.Determination of sexual organ development [J].Sexual Plant Reproduction,2010,23(1):53-62.
[82]Liu X,Kim YJ,Müller R,et al.AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins[J].The Plant Cell,2011,23(10):3654 -3670.
[83]Dinh TT,Gao L,Liu X,et al.DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis[J].PloS Genetics,2014,11(9):e1005452.
[84]Liu X,Gao L,Dinh TT,S et al.DNA topoisomerase I affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis[J].The Plant Cell,2014,26 (7):2803-2817.
[85]Payne T,Johnson SD,Koltunow AM.KNUCKLES(KNU)encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium[J].Development,2004,131(15):3737-3749.
[86]Sun B,Xu Y,Ng KH,et al.A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem[J].Genes&Development,2009,23 (15):1791-1804.
[87]Sun B,Looi LS,Guo S,et al.Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells[J].Science,2014,343:1248559.
[88]Petruk S,Sedkov Y,Johnston DM,et al.TrxG and PcG proteins but not methylated histones remain associated with DNA through replication[J].Cell,2012,150(5):922-933.
[89]Deng W,Buzas DM,Ying H,et al.Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes [J].BMC Genomics,2013,14(1):593.
[90]Chen N,Zhou WB,Wang YX,et al.Polycomb-group histone methyltransferase CLF is required for proper somatic recombination in Arabidopsis[J].Journal of Integrative Plant Biology,2014,56(6):550-558.
[91]Wu MF,Sang Y,Bezhani S,et al.SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors[J].Proceedings of the National Academy of Sciences,2012,109(9):3576-3581.
[92]Qian W,Miki D,Zhang H,et al.A histone acetyltransferase regulates active DNA demethylation in Arabidopsis [J].Science,2012,336:1445-1448.
[93]Zhao Y,Medrano L,Ohashi K,et al.HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis[J].The Plant Cell,2004,16(10):2586-2600.
[94]Zhang X,Zhou Y,Ding L,et al.Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones,floral organ specification genes,and GATA3 family genes in Arabidopsis[J].The Plant Cell,2013,25(1):83-101.
The Research Progress of Stem Cell Signal Transduction and Gene Regulation in Floral Development
LI Yujun,ZHAO Yan,TANG Bin,ZHANG Xuewen*
(College of Bio-science and Technology,Hunan Agricultural University,Changsha,Hunan 410128,China)
Abstract:Plant stem cell regulation is a dynamic process and in complex network.Plant stem cell research has been a great progress in recent years,new genes and mechanisms involved in stem cell regulation were found constantly.This paper summarized the research progress on plant stem cell regulation in recent years.It focuses on the signal transduction pathways and elaborates the plant stem cell regulation network in flower organ development.The gene regulation model is summarized for easy understanding of stem cells regulation.
Keywords:floral development;stem cell;signal transduction;gene regulation
基金項(xiàng)目:湖南省教育廳重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(15K060)。
作者簡(jiǎn)介:李玉軍(1990-),男,碩士研究生,Email:15974267467@163.com。*通信作者:張學(xué)文,教授,Email:xwzhang@hunau.edu.cn。
收稿日期:2015- 11- 24
文章編號(hào):1001-5280(2016)02-0200-10
DOI:10.16848/j.cnki.issn.1001-5280.2016.02.23
中圖分類號(hào):Q945.4
文獻(xiàn)標(biāo)識(shí)碼:A