萬玉文,郭長強(qiáng),茆 智,李新建,崔遠(yuǎn)來,趙樹君(.武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 40072; 2.廣西水利電力職業(yè)技術(shù)學(xué)院,南寧 5002;.廣西壯族自治區(qū)灌溉試驗中心站,桂林 5499)
?
多級串聯(lián)表面流人工濕地凈化生活污水效果
萬玉文1,2,郭長強(qiáng)1※,茆智1,李新建3,崔遠(yuǎn)來1,趙樹君1
(1.武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,武漢 430072; 2.廣西水利電力職業(yè)技術(shù)學(xué)院,南寧 530023;3.廣西壯族自治區(qū)灌溉試驗中心站,桂林 541199)
摘要:農(nóng)村生活污水已經(jīng)成為農(nóng)業(yè)面源污染的主要來源之一。為了研究如何在經(jīng)濟(jì)發(fā)展水平不高的農(nóng)村建立能有效治理農(nóng)村生活污水,且建設(shè)成本低、運行維護(hù)簡單的人工濕地系統(tǒng),該文通過在桂林市青獅潭灌區(qū)構(gòu)建了多級串聯(lián)的表面流人工濕地系統(tǒng),研究分析了不同子系統(tǒng)的水質(zhì)凈化效果及相關(guān)檢測指標(biāo)濃度的沿程變化規(guī)律。研究結(jié)果表明,濕地系統(tǒng)對氮磷的去除效率總體呈現(xiàn)出隨時間推移逐漸下降的趨勢,同時濕地的表面積越大,其對氮磷的去除率越高。研究還發(fā)現(xiàn),該濕地系統(tǒng)對高濃度進(jìn)水具有快速、穩(wěn)定的去除效果,而對低濃度進(jìn)水的營養(yǎng)鹽去除則表現(xiàn)得較為平緩和持久。通過對濕地系統(tǒng)沿程氮磷濃度衰減的擬合及回歸分析,建立了與濕地系統(tǒng)進(jìn)口濃度有關(guān)的TN、NH4+-N和TP濃度的沿程衰減模型,相關(guān)分析表明其最佳的擬合模型均為指數(shù)衰減模型。該濕地系統(tǒng)在整個試驗時期內(nèi)均表現(xiàn)出了良好的凈化效果,有效地減輕了農(nóng)村生活污水對外界水環(huán)境的破壞,指數(shù)衰減模型的建立也為后續(xù)濕地設(shè)計及排水水質(zhì)預(yù)測提供了理論分析依據(jù)。
關(guān)鍵詞:污水;污染;N;P;水質(zhì)凈化;表面流濕地;多級串聯(lián);沿程衰減模型
萬玉文,郭長強(qiáng),茆智,李新建,崔遠(yuǎn)來,趙樹君. 多級串聯(lián)表面流人工濕地凈化生活污水效果[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):220-227.doi:10.11975/j.issn.1002-6819.2016.03.032http://www.tcsae.org
Wan Yuwen, Guo Changqiang, Mao Zhi, Li Xinjian, Cui Yuanlai, Zhao Shujun. Sewage purification effect of multi-series surface flow constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 220-227. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.032 http://www.tcsae.org
農(nóng)村生活污水已經(jīng)成為農(nóng)業(yè)面源污染的主要來源之一,其年排放總量已經(jīng)連續(xù)多年超過工業(yè)污水的排放[1],治理農(nóng)村生活污水的排放,減輕其對外界水環(huán)境的污染破壞作用顯得十分重要。同時,農(nóng)村地區(qū)經(jīng)濟(jì)不發(fā)達(dá),污染源點多面廣,治理難度大。為解決這些問題,該文著重研究如何在水利灌區(qū)當(dāng)中建立能有效治理農(nóng)村生活污水,且建設(shè)成本低、運行維護(hù)簡單的人工濕地系統(tǒng),并分析其減污效果。
人工濕地因其良好的生態(tài)凈化功能及物理、化學(xué)和生物的綜合效應(yīng),正在被廣泛用于農(nóng)業(yè)排水、工業(yè)廢水和市政污水的處理。一般意義而言,人工濕地可以分為表面流人工濕地、潛流人工濕地以及由兩者組成的復(fù)合流人工濕地[2-3]。
表面流人工濕地建造運行成本低、占地面積大、處理效果受季節(jié)影響明顯,主要用于防治農(nóng)業(yè)面源污染、防止天然水體富營養(yǎng)化等農(nóng)業(yè)排水處理領(lǐng)域[4-9]。潛流人工濕地利用其良好的基質(zhì)構(gòu)造,對來水中的無機(jī)態(tài)氮磷和各有機(jī)物具有較好的處理效果,但其建造運行成本高,主要用于處理工業(yè)廢水和城市污水處理廠的二級排水[10-12]。此外,人工濕地還可以與城市景觀設(shè)計相結(jié)合,對城市河流水質(zhì)、天然降雨進(jìn)行凈化[13-18]。
表面流人工濕地對營養(yǎng)鹽的去除效果不如潛流濕地顯著,這主要與其構(gòu)造有關(guān)[19-20]。因此,在目前的研究中關(guān)注較多的是對多級串聯(lián)的表面流人工濕地系統(tǒng)開展研究[21],在該系統(tǒng)中還可能串聯(lián)或并聯(lián)一些潛流或復(fù)合流濕地以加強(qiáng)對營養(yǎng)鹽的去除效果[22]。本次研究區(qū)域位于經(jīng)濟(jì)并不發(fā)達(dá)的農(nóng)村,潛流濕地因其較高的維護(hù)成本而沒有列入本次研究計劃中。同時,人工濕地的幾何構(gòu)造對其水力性能和凈化效果的發(fā)揮也有十分重要的影響[23],因此在一定的設(shè)計面積基礎(chǔ)上,合理規(guī)劃布局濕地系統(tǒng),增強(qiáng)各子濕地的水力性能和凈化效果同樣顯得十分重要。
本次研究的串聯(lián)濕地系統(tǒng)呈現(xiàn)S型分布,以充分利用土地資源;每個子濕地床都具有較大的長寬比,以提高濕地系統(tǒng)的水力性能與凈化效果。通過對營養(yǎng)鹽在濕地系統(tǒng)中沿程變化的長期觀測,并構(gòu)建相關(guān)的濃度沿程衰減模型,以分析在一定的水力負(fù)荷條件下,濕地系統(tǒng)對不同進(jìn)水濃度污水的凈化效果及沿程變化情況,以實現(xiàn)串聯(lián)濕地系統(tǒng)最優(yōu)的級數(shù)配置,并根據(jù)進(jìn)口濃度成功預(yù)測后續(xù)沿程的濃度變化。
1.1濕地概況
本研究試驗地點位于廣西桂林市臨桂縣臨桂鎮(zhèn)回龍村,研究區(qū)域?qū)賮啛釒Ъ撅L(fēng)氣候,多年平均氣溫19.5℃,降雨量1 700 mm,蒸發(fā)量839 mm,相對濕度78%,無霜期約300 d。降雨量年內(nèi)分布不均,春季多雨,4-6月的降雨量占全年的70%左右,夏秋少雨,秋旱突出。
濕地系統(tǒng)由3級過濾池和8級表面流人工濕地串聯(lián)組成,用于處理回龍村村民的日常生活污水,濕地布置呈S型分布。由于農(nóng)村生活污水日均排放的不穩(wěn)定性,在系統(tǒng)前部設(shè)置了一個調(diào)節(jié)池,以調(diào)蓄進(jìn)出流量,保證進(jìn)入系統(tǒng)的流量穩(wěn)定。其中,由3級滲濾槽組成的快速滲濾系統(tǒng)的水力負(fù)荷設(shè)計為1.5 m3/(m2·d),濕地生物塘的平均水力負(fù)荷為0.08 m3/(m2·d)。各級表面流濕地中種植的水生植物如表1所示,其布置示意圖如圖1所示。
表1 濕地系統(tǒng)各級濕地床種植的水生植物Table 1 Hydrophytes planted in various subsystem beds of constructed wetland system
圖1 多級串聯(lián)表面流人工濕地系統(tǒng)布置圖Fig.1 Schematic diagram of multi-series system of surface flow constructed wetland
1.2水樣采集及分析
2014年4月至9月對濕地系統(tǒng)中各過濾池和濕地床的進(jìn)出口以及整個濕地系統(tǒng)的出口共13個取樣點進(jìn)行不定期的取樣分析,共取樣10次。檢測指標(biāo)包括總氮(total nitrogen,TN)、銨態(tài)氮(ammonia nitrogen,NH4+-N)和總磷(total phosphorus,TP)。其中TN用堿性過硫酸鉀消解紫外分光光度法(GB11894-1989)測定,NH4+-N用納氏試劑比色法(GB7479-1987)測定,TP用鉬酸氨分光光度法(GB11893-1989)測定。
1.3數(shù)據(jù)分析方法
在各指標(biāo)所測得的10組數(shù)據(jù)中,從中選擇6組數(shù)據(jù)利用Origin 9.0軟件對其進(jìn)行曲線擬合,曲線擬合類型包括指數(shù)擬合、線性擬合和二次多項式擬合。各擬合曲線的通用公式如下:
指數(shù)擬合曲線
線性擬合曲線
二次多項式擬合曲線
根據(jù)6組數(shù)據(jù)的進(jìn)口水質(zhì)濃度值Ci和對應(yīng)擬合曲線的系數(shù),利用SPSS19.0軟件對其進(jìn)行一元回歸分析,得到各擬合曲線系數(shù)與進(jìn)口濃度值之間的關(guān)系[22]。
根據(jù)回歸分析的結(jié)果,得到對應(yīng)的不同擬合曲線方程。將得到的擬合曲線方程,分別應(yīng)用到剩余的4組數(shù)據(jù)中,通過相關(guān)分析和均方根誤差RMSE及相對均方根誤差RRMSE等評價指標(biāo)對其進(jìn)行檢驗,以得到不同檢測指標(biāo)最佳的擬合曲線類型。
均方根誤差RMSE(root-mean-square error)
相對均方根誤差RMSE(relative root-mean-square error)
式中Cei為檢測指標(biāo)濃度的模擬值或預(yù)測值,mg/L;Cai為濃度的實測值,mg/L;為濃度實測值的平均值,mg/L;n為某一檢測指標(biāo)1次測定的樣品個數(shù)。
在2014年的4月28日至9月18日,對該農(nóng)村生活污水濕地凈化系統(tǒng)進(jìn)行了連續(xù)的觀測。在近5個月的時間里,人工濕地系統(tǒng)對TN、NH4+-N和TP表現(xiàn)出了非常顯著的去除效果。
2.1去除率分析
檢測時段內(nèi)濕地系統(tǒng)各級子濕地的營養(yǎng)鹽濃度的平均去除率如表2所示,整個濕地系統(tǒng)在不同檢測時間的濃度的平均去除率如圖2所示。
表2 濕地系統(tǒng)各級組成部分在檢測時段內(nèi)營養(yǎng)鹽的平均去除率Table 2 Average removal rate of nutrients in various components on test period %
圖2 濕地系統(tǒng)中營養(yǎng)鹽在不同日期的平均去除率Fig.2 Average removal rate of total wetland system on different dates
由圖2可見,在整個試驗檢測時段內(nèi),檢測時間點最近一周內(nèi)的平均氣溫變化幅度較為平穩(wěn)。整個濕地系統(tǒng)對TN和-N的凈化效率始終處于較高水平,但是也呈現(xiàn)出前期凈化效率高,后期效率下降的趨勢。濕地系統(tǒng)對TP的凈化效率在前期較高,后期則出現(xiàn)較大幅度的下降,去除效率明顯下降。試驗期內(nèi),總體濕地系統(tǒng)對TN、-N和TP的平均去除率分別為76.3%、70.8% 和60.5%,凈化效果顯著,與陳進(jìn)軍等[16,24]的研究結(jié)果接近。同時TN濃度和去除率的變化過程同-N較為一致,說明了農(nóng)村生活污水中TN的去除主要受-N去除水平的制約[19]。
同時,對各級濕地污染物去除率隨時間變化的分析發(fā)現(xiàn),各級濕地的污染物去除率值也均呈現(xiàn)出了隨著時間推移逐漸減小的趨勢。總體而言,該濕地系統(tǒng)對TN和NH4+-N始終具有較理想的去除效果,即使其后期的去除率有所下降。該表面流濕地系統(tǒng)在達(dá)到穩(wěn)定運行后,其對TP濃度的去除率僅為20%左右,效果并不理想。
2.2模型分析
2.2.1TN濃度衰減模型
1)模型擬合
根據(jù)水質(zhì)檢測數(shù)據(jù),繪制TN濃度沿濕地系統(tǒng)的變化曲線,如圖3所示。
圖3 多級表面流濕地系統(tǒng)中TN濃度沿程變化Fig.3 Concentration variation of TN along wetland system
根據(jù)TN濃度實測數(shù)據(jù)分布特征,分別選擇高進(jìn)水濃度的4月28日、5月4號、5月21日、5月26號和低進(jìn)水濃度的8月30日和9月18日共6組數(shù)據(jù)進(jìn)行模型擬合。得到的3種曲線擬合結(jié)果,如表3所示。
數(shù)據(jù)擬合得到的相關(guān)系數(shù)R普遍較高,同時相關(guān)性均已經(jīng)達(dá)到了極顯著的水平(P<0.001),顯示各曲線方程對數(shù)據(jù)組的擬合效果很好。根據(jù)表3中進(jìn)口濃度和各擬合曲線的系數(shù),通過一元線性回歸分析得到與進(jìn)口濃度有關(guān)的不同擬合模型系數(shù)的回歸方程。
表3 TN濃度曲線擬合Table 3 Curve fitting of TN concentration
2)回歸分析
對于指數(shù)衰減模型,模型系數(shù)a和b的一元線性回歸分析結(jié)果為
得到TN濃度沿程衰減的指數(shù)模型
對于線性衰減模型,模型系數(shù)a和b的一元線性回歸分析結(jié)果為
得到TN濃度沿程衰減的線性模型
對于二次多項式衰減模型,模型系數(shù)a、b和c的一元線性回歸分析結(jié)果為
得到TN濃度沿程衰減的二次多項式模型
式中x表示沿程濕地序列數(shù);Ci表示總濕地系統(tǒng)的進(jìn)口濃度,mg/L;C表示對應(yīng)濕地序列的出口濃度,mg/L。
3)相關(guān)檢驗
分別利用得到的指數(shù)模型、線性模型和二次多項式模型對剩余的4組實測數(shù)據(jù),分別為6月30日、7月7日、7月31日和8月15日,進(jìn)行相關(guān)性檢驗和指標(biāo)評價,以確定模型的合理性并遴選出最佳擬合公式。限于篇幅原因,圖4中暫且列出6月30日和7月31日的擬合結(jié)果,具體數(shù)值見表4。
圖4 回歸模型與實測數(shù)據(jù)的驗證Fig.4 Verification of regression model with measured data
表4 TN擬合曲線相關(guān)分析及評價指標(biāo)Table 4 Correlation analysis and model evaluation of TN fitting model
從相關(guān)分析的結(jié)果可知,各擬合曲線模型的模擬值與實測值之間均具有極顯著的相關(guān)性(P<0.001),顯示這3種模型在該濕地系統(tǒng)中均具有很好的模擬效果。
通過表4中評價指標(biāo)的比較可以發(fā)現(xiàn),對于TN濃度沿程衰減而言,指數(shù)模型較線性模型和二次多項式模型的相對均方根誤差更小,具有較好的擬合效果。因此,在該多級串聯(lián)表面流人工濕地TN濃度沿程衰減的模型構(gòu)建中,應(yīng)優(yōu)先選擇指數(shù)模型。
圖5 多級表面流濕地系統(tǒng)中-N濃度沿程變化Fig.5 Concentration variation of-N along wetland system
線性衰減模型方程為
二項式衰減模型方程為
表5 -N濃度模型擬合的評價指標(biāo)Table 5 Model estimation of-N concentration
表5 -N濃度模型擬合的評價指標(biāo)Table 5 Model estimation of-N concentration
擬合方式F i t t i n g m o d e l 0 6 -3 0 0 7 -0 7 0 7 -3 1 0 8 -1 5 0 6 -3 0 0 7 -0 7 0 7 -3 1 0 8 -1 5均方根誤差R o o t -m e a n -s q u a r e e r r o r R M S E / ( m g · L-1)相對均方根誤差R e l a t i v e r o o t -m e a n -s q u a r e e r r o r R R M S E指數(shù)E x p o n e n t i a l 0 . 9 0 0 . 6 5 2 . 2 9 2 . 3 0 0 . 2 2 0 . 1 7 0 . 3 3 0 . 3 3線性L i n e a t i o n 0 . 7 7 0 . 8 8 2 . 4 9 2 . 5 0 0 . 1 9 0 . 2 3 0 . 3 5 0 . 3 5二項式B i n o m i a l 0 . 8 9 0 . 8 9 2 . 5 1 2 . 5 2 0 . 2 2 0 . 2 3 0 . 3 6 0 . 3 6
2.2.3TP濃度衰減擬合
TP實測濃度的沿程變化如圖6所示。
圖6 多級表面流濕地系統(tǒng)中TP濃度沿程變化Fig.6 Concentration variation of TP along wetland system
同上述分析過程,得到TP濃度削減指數(shù)模型方程為
線性衰減模型方程為
二項式衰減模型方程為
通過比較各擬合曲線模擬值與實測值之間的評價指標(biāo)可得,對于TP濃度沿程衰減而言,指數(shù)模型同樣表現(xiàn)出了較好的擬合效果(表6)。
表6 TP濃度模型擬合的評價指標(biāo)Table 6 Model estimation of TP concentration
與傳統(tǒng)的人工濕地營養(yǎng)鹽削減模型不同的是,該試驗研究建立的模型分析目標(biāo)是營養(yǎng)鹽濃度在多級串聯(lián)表面流人工濕地中沿程衰減的變化規(guī)律,與營養(yǎng)鹽在各個子濕地中具體的停留時間無關(guān),主要是建立起其與總濕地系統(tǒng)進(jìn)口初始濃度之間的關(guān)系。通過該模型的建立,為今后多級串聯(lián)人工濕地氮磷濃度的沿程變化提供了參考,在獲知任意時段濕地系統(tǒng)進(jìn)口濃度數(shù)據(jù)之后,便可以方便地預(yù)測出濕地系統(tǒng)中任意一個濕地子系統(tǒng)中的濃度。
大量試驗研究已經(jīng)表明,TP的去除機(jī)理主要是基質(zhì)和底泥的吸附及其沉淀作用。本研究中,在高濃度進(jìn)水(Ci>3 mg/L)情況下,經(jīng)過3號過濾池時來水中的TP濃度已經(jīng)削減了近40%,過濾床基質(zhì)的吸附作用明顯。在經(jīng)過5號濕地床后,TP濃度削減率已經(jīng)達(dá)到80%并隨后維持穩(wěn)定,可見1至5號濕地床系統(tǒng)因其較大的橫斷面面積和較長的流程,十分有利于TP沿程的沉降及水生植物的滯留。在低濃度進(jìn)水(Ci<3 mg/L)情況下,3級過濾槽系統(tǒng)對TP濃度削減并不顯著,只有10%左右,具體原因還有待后續(xù)研究分析;同時在低濃度進(jìn)水條件下,濕地系統(tǒng)對TP的去除作用也較為平滑,與-N的去除規(guī)律相似,來水在經(jīng)過7號濕地床時仍有一定的濃度去除,直至8號濕地床時TP濃度的去除才趨于穩(wěn)定。
本次研究所收集的數(shù)據(jù)分散在了試驗期的間斷時間點,并沒有連續(xù)取樣,取樣時間間隔7~15 d不等,缺少連續(xù)多天的分析比較。同時,為了加深濕地凈化效果的研究,后續(xù)需要加強(qiáng)對進(jìn)口水量排放負(fù)荷和營養(yǎng)物濃度負(fù)荷的連續(xù)觀測分析。另外,本文中的濕地水深均設(shè)計較深,與已有文獻(xiàn)中的推薦水深相比相差較大[28-29],同時還發(fā)現(xiàn)較大的水深不利于某些挺水植物的生長,后續(xù)需加強(qiáng)這方面的研究。表面流人工濕地的凈化效果與濕地種植的水生植物關(guān)系密切[30-31],例如不同的植物根系的氧化還原環(huán)境的差異造成硝化反硝化作用的不同,進(jìn)而凈化效果不一樣,本文尚沒有對此做詳細(xì)的分析,這也是下一步主要的工作之一。
本文根據(jù)多級串聯(lián)表面流人工濕地近一年的觀測數(shù)據(jù),分析了該濕地系統(tǒng)的凈化效果和濃度沿程衰減的擬合模型。結(jié)果表明,濕地系統(tǒng)對總氮TN、-N和總磷TP的濃度的平均去除率分別達(dá)到了76.3%、70.8%和60.5%,效果顯著,有效地削減了生活污水排放對外界水體的危害,但也呈現(xiàn)出了去除率前期高后期低的趨勢。同時,濕地容積或表面積較大的子濕地系統(tǒng)表現(xiàn)出了更好的營養(yǎng)鹽濃度去除效果,這與其具有較長的水力停留時間有關(guān)。
由此可見,高濃度的進(jìn)水能夠促進(jìn)濕地系統(tǒng)凈化功能的快速發(fā)揮并較早到達(dá)穩(wěn)定;而濕地系統(tǒng)對低濃度來水的營養(yǎng)鹽濃度去除效果則表現(xiàn)得比較緩慢和持久。
[參考文獻(xiàn)]
[1] 李冠杰,鄭雅莉,范彬. 農(nóng)業(yè)面源污染對水環(huán)境的影響及其防治[J]. 中國集體經(jīng)濟(jì),2015(1):6-8. Li Guanjie, Zhen Yali, Fan Bin. The influence of agricultural non-point source pollution on water environment and its prevention and control[J]. China Collective Economy, 2015(1): 6-8. (in Chinese with English abstract)
[2] 王平,周少奇. 人工濕地研究進(jìn)展及應(yīng)用[J]. 生態(tài)科學(xué),2005,24(3):278-281. Wang Ping, Zhou Shaoqi. Research progress and applications of the constructed wetlands[J]. Ecologic Science, 2005, 24(3): 278-281. (in Chinese with English abstract)
[3] 張清. 人工濕地的構(gòu)建與應(yīng)用[J]. 濕地科學(xué),2011,9(4):373-379. Zhang Qing. Construction and application of constructed wetlands[J]. Wetland Science, 2011, 9(4): 373-379. (in Chinese with English abstract)
[4] 張依然,王仁卿,張建,等. 大型人工濕地生態(tài)可持續(xù)性評價[J]. 生態(tài)學(xué)報,2012,32(15):4803-4810. Zhang Yiran, Wang Renqing, Zhang Jian, et al. Evaluation of ecosystem sustainability for large-scale constructed wetlands[J]. Acta Ecologica Sinica, 2012, 32(15): 4803-4810. (in Chinese with English abstract)
[5] 任婷婷,李嘉,李春玲,等. 3種濕地植物去污效果及其脅迫生理效應(yīng)研究[J]. 四川大學(xué)學(xué)報:工程科學(xué)版,2013,45(增刊2):102-107. Ren Tingting, Li Jia, Li Chunling, et al. Study on decontamination effects and stress physiological reactions of three wetland plants[J]. Journal of Sichuan University: Engineering Science Edition, 2013, 45(Supp.2): 102-107. (in Chinese with English abstract)
[6] 凌子微,仝欣楠,李亞紅,等. 處理低污染水的復(fù)合人工濕地脫氮過程[J]. 環(huán)境科學(xué)研究,2013,26(3):320-325. Ling Ziwei, Tong Xinnan, Li Yahong, et al. Study on nitrogen removal process of treatments for slightly contaminated water on hybrid constructed wetlands[J]. Research of Environmental Science, 2013, 26(3): 320-325. (in Chinese with English abstract)
[7] 萬金保,蘭新怡,湯愛萍. 多級表面流人工濕地在鄱陽湖區(qū)農(nóng)村面源污染控制中的應(yīng)用[J]. 水土保持報,2010,30(5):118-121,146. Wan Jinbao, Lan Xinyi, Tang Aiping. Application of multi-surface flow constructed wetland to rural non-point source pollution control in Poyang Lake region[J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 118-121, 146. (in Chinese with English abstract)
[8] 盧少勇,張彭義,余剛,等. 人工濕地處理農(nóng)業(yè)徑流的研究進(jìn)展[J]. 生態(tài)學(xué)報,2007,27(6):2627-2635. Lu Shaoyong, Zhang Pengyi, Yu Gang, et al. Research progress of constructed wetland treating agricultural runoff[J]. Acta Ecologica Sinica, 2007, 27(6): 2627-2635. (in Chinese with English abstract)
[9] Gunes K, Tuncsiper B, Ayaz S, et al. The ability of free water surface constructed wetland system to treat high strength domestic wastewater: A case study for the Mediterranean[J]. Ecological Engineering, 2012, 44: 278-284.
[10] 于君寶,侯小凱,韓廣軒,等. 多介質(zhì)人工濕地對生活污水中氮和磷的去除效率研究[J]. 濕地科學(xué),2013,11(2):233-239. Yu Junbao, Hou Xiaokai, Han Guangxuan, et al. Removal efficiency of multi-medium constructed wetlands on nitrogen and phosphorus in domestic sewage[J]. Wetland Science, 2013, 11(2): 233-239. (in Chinese with English abstract)
[11] 逄勇,濮培民,魏陽春,等. 人工生態(tài)系統(tǒng)凈化水質(zhì)模型研究[J]. 生態(tài)學(xué)報,1998,18(6):67-71. Pang Yong, Pu Peimin, Wei Yangchun, et al. The water quality model of an artificial purification ecosystem near a water plant[J]. Acta Ecologica Sinica, 1998, 18(6): 67-71. (in Chinese with English abstract)
[12] 陳永華,吳曉芙,郝君,等. 4種木本植物在表面流人工濕地環(huán)境下的適應(yīng)性與去污效果[J]. 生態(tài)學(xué)報,2014,34(4):916-924. Chen Yonghua, Wu Xiaofu, Hao Jun, et al. The adaptability and decontamination effect of four kinds of woody plants in constructed wetland environment[J]. Acta Ecologica Sinica, 2014, 34(4): 916-924. (in Chinese with English abstract)
[13] 張巖,崔麗娟,李偉,等. 基于主成分分析的水平潛流濕地磷去除模型[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(13):200-207. Zhang Yan, Cui Lijuan, Li Wei, et al. Modeling phosphorus removal in horizontal subsurface constructed wetland based on principal component analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 200-207. (in Chinese with English abstract)
[14] 盧少勇,金相燦,余剛. 人工濕地的氮去除機(jī)理[J]. 生態(tài)學(xué)報,2006,26(8):2670-2677. Lu Shaoyong, Jin Xiangcan, Yu Gang. Nitrogen removal mechanism of constructed wetland[J]. Acta Ecologica Sinica, 2006, 26(8): 2670-2677. (in Chinese with English abstract)
[15] 李亞嬌,汪琴琴,高志新,等. 多級串聯(lián)人工濕地對城市地面徑流的沿程凈化規(guī)律[J]. 中國給水排水,2014,30(17):105-108. Li Yajiao, Wang Qinqin, Gao Zhixin, et al. Purification of urban surface runoff along multi-level series constructed wetlands[J]. China Water & Wastewater, 2014, 30(17): 105-108. (in Chinese with English abstract)
[16] 王洪秀. 規(guī)?;砻媪魅斯竦厮|(zhì)與水力特性研究[D].濟(jì)南:山東大學(xué),2014. Wang Hongxiu. Water Quality and Hydraulic Characteristics of Typical Large-scale Surface Flow Constructed Wetland[D]. Jinan: Shangdong University, 2014. (in Chinese with English abstract)
[17] El-Sheikh M A, Saleh H I, El-Quosy D E, et al. Improving water quality in polluted drains with free water surface constructed wetlands[J]. Ecological Engineering, 2010, 36(10): 1478-1484.
[18] Martín M, Oliver N, Hernández-Crespo C, et al. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain)[J]. Ecological Engineering, 2013, 50: 52-61.
[19] Van de Moortel A M K, Rousseau D P L, Tack F M G, et al. A comparative study of surface and subsurface flow constructed wetlands for treatment of combined sewer overflows: A greenhouse experiment[J]. Ecological Engineering, 2009, 35(2): 175-183.
[20] ávila C, Garfí M, García J. Three-stage hybrid constructed wetland system for wastewater treatment and reuse in warm climate regions[J]. Ecological Engineering, 2013, 61(A): 43-49.
[21] 李珂,賈建麗,盧少勇,等. 模擬串聯(lián)垂直流人工濕地去除重污染河水中氮的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(12):2420-2426. Li Ke, JiaJianli, Lu Shaoyong, et al. Nitrogen removal from heavily polluted river water by a series of simulated vertical-flow constructed wetlands[J]. Journal of Agro-Environment Science, 2014, 33(12): 2420-2426. (in Chinese with English abstract)
[22] Jia Haifeng, Sun Zhaoxia, Li Guanghe. A four-stage constructed wetland system for treating polluted water from an urban river[J]. Ecological Engineering, 2014, 71: 48-55. [23] Persson J. The hydraulic performance of ponds of various layouts[J]. Urban Water, 2000, 2(3): 243-250.
[24] 陳進(jìn)軍,鄭翀,鄭少奎. 表面流人工濕地中水生植被的凈化效應(yīng)與組合系統(tǒng)凈化效果[J]. 環(huán)境科學(xué)學(xué)報,2008,28(10):2029-2035. Chen Jinjun, Zheng Chong, Zheng Shaokui. Pollutant purification performance of a surface flow constructed wetland planted with different aquatic macrophytes and their combination[J]. Acta Scientiae Circumstantiae, 2008, 28(10): 2029-2035. (in Chinese with English abstract)
[25] 仝欣楠,王欣澤,何小娟,等. 人工蘆葦濕地氨氮污染物去除及氨氧化菌群落多樣性分析[J]. 環(huán)境科學(xué)研究,2014,27(2):218-224. Tong Xinnan, Wang Xinze, He Xiaojuan, et al. Ammonia nitrogen removal and analysis of the ammonia-oxidizing bacterial community in horizontal subsurface flow constructed wetlands[J]. Research of Environmental Sciences, 2014, 27(2): 218-224. (in Chinese with English abstract)
[26] 陳秀榮,周琪. 人工濕地脫氮除磷特性研究[J]. 環(huán)境污染與防治,2005,27(7):57-60. Chen Xiurong, Zhou Qi. Study on the characteristics of N/P removal in constructed wetland[J]. Environmental Pollution & Control, 2005, 27(7): 57-60. (in Chinese with English abstract)
[27] 史鵬博,朱洪濤,孫德智. 人工濕地不同填料組合去除典型污染物的研究[J]. 環(huán)境科學(xué)學(xué)報,2014,34(3):704-711. Shi Pengbo, Zhu Hongtao, Sun Dezhi. Removal efficiency of typical pollutants by different substrate combinations for constructed wetlands[J]. Acta Scientiae Circumstantiae, 2014, 34(3): 704-711. (in Chinese with English abstract)
[28] 張金勇,張建,劉建,等. 水深對表面流人工濕地污染河水處理系統(tǒng)運行效果的影響[J]. 環(huán)境工程學(xué)報,2012,6(3):799-803.Zhang Jinyong, Zhang Jian, Liu Jian, et al. Influence of depth on running effect of surface-flow constructed wetland treating polluted river water[J]. Chinese Journal of Environmental Engineering, 2012, 6(3): 799-803. (in Chinese with English abstract)
[29] Alley B L, Willis B, John R J, et al. Water depths and treatment performance of pilot-scale free water surface constructed wetland treatment systems for simulated fresh oilfield produced water[J]. Ecological Engineering, 2013, 61A: 190-199.
[30] 李華超,陳宗晶,陳章和. 六種濕地植物根際氧化還原電位的日變化[J]. 生態(tài)學(xué)報,2014,34(20):5766-5773. Li Huachao, Chen Zongjing, Chen Zhanghe. Daily variation of the rhizosphere redox potential of six wetland plants[J]. Acta Ecologica Sinica, 2014, 34(20): 5766-5773. (in Chinese with English abstract)
[31] García-Lledó A, Ruiz-Rueda O, Vilar-Sanz A, et al. Nitrogen removal efficiencies in a free water surface constructed wetland in relation to plant coverage[J]. Ecological Engineering, 2011, 37(5): 678-684.
Sewage purification effect of multi-series surface flow constructed wetland
Wan Yuwen1,2, Guo Changqiang1※, Mao Zhi1, Li Xinjian3, Cui Yuanlai1, Zhao Shujun1
(1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Guangxi College of Water Resources and Electric Power, Nanning 530023, China; 3. Guangxi Zhuang Autonomous Region Center Station of Irrigation Experiment, Guilin 541199, China)
Abstract:Rural domestic sewage has become one of the main sources of agricultural non-point source pollution. In order to develop effective treatment of domestic sewage in less development rural areas with low cost in construction and simple in maintenance, we studied a multi-series system of surface flow constructed wetland to treat rural sewage in Qingshitan irrigation district in Guilin City, Guangxi Province, China. The purification effect of different subsystems and the nutrient concentration variation at each stage were studied and analyzed. The results showed that the nutrient removal efficiency of the overall wetland system presented a trend of gradual decline over time. At the same time, the greater the surface area of the wetland was, the higher the removal rate of nitrogen and phosphorus were. However, the differences of removal rate of nitrogen and phosphorus affected by temperature could be ignored because the change of daily temperature was relatively stable during the test period (April to September). Total nitrogen (TN) and-N (ammonium nitrogen) was high at earlier stage and low at late period of the inlet for the whole study period. The average removal rate decreased from 83.8% and 84.7% to 65.0% and 57.0%, for TN and-N, respectively. There was no significant correlation between inlet concentration and removal rate (P>0.05) for nitrogen. The inlet concentration of TP (total phosphorus) showed no obvious change, but its removal rate presented sharply decline from 82.2% at the inlet to 21.2% at the outlet. This was caused by a strong phosphorus adsorption by sediment and phosphorus use by microorganisms. Nevertheless, there was still 21.2% TP was not removed. This demonstrated limitations of TP removal capacity on surface flow constructed wetlands in comparison with the subsurface flow constructed wetlands. The average removal rate of TN,-N and TP were 76.3%, 70.8% and 60.5%, respectively of the whole system. There could be a better purification result with a larger aspect ratio and surface area. This study also revealed that this wetland system displayed a fast and stable purification effect for high nutrient influent concentration, but less effect for removal low nutrient concentration. From the experiment, we received ten sets of concentration data, including the data of each wetland bed. Of them six groups of measured data were used for the curve fitting of nitrogen and phosphorus concentration. We established the exponential, the linear, and the quadratic polynomial model which related to the inlet concentration of the wetland system through the monadic linear regression analysis of model coefficients. Then these three models were used for prediction and evaluation on the basis of the other four groups of testing data. Correlation analysis revealed that exponential decay model had a smaller relative root-square-error value with the best performance. The wetland system showed good purification effect during the whole test period, reducing the emissions of nitrogen and phosphorus of rural domestic sewage greatly, and mitigating the damage of domestic sewage to freshwater environment. The establishment of exponential attenuation model provided reference for the prediction of concentration changing along the multistage tandem constructed wetland system. The model can be used to easily predict nutrient concentration in any wetland subsystem when the influent concentration of the system is known.
Keywords:sewage; pollution; nitrogen; phosphorus; water purification; surface flow constructed wetland; multi-series; attenuation step by step
通信作者:※郭長強(qiáng),男,安徽天長人,博士生。主要研究方向為農(nóng)業(yè)水環(huán)境修復(fù)。武漢武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,430072。Email:cqguo@whu.edu.cn
作者簡介:萬玉文,男,廣西貴港人,教授,博士生,主要研究方向為節(jié)水灌溉理論與技術(shù)。武漢武漢大學(xué)水資源與水電工程科學(xué)國家重點實驗室,430072。Email:1398711172@qq.com
基金項目:高等學(xué)校博士學(xué)科點專項科研基金(20130141110014);廣西水利科技項目(No.201423、No.201211);2012年度廣西高校優(yōu)秀人才資助計劃(No.97)。
收稿日期:2015-06-04
修訂日期:2015-11-09
中圖分類號:X524
文獻(xiàn)標(biāo)志碼:A
文章編號:1002-6819(2016)-03-0220-08
doi:10.11975/j.issn.1002-6819.2016.03.032