亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        采用Kriging模型的離心壓縮機(jī)葉輪多目標(biāo)參數(shù)優(yōu)化

        2016-03-21 12:49:26左曙光韋開君吳旭東聶玉潔許思傳同濟(jì)大學(xué)新能源汽車工程中心上海201804
        關(guān)鍵詞:葉輪優(yōu)化模型

        左曙光,韋開君,吳旭東,聶玉潔,許思傳(同濟(jì)大學(xué)新能源汽車工程中心,上海 201804)

        ?

        采用Kriging模型的離心壓縮機(jī)葉輪多目標(biāo)參數(shù)優(yōu)化

        左曙光,韋開君,吳旭東※,聶玉潔,許思傳
        (同濟(jì)大學(xué)新能源汽車工程中心,上海 201804)

        摘要:為進(jìn)一步探索高性能、低噪聲的離心壓縮機(jī)優(yōu)化設(shè)計(jì)方法,該文選用某燃料電池車用小型高轉(zhuǎn)速離心壓縮機(jī)為研究對(duì)象,通過三維內(nèi)流場(chǎng)非定常分析對(duì)其氣動(dòng)性能和氣動(dòng)噪聲進(jìn)行計(jì)算,仿真求得的壓升曲線與試驗(yàn)基本一致。基于該數(shù)值模型,采用最優(yōu)拉丁方試驗(yàn)設(shè)計(jì)分析了葉片進(jìn)口角、葉片出口角、尾緣傾角、葉頂間隙和葉片厚度對(duì)壓縮比、等熵效率和整機(jī)聲功率級(jí)的影響,結(jié)果表明葉片厚度和葉頂間隙最為關(guān)鍵,與壓縮比和等熵效率負(fù)相關(guān),與聲功率級(jí)正相關(guān),前傾葉片較后傾葉片噪聲更低。采用Kriging模型對(duì)數(shù)值計(jì)算結(jié)果進(jìn)行擬合,利用多目標(biāo)遺傳算法對(duì)Kriging模型進(jìn)行循環(huán)優(yōu)化設(shè)計(jì)。優(yōu)化結(jié)果表明,Kriging模型精度滿足需求,優(yōu)化方案在設(shè)計(jì)工況點(diǎn)的壓縮比提高3.56%,等熵效率提高1.02%,整機(jī)聲功率級(jí)下降3.79 dB,在非設(shè)計(jì)工況點(diǎn)的壓縮比和等熵效率也有提高,綜合性能得到明顯改善。該研究可為高性能、低噪聲離心壓縮機(jī)的優(yōu)化設(shè)計(jì)提供參考。

        關(guān)鍵詞:模型;優(yōu)化;葉輪;離心壓縮機(jī);非定常分析;氣動(dòng)噪聲;Kriging模型

        左曙光,韋開君,吳旭東,聶玉潔,許思傳. 采用Kriging模型的離心壓縮機(jī)葉輪多目標(biāo)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):77-83.doi:10.11975/j.issn.1002-6819.2016.02.012http://www.tcsae.org

        Zuo Shuguang, Wei Kaijun, Wu Xudong, Nie Yujie, Xu Sichuan. Multi-objective parameter optimization of centrifugal compressor impeller with Kriging model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 77-83. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.012 http://www.tcsae.org

        Email:sgzuo@#edu.cn

        Email:wuxudong@#edu.cn

        0 引 言

        隨著燃料電池汽車產(chǎn)業(yè)化的推進(jìn),其振動(dòng)噪聲性能越來越受到重視。與傳統(tǒng)汽車不同,燃料電池汽車的噪聲源主要來自空輔系統(tǒng),尤其是空壓機(jī)產(chǎn)生的氣動(dòng)噪聲[1]。離心壓縮機(jī)由于其結(jié)構(gòu)緊湊、壓縮比高的優(yōu)點(diǎn),在車用中高壓燃料電池空輔系統(tǒng)中得到廣泛應(yīng)用,但高工作轉(zhuǎn)速(通常在60 000~100 000 r/min)隨之產(chǎn)生很大的噪聲。由于流場(chǎng)的仿真計(jì)算耗時(shí),離心壓縮機(jī)的傳統(tǒng)優(yōu)化設(shè)計(jì)很難基于全局優(yōu)化算法直接對(duì)壓縮機(jī)多個(gè)結(jié)構(gòu)參數(shù)進(jìn)行多目標(biāo)的迭代尋優(yōu)。尤其是氣動(dòng)噪聲的優(yōu)化設(shè)計(jì),通常局限在對(duì)個(gè)別結(jié)構(gòu)參數(shù)的改進(jìn),例如蝸舌形狀、蝸殼結(jié)構(gòu)或采用被動(dòng)降噪措施。這些措施雖然可以取得一定的降噪效果,但也容易導(dǎo)致壓縮機(jī)氣動(dòng)性能不同程度的下降[2-4]。

        隨著近似模型技術(shù)的發(fā)展,將近似模型技術(shù)引入葉輪機(jī)械優(yōu)化設(shè)計(jì),用快速響應(yīng)的近似模型代替流場(chǎng)仿真的數(shù)值模型進(jìn)行全局尋優(yōu),可以在設(shè)計(jì)初期實(shí)現(xiàn)對(duì)葉輪機(jī)械的多目標(biāo)優(yōu)化[5]。國(guó)內(nèi)外基于近似模型的葉輪機(jī)械優(yōu)化設(shè)計(jì)大多集中在壓縮比/揚(yáng)程和效率這些氣動(dòng)/水力性能參數(shù)優(yōu)化,常采用一階或二階響應(yīng)面模型[6]、徑向基函數(shù)[7]、Kriging模型[8-10]等作為近似模型,采用遺傳算法[11-12]、蟻群算法[13]、神經(jīng)網(wǎng)絡(luò)[14]等方法進(jìn)行多參數(shù)多目標(biāo)全局尋優(yōu)。隨著氣動(dòng)噪聲數(shù)值方法和計(jì)算資源的進(jìn)步,結(jié)合近似模型的葉輪機(jī)械氣動(dòng)噪聲優(yōu)化設(shè)計(jì)成為可能。但是此類研究多集中在軸流風(fēng)機(jī)[15-17]或離心通風(fēng)機(jī)[18-19],對(duì)噪聲的預(yù)測(cè)通?;诙ǔS?jì)算得到的渦量和壓力分布,準(zhǔn)確度不足。

        針對(duì)以上問題,本文提出了一種基于Kriging近似模型的離心壓縮機(jī)多目標(biāo)優(yōu)化設(shè)計(jì)方法,研究了離心壓縮機(jī)葉片進(jìn)口角、葉片出口角、尾緣傾角、葉頂間隙、葉片厚度與壓縮比、等熵效率和整機(jī)聲功率級(jí)之間的關(guān)系,并基于數(shù)值計(jì)算結(jié)果分析了優(yōu)化后葉輪性能改善的原因。

        1 數(shù)值計(jì)算方法

        1.1流場(chǎng)計(jì)算方法

        本文研究的離心壓縮機(jī)由葉輪、無(wú)葉擴(kuò)壓器和蝸殼組成,葉輪共有8個(gè)主葉片和8個(gè)分流葉片,壓縮機(jī)進(jìn)口直徑Ds1=38 mm,葉輪外徑D1=70 mm,葉片高度b=4 mm,擴(kuò)壓器外徑D2=110 mm,設(shè)計(jì)工況點(diǎn)的質(zhì)量流量Q=0.08 kg/s,壓縮比πc=1.65,轉(zhuǎn)速n=80 000 r/min。離心壓縮機(jī)結(jié)構(gòu)如圖1所示。

        為了穩(wěn)定流場(chǎng)并加快計(jì)算收斂,將進(jìn)出口段分別延長(zhǎng)。計(jì)算域分為進(jìn)口段、葉片旋轉(zhuǎn)區(qū)域、蝸殼區(qū)域和出口段,其中蝸殼區(qū)域采用混合網(wǎng)格,蝸舌處采用四面體非結(jié)構(gòu)網(wǎng)格,其他區(qū)域全部采用六面體結(jié)構(gòu)網(wǎng)格。為保證CFD網(wǎng)格的聲學(xué)求解精度,需保證分析的最小波長(zhǎng)內(nèi)至少布置20個(gè)網(wǎng)格,擬定最高分析頻率為15 kHz,則最大網(wǎng)格不超過1.2 mm,網(wǎng)格總數(shù)約107萬(wàn)。

        圖1 離心壓縮機(jī)結(jié)構(gòu)示意圖Fig.1 Schematic diagram of centrifugal compressor

        流場(chǎng)計(jì)算采用商業(yè)軟件Fluent,非定常計(jì)算的湍流模型采用RNG k-ε模型,取標(biāo)準(zhǔn)壁面函數(shù),壓力-速度耦合采用SIMPLE方法,對(duì)流項(xiàng)采用二階迎風(fēng)格式,擴(kuò)散項(xiàng)采用二階中心格式,時(shí)間項(xiàng)采用二階隱式格式,進(jìn)出口采用壓力邊界條件。離心壓縮機(jī)工作轉(zhuǎn)速為80 000 r/min,取每個(gè)旋轉(zhuǎn)周期內(nèi)時(shí)間步數(shù)為40步,非定常計(jì)算時(shí)間步長(zhǎng)Δt 為1.875×10-5s,流場(chǎng)穩(wěn)定后共計(jì)算2 048步。則計(jì)算得到的最大分析頻率fm為26 667 Hz,頻率分辨率Δf 為26 Hz。

        yplus是用來表征近壁面湍流的無(wú)量綱參數(shù),根據(jù)yplus的大小可將湍流邊界層分為幾部分:1)0<yplus≤5,流體處于黏性層;2)5<yplus≤20,流體處于緩沖層;3)20<yplus≤200,流體處于對(duì)數(shù)律層;4)yplus>200,流體處于外邊界層。不同的邊界層有不同的流體特點(diǎn),采用標(biāo)準(zhǔn)壁面函數(shù)進(jìn)行數(shù)值仿真時(shí),要求邊界層網(wǎng)格分布在完全湍流區(qū)域,即對(duì)數(shù)律區(qū)域[20]。圖2為仿真得到的壓縮機(jī)壁面yplus分布,由圖2可知,壓縮機(jī)壁面的yplus在30~200之間,滿足數(shù)值模型需求。

        圖2 壓縮機(jī)壁面yplus分布云圖Fig.2 yplus contours of compressor wall

        壓縮比πc和等熵效率ηɑd是衡量壓縮機(jī)氣動(dòng)性能的主要參數(shù),計(jì)算方法可由式(1)與式(2)確定。

        式中πc為離心壓縮機(jī)的壓縮比;ηɑd為等熵效率;pti、pto分別為壓縮機(jī)進(jìn)、出口總壓,Pa;Tti、Tto分別為壓縮機(jī)進(jìn)、出口總溫,K。由于在不同時(shí)刻壓縮機(jī)的進(jìn)出口總壓、總溫不同,為便于比較,這里pti、pto、Tti、Tto為2 048個(gè)非定常計(jì)算時(shí)間步的平均值。

        1.2氣動(dòng)噪聲計(jì)算方法

        由三維非定常流場(chǎng)計(jì)算得到的聲源信息,采用FW-H方法計(jì)算離心壓縮機(jī)氣動(dòng)噪聲,包括由表面速度變化引起的聲源,即單極子聲源;由表面脈動(dòng)壓力引起的聲源,即偶極子聲源;由瞬時(shí)應(yīng)力施加于流體上引起的聲源,即四極子聲源[21]。偶極子聲源在離心壓縮機(jī)氣動(dòng)噪聲中起主導(dǎo)作用[22],因此在Fluent仿真中選取蝸殼壁面固定偶極子源和葉片壁面運(yùn)動(dòng)偶極子源作為聲源,計(jì)算離心壓縮機(jī)輻射聲場(chǎng)。根據(jù)GB/T2888-2008《風(fēng)機(jī)和羅茨鼓風(fēng)機(jī)噪聲測(cè)量方法》布置噪聲監(jiān)測(cè)點(diǎn),整機(jī)聲功率級(jí)為

        式中LWA為整機(jī)聲功率級(jí),dB(A);S為傳遞面積,m2;S0為標(biāo)準(zhǔn)面積,m2;為平均聲壓級(jí),dB(A);L1,L2,…,Ln分別為不同噪聲測(cè)點(diǎn)測(cè)得的聲壓級(jí),dB(A);n為噪聲測(cè)點(diǎn)數(shù)量。

        1.3數(shù)值模型驗(yàn)證

        為驗(yàn)證數(shù)值模型的準(zhǔn)確性,對(duì)離心壓縮機(jī)進(jìn)行性能試驗(yàn),試驗(yàn)現(xiàn)場(chǎng)布置如圖3所示。壓縮機(jī)噪聲測(cè)試采用G.R.A.S. 40PH 1/2” 傳聲器,試驗(yàn)數(shù)據(jù)采集及分析采用LMS Test.Lab 系統(tǒng)。

        圖3 試驗(yàn)現(xiàn)場(chǎng)布置Fig.3 Experimental setup

        由于條件限制,試驗(yàn)中離心壓縮機(jī)驅(qū)動(dòng)電機(jī)所能達(dá)到的最高轉(zhuǎn)速為50 000 r/min。調(diào)節(jié)壓縮機(jī)出口管閥門開度,分別測(cè)試40 000、50 000 r/min 2個(gè)穩(wěn)態(tài)轉(zhuǎn)速下,大、中、小流量3個(gè)工況下壓縮機(jī)出口壓力。基于前文所述數(shù)值模型分別計(jì)算轉(zhuǎn)速為40 000、50 000 r/min壓縮機(jī)的壓力-流量曲線,將數(shù)值計(jì)算結(jié)果與試驗(yàn)結(jié)果對(duì)比,如圖4所示。由圖4可知,數(shù)值計(jì)算結(jié)果略高于試驗(yàn)結(jié)果,這是由于計(jì)算中沒有考慮機(jī)殼壁面粗糙度等影響。總體上數(shù)值計(jì)算結(jié)果與試驗(yàn)結(jié)果基本一致,該數(shù)值模型可用于進(jìn)一步的計(jì)算與分析。

        圖4 數(shù)值仿真與試驗(yàn)壓力-流量曲線對(duì)比Fig.4 Comparison of pressure ratio between numerical and experimental data

        2 多目標(biāo)優(yōu)化設(shè)計(jì)

        2.1Kriging模型

        采用進(jìn)化算法的多目標(biāo)優(yōu)化設(shè)計(jì)通常需要進(jìn)行大量的搜索計(jì)算,如果直接采用數(shù)值計(jì)算模型,將耗費(fèi)巨大的計(jì)算資源與時(shí)間成本。Kriging模型作為一種無(wú)偏插值函數(shù)模型,在氣動(dòng)設(shè)計(jì)領(lǐng)域獲得了廣泛應(yīng)用[5]。Kriging模型可表示為以下形式

        式中x為設(shè)計(jì)變量,y(x)為待擬合的響應(yīng)函數(shù),f(x)為已知的回歸模型,通常是多項(xiàng)式函數(shù),β為相應(yīng)的待定參數(shù),f(x)Tβ是一個(gè)確定性過程,相當(dāng)于對(duì)全部設(shè)計(jì)空間的全局模擬;Z(x)是均值為0、方差為σ2的隨機(jī)過程,表示對(duì)全局模擬的偏差。模型詳細(xì)構(gòu)建過程詳見文獻(xiàn)[23]。

        采用最優(yōu)拉丁方設(shè)計(jì)方法,建立了不同葉片進(jìn)口角β1、葉片出口角β2、尾緣傾角γ、葉頂間隙e、葉片厚度t的5因素21水平包括21次試驗(yàn)的初始樣本集,通過數(shù)值計(jì)算得到相應(yīng)的響應(yīng)值,各設(shè)計(jì)變量對(duì)響應(yīng)的影響程度如圖5所示。由圖5可知,對(duì)響應(yīng)值影響最大的2個(gè)參數(shù)是葉片厚度和葉頂間隙,當(dāng)葉片厚度和葉頂間隙增加時(shí),壓縮比、等熵效率降低,聲功率級(jí)上升。各參數(shù)間存在一定交互作用。

        圖5 設(shè)計(jì)變量對(duì)響應(yīng)的影響程度Fig.5 Influences of design parameters on responses

        基于數(shù)值計(jì)算結(jié)果,擬合葉片進(jìn)口角、葉片出口角、尾緣傾角、葉頂間隙、葉片厚度關(guān)于壓縮比、效率、聲功率的Kriging模型。對(duì)擬合Kriging模型進(jìn)行誤差分析,結(jié)果如表1所示。由表1可知,Kriging模型各項(xiàng)誤差指標(biāo)均小于工程設(shè)計(jì)領(lǐng)域中常用的許用值[24]。本文模型決定系數(shù)R2均大于0.9,說明Kriging模型的精度滿足要求,可以作為多目標(biāo)優(yōu)化的代理模型。

        表1 Kriging模型誤差分析Table 1 Error analysis of Kriging model

        2.2多目標(biāo)優(yōu)化

        選取離心壓縮機(jī)壓縮比πc、等熵效率ηɑd、整機(jī)聲功率LWA為優(yōu)化目標(biāo),葉片進(jìn)口角β1、葉片出口角β2、尾緣傾角γ、葉頂間隙e、葉片厚度t為優(yōu)化變量,優(yōu)化問題可描述為

        式中πc為離心壓縮機(jī)的壓縮比;ηɑd為等熵效率;β1為葉片進(jìn)口角,(°);β2為葉片出口角,(°);γ為葉片尾緣傾角,(°);e為葉頂間隙,mm;t為葉片厚度,mm。

        基于Kriging模型,采用多目標(biāo)遺傳算法NSGA-Ⅱ[25]進(jìn)行優(yōu)化設(shè)計(jì),設(shè)定初始種群數(shù)為200,遺傳代數(shù)為1 000,交叉概率為0.9,變異概率為0.2。為進(jìn)一步提高Kriging代理模型的精度,對(duì)模型得到的最優(yōu)點(diǎn)進(jìn)行精確數(shù)值計(jì)算,利用該精確計(jì)算的數(shù)據(jù)更新原模型,進(jìn)一步提高最優(yōu)區(qū)間附近的代理模型精度,進(jìn)一步提高最優(yōu)區(qū)間附近的代理模型精度,直至得到更理想的優(yōu)化結(jié)果。離心壓縮機(jī)多目標(biāo)優(yōu)化設(shè)計(jì)流程如圖6所示。

        3 優(yōu)化結(jié)果與分析

        3.1葉片結(jié)構(gòu)對(duì)比

        優(yōu)化得到的Pareto解集如圖7所示,由圖7可知,聲功率級(jí)和壓縮比2個(gè)目標(biāo)無(wú)法同時(shí)滿足最優(yōu),Pareto前沿的斜率逐漸減小,當(dāng)壓縮比較低時(shí),隨壓縮比上升聲功率級(jí)幾乎不增加;當(dāng)壓縮比較高時(shí),壓縮比的小幅上升也會(huì)造成聲功率級(jí)的大幅增加。聲功率級(jí)和等熵效率的Pareto前沿與此類似。本文更關(guān)注離心壓縮機(jī)的噪聲特性,最終選取優(yōu)化設(shè)計(jì)點(diǎn)如圖7所示。

        圖6 離心壓縮機(jī)多目標(biāo)優(yōu)化設(shè)計(jì)流程圖Fig.6 Flowchart of multi-objective optimization design of centrifugal compressor

        圖7 Pareto最優(yōu)解集Fig.7 Pareto diagram of optimized results

        優(yōu)化前后離心壓縮機(jī)結(jié)構(gòu)參數(shù)對(duì)比如表2所示。

        表2 優(yōu)化前后結(jié)構(gòu)參數(shù)對(duì)比Table 2 Parameters of baseline and optimized designs

        圖8對(duì)比了優(yōu)化前后葉片的型線,由圖8可知,優(yōu)化后葉片厚度變薄,出口由后傾變?yōu)榍皟A,葉片整體扭曲程度降低,流道曲率變化也更為平滑。通常前傾葉片氣動(dòng)負(fù)荷分布比較均勻,因而具有較高的效率和較寬的工作流量區(qū)間。由前文各設(shè)計(jì)變量對(duì)優(yōu)化目標(biāo)的影響因素分析可知,當(dāng)葉片厚度和葉頂間隙增加時(shí),壓縮比、等熵效率降低,聲功率級(jí)上升。優(yōu)化結(jié)果較初始設(shè)計(jì),葉頂間隙增大了21.6%,葉片厚度減小了49.1%,壓縮比和等熵效率的提高主要來源于葉片厚度的減小。但值得注意的是,優(yōu)化后尾緣傾角減小了109.2%,由后傾變?yōu)榍皟A。由圖5可知,尾緣傾角γ與聲功率級(jí)呈正相關(guān),對(duì)壓縮比和效率的影響較小。因此,尾緣傾角的大幅減小是優(yōu)化后聲功率級(jí)降低的主要原因。同時(shí),考慮到實(shí)際制造成本,葉頂間隙不能過小,在滿足性能和噪聲需求的基礎(chǔ)上可選擇稍大的葉頂間隙,故本文在Pareto解集中挑選該點(diǎn)作為最終優(yōu)化結(jié)果。

        圖8 優(yōu)化前后葉片型線對(duì)比Fig.8 Comparison of blade profiles before and after optimization

        3.2氣動(dòng)性能及噪聲對(duì)比

        為校核優(yōu)化結(jié)果,利用優(yōu)化前后的葉輪,結(jié)果原有擴(kuò)壓器和蝸殼,在設(shè)計(jì)轉(zhuǎn)速下進(jìn)行了多個(gè)工況點(diǎn)的定常計(jì)算,圖9所示為優(yōu)化前后離心壓縮機(jī)性能曲線的對(duì)比。由圖9可知,與優(yōu)化前相比,優(yōu)化后設(shè)計(jì)工況和非設(shè)計(jì)工況的壓縮比和等熵效率均有一定提高。

        圖9 優(yōu)化前后離心壓縮機(jī)性能曲線對(duì)比Fig.9 Performance maps before and after optimization

        對(duì)優(yōu)化設(shè)計(jì)點(diǎn)進(jìn)行非定常計(jì)算,與初始設(shè)計(jì)對(duì)比結(jié)果如表3所示。由表3可知,采用Kriging模型與數(shù)值計(jì)算所得的壓縮比、等熵效率和聲功率的誤差均小于0.5%,Kriging模型具有很高的預(yù)測(cè)精度。優(yōu)化方案較初始設(shè)計(jì)壓縮比提高了3.56%,等熵效率提高了1.02%,整機(jī)聲功率級(jí)下降了3.79 dB,綜合性能得到明顯改善。

        表3 優(yōu)化結(jié)果對(duì)比Table 3 Results of optimization

        為進(jìn)一步分析優(yōu)化結(jié)果,對(duì)優(yōu)化前后離心壓縮機(jī)內(nèi)部流動(dòng)進(jìn)行分析。圖10所示為壓縮機(jī)橫截面的壓力云圖,由圖10可知,優(yōu)化后壓縮機(jī)壓力顯著提高,擴(kuò)壓器和蝸殼內(nèi)壓力變化更加平緩,蝸舌處由于泄漏引起的壓力損失更小。

        圖10 壓縮機(jī)橫截面壓力云圖對(duì)比Fig.10 Pressure contours of compressor cross section

        圖11所示為葉輪出口處馬赫數(shù)分布對(duì)比,由圖11可知,優(yōu)化前,葉片通道內(nèi)低速區(qū)域堆積在葉片吸力面上部,并在主葉片根部形成回流。優(yōu)化后葉輪出口處速度整體上進(jìn)一步降低,局部堆積和回流現(xiàn)象減弱,葉片通道內(nèi)和根尖速度分布均勻性變好。這種改變使得下游擴(kuò)壓器流場(chǎng)中高低能流體的摻混和損失更少,這也是優(yōu)化后壓縮機(jī)的性能得到改善的原因。

        圖11 葉輪出口馬赫數(shù)對(duì)比Fig.11 Mach number at impeller outlet

        圖12所示為80%葉高處葉片間流面的熵云圖和面流線圖。由圖12可知,優(yōu)化前在分流葉片中后部存在高熵區(qū),從面流線可以看出,優(yōu)化前分流葉片中后部的高熵區(qū)是由橫向渦流引發(fā)的流動(dòng)損失導(dǎo)致。優(yōu)化后葉片流道內(nèi)橫向渦流明顯減弱,整體熵增明顯降低。

        圖12 80%葉高處葉片間流面的熵云圖和面流線對(duì)比Fig.12 Entropy contours and streamlines at 80% span of blade-to-blade surface

        在實(shí)際運(yùn)行中,離心壓縮機(jī)出口通過管道經(jīng)加濕器進(jìn)入燃料電池電堆,大部分氣動(dòng)噪聲由進(jìn)口直接向外輻射[26]。對(duì)優(yōu)化前后離心壓縮機(jī)進(jìn)口處噪聲進(jìn)行分析,如圖13所示。由圖13可知,優(yōu)化后葉片通過頻率處噪聲降低了16 dB,旋轉(zhuǎn)基頻及其諧頻處的離散噪聲均有下降,全頻帶內(nèi)寬頻噪聲也有所下降,尤其是0~1 800 Hz 和10 000~16 000 Hz頻段。優(yōu)化方案整體降噪效果顯著。

        圖13 優(yōu)化前后離心壓縮機(jī)噪聲對(duì)比Fig.13 Sound pressure level spectrums before and after optimization

        4 結(jié) 論

        1)葉片厚度和葉頂間隙是2個(gè)最關(guān)鍵參數(shù),當(dāng)葉片厚度和葉頂間隙增加時(shí),壓縮比、等熵效率降低,聲功率級(jí)上升。減小尾緣傾角可改善葉片出口流動(dòng),前傾葉片較后傾葉片噪聲更低。各設(shè)計(jì)參數(shù)間存在一定交互作用。

        2)優(yōu)化方案在設(shè)計(jì)工況點(diǎn)較初始設(shè)計(jì)壓縮比提高了3.56%,等熵效率提高了1.02%,原因?yàn)閮?yōu)化后葉片出口速度分布更加均勻,葉片間橫向渦流損失減少。非設(shè)計(jì)工況點(diǎn)的壓縮比和等熵效率均有提高。

        3)優(yōu)化后設(shè)計(jì)工況點(diǎn)的整機(jī)聲功率級(jí)下降3.79 dB,葉片通過頻率處噪聲降低16 dB,旋轉(zhuǎn)頻率及其諧頻處離散噪聲以及0~1 800 Hz、10 000~16 000 Hz頻段內(nèi)寬頻噪聲均有下降。

        本文將最優(yōu)拉丁方設(shè)計(jì)、Kriging模型、多目標(biāo)遺傳算法、循環(huán)優(yōu)化相結(jié)合,提出的優(yōu)化方法可以為高性能、低噪聲燃料電池車用離心壓縮機(jī)優(yōu)化設(shè)計(jì)提供參考,并可以推廣到其他葉輪機(jī)械的優(yōu)化設(shè)計(jì)中。

        [參考文獻(xiàn)]

        [1] 郭榮,萬(wàn)鋼,左曙光,等. 燃料電池轎車主要噪聲源識(shí)別的試驗(yàn)研究[J]. 汽車工程,2007,29(5):377-380. Guo Rong, Wan Gang, Zuo Shuguang, et al. An experimental study on noise sources identification for fuel cell vehicle[J]. Automotive Engineering, 2007, 29(5): 377-380. (in Chinese with English abstract)

        [2] 劉曉良,袁民建,毛義軍,等. 前向離心風(fēng)機(jī)蝸殼出口結(jié)構(gòu)的數(shù)值優(yōu)化[J]. 西安交通大學(xué)學(xué)報(bào),2009,43(5):61-65. Liu Xiaoliang, Yuan Minjian, Mao Yijun, et al. Numerical optimization of volute outlet structure for forward-curved centrifugal fan[J]. Journal of Xi'an Jiaotong University, 2009,43(5): 61-65. (in Chinese with English abstract)

        [3] 顧媛媛,袁民建,毛義軍,等. 離心風(fēng)機(jī)吸聲蝸殼結(jié)構(gòu)的數(shù)學(xué)物理模型及實(shí)驗(yàn)驗(yàn)證[J]. 西安交通大學(xué)學(xué)報(bào),2011,45(1):83-88. Gu Yuanyuan, Yuan Minjian, Mao Yijun, et al. Mathematical- physical model of noise-absorbing volute of centrifugal fan and experimental validation[J]. Journal of Xi’an Jiaotong University, 2011, 45(1): 83-88. (in Chinese with English abstract)

        [4] Gu Yuanyuan, Qi Datong, Mao Yijun, et al. Theoretical and experimental studies on the noise control of centrifugal fans combining absorbing liner and inclined tongue[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225(6): 789-801.

        [5] 席光,王志恒,王尚錦. 葉輪機(jī)械氣動(dòng)優(yōu)化設(shè)計(jì)中的近似模型方法及其應(yīng)用[J]. 西安交通大學(xué)學(xué)報(bào),2007,41(2):125-135. Xi Guang, Wang Zhiheng, Wang Shangjin. Aerodynamic optimization design of turbomachinery with approximation model method[J]. Journal of Xi'an Jiaotong University, 2007,41(2): 125-135. (in Chinese with English abstract)

        [6] Guo Shuai, Duan Fei, Tang Hui, et al. Multi-objective optimization for centrifugal compressor of mini turbojet engine[J]. Aerospace Science and Technology, 2014, 39(1): 414-425.

        [7] Khalfallah S, Ghenaiet A, Benini E, et al. Surrogate-based shape optimization of stall margin and efficiency of a centrifugal compressor[J]. Journal of Propulsion and Power,2015, 31(6): 1-14.

        [8] Olivero M, Pasquale D, Ghidoni A, et al. Three-dimensional turbulent optimization of vaned diffusers for centrifugal compressors based on metamodel-assisted genetic algorithms[J]. Optimization and Engineering, 2014, 15(4): 973-992.

        [9] 曹安國(guó),吳亞東,劉鵬寅,等. 基于改進(jìn)Kriging代理模型的自適應(yīng)序列優(yōu)化算法在離心壓縮機(jī)蝸殼設(shè)計(jì)中的應(yīng)用[J]. 動(dòng)力工程學(xué)報(bào),2015,35(7):562-567. Cao Anguo, Wu Yadong, Liu Pengyin, et al. Application of adaptive sequential optimization algorithm based on Kriging surrogate model in design of centrifugal compressor volute[J]. Journal of Chinese Society of Power Engineering, 2015,35(7): 562-567. (in Chinese with English abstract)

        [10] 王文杰,袁壽其,裴吉,等. 基于 Kriging 模型和遺傳算法的泵葉輪兩工況水力優(yōu)化設(shè)計(jì)[J]. 機(jī)械工程學(xué)報(bào),2015,51(15):33-38. Wang Wenjie, Yuan Shouqi, Pei Ji, et al. Two-point hydraulic optimization of pump impeller based on Kriging model and neighborhood cultivation genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51(15): 33-38. (in Chinese with English abstract)

        [11] 王春林,葉劍,曾成,等. 基于NSGA-Ⅱ遺傳算法高比轉(zhuǎn)速混流泵多目標(biāo)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):100-106. Wang Chunlin, Ye Jian, Zeng Cheng, et al. Multi-objective optimum design of high specific speed mixed-flow pump based on NSGA-Ⅱgenetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 100-106. (in Chinese with English abstract)

        [12] 袁壽其,王文杰,裴吉,等. 低比轉(zhuǎn)數(shù)離心泵的多目標(biāo)優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):46-52. Yuan Shouqi, Wang Wenjie, Pei Ji, et al. Multi-objective optimization of low-specific-speed centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 46-52. (in Chinese with English abstract)

        [13] Cadirci S, Selenbas B, Gunes H. Optimization of a centrifugal fan impeller using Kriging simulated annealing[C]// ASME 2011 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers,Denver, Colorado, USA, 2011: 991-997.

        [14] 楊魏,王福軍,王宏. 離心風(fēng)機(jī)葉片三維反問題優(yōu)化設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):105-109. Yang Wei, Wang Fujun, Wang Hong. Aerodynamic optimization design of centrifugal fan blades based on 3-D inverse design method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 105-109. (in Chinese with English abstract)

        [15] Ren G, Heo S, Kim T H, et al. Response surface methodbased optimization of the shroud of an axial cooling fan for high performance and low noise[J]. Journal of Mechanical Science and Technology, 2013, 27(1): 33-42.

        [16] Kim J H, Ovgor B, Cha K H, et al. Optimization of the aerodynamic and aeroacoustic performance of an axial-flow fan[J]. AIAA Journal, 2014, 52(9): 2032-2044.

        [17] Mann A, Pérot F, Kim M S, et al. Advanced noise control fan direct aeroacoustics predictions using a Lattice-Boltzmann method[J]. AIAA Paper, 2012, 2287: 2012.

        [18] Sorguven E, Dogan Y. Acoustic optimization for centrifugal fans[J]. Noise Control Engineering Journal, 2012, 60(4): 379-391.

        [19] Yang Zhendong, Gu Zhengqi, Wang Yiping, et al. Prediction and optimization of aerodynamic noise in an automotive air conditioning centrifugal fan[J]. Journal of Central South University, 2013, 20(5): 1245-1253.

        [20] 陳懋章. 粘性流體動(dòng)力學(xué)基礎(chǔ)[M]. 北京:高等教育出版社,2002:290-301.

        [21] Farassat F. Acoustic radiation from rotating blades-the Kirchhoff method in aeroacoustics[J]. Journal of Sound and Vibration, 2001, 239(4): 785-800.

        [22] Khelladi S, Kouidri S, Bakir F, et al. Predicting tonal noise from a high rotational speed centrifugal fan[J]. Journal of Sound and Vibration, 2008, 313(1): 113-133.

        [23] Wang Xiaofeng, Xi Guang, Wang Zhiheng. Aerodynamic optimization design of centrifugal compressor's impeller with Kriging model[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,2006, 220(6): 589-597.

        [24] 劉城,潘鑫,閆清東,等. 基于DOE及RSM的液力變矩器葉片數(shù)對(duì)性能的影響及優(yōu)化[J]. 北京理工大學(xué)學(xué)報(bào),2012,32(7):689-693. Liu Cheng, Pan Xin, Rui Qingdong, et al. Effect of blade number on performance of torque converter and its optimization based on DOE and response surface methodology[J]. Transactions of Beijing Institute of Technology, 2012, 32(7): 689-693. (in Chinese with English abstract)

        [25] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. Evolutionary Computation, IEEE Transactions on, 2002, 6(2): 182-197.

        [26] Kang Qiang, Zuo Shuguang, Wei Kaijun. Study on the aerodynamic noise of internal flow of regenerative flow compressors for a fuel-cell car[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(7): 1155-1174.

        Multi-objective parameter optimization of centrifugal compressor impeller with Kriging model

        Zuo Shuguang, Wei Kaijun, Wu Xudong※, Nie Yujie, Xu Sichuan
        (Cleɑn Energy Automotive Engineering Center, Tongji University, Shɑnghɑi 201804, Chinɑ)

        Abstract:The high-speed centrifugal compressor used in the air supply system is the major noise source of the fuel cell vehicle. Therefore, it is important for the compressor to achieve low noise level as well as high compression ratio and efficiency. This paper presents an optimal design method for the centrifugal compressors using numerical simulation, Kriging model and genetic algorithm at the operating point. The rotational speed at the operation point is 80 000 r/min, the mass flow rate is 0.08 kg/s, and the compression ratio is 1.65. The steady RANS simulations are preliminarily used to provide the performance maps as well as the consistent initial conditions for the subsequent unsteady simulations. Performance maps are compared between numerical and experimental results at 40 000 and 50 000 r/min, which show a good agreement. Next, the unsteady simulations are performed to calculate the sound power level of the compressor. In order to analyze the influences of the blade inlet angle, blade outlet angle, trailing edge angle, tip clearance and blade thickness on the compression ratio,isentropic efficiency and sound power level, the optimal Latin square design is adopted to create the sample space. Each one of the sample points is simulated with the presented numerical method. The results show that the tip clearance and blade thickness are 2 primary factors. The compression ratio and efficiency decline when the tip clearance and blade thickness decrease, while the sound power level rises. The front incline is found to be better than the back incline. The Kriging model is built to reflect the functional relationship between the impeller design parameters and the performance parameters. Then, the multi-objective optimization is conducted with the genetic algorithm based on the Kriging model instead of the numerical model. The errors of the compression ratio, isentropic efficiency and sound power level between the Kriging model and the numerical model at optimized point are 0.11%, 0.46% and 0.01%, respectively. The blade inlet angle, blade outlet angle,trailing edge inclined angle, tip clearance and blade thickness of the baseline design are 37°, 45°, 26.7°, 0.3 mm and 1.2 mm,and the optimized design are 35.226°, 50.863°, -2.465°, 0.365 mm and 0.611 mm, respectively. Compared with the initial design, the compression ratio and isentropic efficiency of the optimal design are increased by 3.56% and 1.02%, respectively and the sound power level is decreased by 3.79 dB. The sound pressure spectrums show that the noise at blade passing frequency decreases by 16 dB. The rotational frequency and its noise at the harmonic frequency as well as broadband noise at the 0-1 800 Hz and 10 000-16 000 Hz also decrease. The compression ratio and isentropic efficiency of the centrifugal compressor are also improved at the off-design points. Internal flow fields are analyzed to find out the mechanism of the improvements. The results show that the velocity distribution is more uniform and the secondary flows in the blade flow channel significantly decrease after optimization, which means that the mixing loss at the impeller outlet decreases. This research provides a reference for optimizing the acoustic behavior as well as the performance parameters of centrifugal compressors at the early design stage.

        Keywords:models; optimization; impellers; centrifugal compressor; unsteady simulation; aerodynamic noise; Kriging model

        通信作者:※吳旭東,男,江蘇揚(yáng)州人,助理教授,主要從事汽車NVH研究,上海 同濟(jì)大學(xué)新能源汽車工程中心,201804。

        作者簡(jiǎn)介:左曙光,男,湖南沅江人,教授,博士生導(dǎo)師,主要從事汽車NVH研究,上海同濟(jì)大學(xué)新能源汽車工程中心,201804。

        基金項(xiàng)目:國(guó)家重大科學(xué)儀器設(shè)備開發(fā)專項(xiàng)(2012YQ15025605);國(guó)家863項(xiàng)目(2012AA110501)

        收稿日期:2015-08-19

        修訂日期:2015-12-21

        中圖分類號(hào):TH452

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1002-6819(2016)-02-0077-07

        doi:10.11975/j.issn.1002-6819.2016.02.012

        猜你喜歡
        葉輪優(yōu)化模型
        一半模型
        超限高層建筑結(jié)構(gòu)設(shè)計(jì)與優(yōu)化思考
        1.4317 QT2鋼在高能泵葉輪上的應(yīng)用
        民用建筑防煙排煙設(shè)計(jì)優(yōu)化探討
        關(guān)于優(yōu)化消防安全告知承諾的一些思考
        一道優(yōu)化題的幾何解法
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        應(yīng)用石膏型快速精密鑄造技術(shù)制造葉輪
        3D打印中的模型分割與打包
        日本最新视频一区二区| 国产精品黄在线观看免费软件| 午夜人妻久久久久久久久| 日韩av激情在线观看| 国产精品办公室沙发| 国产免费a∨片在线软件| 熟女熟妇伦av网站| 人妻少妇精品专区性色av| 成在人线av无码免观看麻豆| 国产资源在线视频| 青草网在线观看| 美女一区二区三区在线观看视频| 国产激情视频在线观看你懂的| 亚洲一区二区三区在线更新| 日韩精品有码中文字幕| 日本在线无乱码中文字幕| 国产av精品麻豆网址| 欧美高清视频手机在在线| 日本丰满少妇裸体自慰| 亚洲国产精品va在线播放| 中文字幕日韩一区二区三区不卡| 精品少妇人妻成人一区二区| 伊人久久大香线蕉综合av| 久久国产成人午夜av免费影院| 日韩人妻ol丝袜av一二区| 国产成人亚洲精品无码av大片| 熟女体下毛毛黑森林| 成人欧美一区二区三区a片| 国产亚洲精久久久久久无码苍井空| 青青国产成人久久91| 99久久精品国产一区色| 亚洲精品av一区二区| 亚欧免费无码aⅴ在线观看| 特级av毛片免费观看| 日韩精品国产自在欧美| 福利片免费 亚洲| 国产女主播福利一区在线观看| 在线观看国产白浆一区三区| 欧美人与禽z0zo牲伦交| 国产精品麻花传媒二三区别| 免费国人成人自拍视频|