陳 慧,侯會靜,蔡煥杰,朱 艷(1.西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,楊凌 712100;2.西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
?
加氣灌溉溫室番茄地土壤N2O排放特征
陳 慧,侯會靜※,蔡煥杰,朱艷
(1.西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,楊凌 712100;2.西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
摘要:加氣灌溉引起的土壤中氧氣含量改變勢必會影響N2O的產(chǎn)生和排放。為了揭示加氣灌溉對秋冬茬溫室番茄地土壤N2O排放的影響,2014年采用靜態(tài)箱-氣相色譜法對加氣灌溉土壤N2O排放進(jìn)行原位觀測,研究秋冬茬溫室番茄地土壤N2O排放對加氣灌溉的動態(tài)響應(yīng)。試驗采用灌水量(充分灌溉、虧缺灌溉)和加氣(加氣、不加氣)的雙因素設(shè)計,設(shè)置4個處理,分別為加氣虧缺灌溉(A1)、不加氣虧缺灌溉(CK1)、加氣充分灌溉(A2)和不加氣充分灌溉(CK2)。結(jié)果表明:不同加氣灌溉模式下土壤N2O排放均主要集中在番茄果實膨大期,其他時期排放水平較低。加氣和充分供水處理均增加了番茄整個生育期的土壤N2O排放量,以A2處理最大(120.34 mg/m2),分別是A1和CK1處理的1.89和4.21倍(P<0.01),而與CK2處理差異性不顯著(P=0.078)。此外,不同灌水水平不加氣處理,除N2O 排放主峰值點外,N2O排放通量與土壤充水孔隙率(water-filled pore space,WFPS)存在指數(shù)正相關(guān)關(guān)系(P<0.05),WFPS在46.0%~52.1%時觀測到N2O劇烈釋放??梢?,加氣灌溉增加了溫室番茄地土壤N2O排放,且在虧缺灌溉條件下,加氣灌溉對溫室番茄地土壤N2O排放的影響顯著。研究結(jié)果為評估加氣灌溉技術(shù)的農(nóng)田生態(tài)效應(yīng)及設(shè)施菜地溫室氣體減排提供參考。
關(guān)鍵詞:土壤;溫室氣體;排放控制;N2O;加氣灌溉;番茄
陳 慧,侯會靜,蔡煥杰,朱艷. 加氣灌溉溫室番茄地土壤N2O排放特征[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):111-117.doi:10.11975/j.issn.1002-6819.2016.03.016http://www.tcsae.org
Chen Hui, Hou Huijing, Cai Huanjie, Zhu Yan. Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 111-117. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.016http://www.tcsae.org
Email:chenhui2014@nwsuaf.edu.cn
溫室氣體引起的全球變暖和臭氧層破壞是當(dāng)今兩大備受關(guān)注的全球問題[1]。N2O是大氣中重要的溫室氣體,對全球氣候變化起到重要作用,也是導(dǎo)致臭氧層破壞的光化學(xué)反應(yīng)的主要參與者[2]。2013年大氣中N2O的濃度達(dá)到321 nL/L(標(biāo)準(zhǔn)狀況下),比工業(yè)化前的濃度值增加了20%[3]。農(nóng)田土壤被證實是大氣中N2O的重要產(chǎn)生源,在大氣N2O濃度增加中占有極其重要的地位[4]。由于設(shè)施園藝的先進(jìn)性與高效性,中國設(shè)施園藝面積已位居世界首位,2011年栽培面積已超過400萬hm2[5]。在中國農(nóng)田系統(tǒng)中,設(shè)施菜地?zé)o疑是氮肥投入最多的系統(tǒng),每年僅氮肥投入量已經(jīng)超過1 200 kg/hm2[6],如此高的氮肥投入使N2O排放受到廣泛關(guān)注。因此,研究設(shè)施菜地N2O排放量對估算中國農(nóng)田溫室氣體排放,制定設(shè)施菜地溫室氣體減排措施具有重要意義[7]。
土壤中N2O的產(chǎn)生主要是在微生物的參與下,通過硝化和反硝化作用完成的[8]。土壤中氧氣濃度是調(diào)節(jié)硝化反應(yīng)、反硝化反應(yīng)的主要因素之一,氧氣壓力主要通過控制反硝化酶的活性與合成來影響反硝化反應(yīng);而硝化反應(yīng)是在需氧條件下發(fā)生。因此,土壤中氧氣含量的改變勢必會影響N2O的產(chǎn)生和排放。已有土壤中氧氣含量的改變對N2O排放的影響研究多集中于微生物培養(yǎng)上[9],田間試驗研究很少。加氣灌溉通過向根區(qū)土壤通氣改變根部微環(huán)境,已被大量研究證實能提高作物產(chǎn)量、改善作物品質(zhì)與提高水分利用效率[10-13]。加氣灌溉引起土壤中氧氣含量的改變,勢必會影響N2O的產(chǎn)生和排放。但是,加氣灌溉對土壤溫室氣體排放影響的研究尚未見報道。因此,本文通過溫室小區(qū)試驗研究不同加氣灌溉模式對溫室番茄地土壤N2O排放的影響,旨在為評估加氣灌溉技術(shù)的農(nóng)田生態(tài)效應(yīng)及設(shè)施菜地溫室氣體減排提供一定的理論基礎(chǔ)與科學(xué)依據(jù)。
1.1試驗區(qū)概況
2014年8-12月試驗在西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室的日光溫室內(nèi)進(jìn)行(34°20′N、108°04′E)。所處地理位置屬半濕潤易旱區(qū),年均日照時數(shù)2 163.8 h,無霜期210 d。溫室結(jié)構(gòu)為房脊型,長×寬×高為36 m×10.3 m×4 m。土壤類型為塿土,1 m土層內(nèi)平均土壤干容重為1.35 g/cm3,田間持水量為23.8%(質(zhì)量含水率)。
1.2試驗設(shè)計
試驗設(shè)計充分灌溉和虧缺灌溉2種灌水量、加氣與不加氣共計4個處理(表1),各處理3次重復(fù)。充分供水時每次灌水量計算公式[14]為
式中W表示每次灌水的參考灌水量,mL;kcp為蒸發(fā)皿系數(shù),取為1.0;Epan為蒸發(fā)皿測得的蒸發(fā)量,mm;A為單個灌水器控制的面積,cm2。
表1 試驗設(shè)計Table 1 Experimental design
1.3試驗過程
試驗小區(qū)起壟種植,每壟面積為3.2 m2(4.0 m×0.8 m),1壟作為1個重復(fù),共計12壟,采用完全隨機(jī)設(shè)計布設(shè)。以溫室番茄為供試作物(品種為“飛越”),采用營養(yǎng)缽育苗,定植時間為2014年8月13日,此時秧苗處于3葉1心至4葉1心,定植時澆透底水,定植后在壟上覆膜,土壤蒸發(fā)可忽略。每壟種9株番茄,株距35 cm。為防止水分側(cè)滲,壟與壟之間用塑料膜隔開。灌水方式采用地下滴灌,滴灌帶埋深15 cm,滴頭間距35 cm。灌溉水量由安置在溫室內(nèi)的E601型蒸發(fā)皿的蒸發(fā)量值確定,按2次灌水間隔內(nèi)蒸發(fā)量值進(jìn)行灌水,每次灌水安排在當(dāng)天早上08:00。利用文丘里計(Mazzei 287)作為加氣設(shè)備進(jìn)行加氣。設(shè)備安裝在灌水毛管的首端,在進(jìn)水口和毛管末端都裝有壓力表,進(jìn)口壓力為0.1 MPa,出口壓力為0.02 MPa。由排氣法得到進(jìn)氣量約占灌溉水量的17%,灌溉毛管中多余的水可回流[15]。文丘里計加氣法主要利用文丘里原理通過前后壓力差產(chǎn)生射流,造成喉管負(fù)壓,使強(qiáng)勁的水流與空氣混合,產(chǎn)生的氣泡多而細(xì)膩,溶氣效率高。文丘里管注射器安裝在支管首部,在灌水的同時加氣,形成水氣混合模式進(jìn)行加氣灌溉[16]。此外,施肥只施基肥,有機(jī)肥料(N、P2O5、K2O質(zhì)量分?jǐn)?shù)≥10%;有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)≥45%)與復(fù)混肥料(總養(yǎng)分質(zhì)量分?jǐn)?shù)≥45%,其中氮、磷、鉀質(zhì)量分?jǐn)?shù)各為15%)。
番茄生育期具體劃分為:苗期(定植至第1穗開花,8月13日-9月7日),開花坐果期(第1穗開花至第1穗果實開始膨大,9月8日-9月23日),果實膨大期(第1穗果實開始膨大至第1穗果實開始采摘,9月24日-11月9日),成熟期(第1穗果實開始采摘至全部收獲,11月10日-12月28日),于12月28日結(jié)束,生育期138 d。
1.4田間采樣與觀測
采用靜態(tài)箱原位采集氣樣,箱體用6 mm厚的聚氯乙烯材料制成,長×寬×高為25 cm×25 cm×25 cm。箱體外表面用海綿與錫箔紙包裹,防止取樣期間因為陽光照射導(dǎo)致箱體內(nèi)溫度的劇烈變化。箱體頂部安裝有攪拌空氣的小風(fēng)扇,保證箱體內(nèi)氣體均勻,使取樣具有代表性。靜態(tài)箱底座在番茄移植當(dāng)天埋設(shè)于小區(qū)中央以便日后氣體采集,直到番茄收獲。底座上端由大約3 cm深的凹槽構(gòu)成用以放置靜態(tài)箱箱體,取樣時注水密封,防止周圍空氣與箱內(nèi)氣體交換。氣體采樣從定植后30 d開始,番茄生育前期每隔1周左右采集1次,末期每隔2周左右采集1次;取樣時間分別在10:00、10:10、10:20和10:30時刻利用帶有三通閥的50 mL注射器進(jìn)行4次氣體采集,每次取氣30 mL,并在當(dāng)天進(jìn)行室內(nèi)濃度分析。去除奇異點,使樣品濃度測量值隨時間的線性回歸系數(shù)R2≥0.85。
氣體采樣的同時用安插在箱體頂部的電子溫度計(TA288)測量箱內(nèi)溫度;用中子水分儀(CS830)測量土壤20 cm深度處的土壤含水量,并在每個月始末用烘干法對中子儀測定值進(jìn)行校正。每個處理分別在小區(qū)首、中、末端3個點進(jìn)行測量,取其平均值作為每個處理的土壤含水量,并轉(zhuǎn)換成土壤充水孔隙率(water-filled pore space,WFPS)[17]。
1.5氣體分析及通量計算
N2O濃度采用安捷倫氣象色譜儀分析儀測定(Agilent Technologies 7890A GC System),氣體排放通量為
式中F為N2O氣體排放通量,μg/(m2·h);ρ是標(biāo)準(zhǔn)狀態(tài)下氣體密度,g/cm3;h為箱體高度,m;為氣體濃度變化率,μg/(m3·h);T為箱內(nèi)溫度,℃。
1.6數(shù)據(jù)分析
采用OriginPro8.5作圖和利用積分功能求N2O累積排放量,用SPSS Statistics 22.0數(shù)據(jù)處理軟件對試驗數(shù)據(jù)進(jìn)行統(tǒng)計分析。
2.1不同加氣灌溉模式下溫室番茄地土壤N2O排放通量
2.1.1土壤N2O排放通量季節(jié)變化規(guī)律
不同加氣灌溉模式下溫室番茄地土壤N2O排放通量的季節(jié)變化有明顯的時間變異性,各處理總體呈現(xiàn)先增加后減小的趨勢,在11月30日(移植后109 d)出現(xiàn)較小的排放峰,而其他時期的N2O排放均維持在較低水平(圖1)。在番茄生育期絕大多數(shù)時間內(nèi),加氣灌溉處理(A1、A2)的溫室番茄地土壤N2O排放通量高于不加氣灌溉處理(CK1、CK2);且充分灌溉條件下(A2、CK2)土壤N2O排放通量高于虧缺灌溉條件下(A1、CK1)土壤N2O排放通量(圖1,表2)。N2O排放通量的主峰值出現(xiàn)在番茄果實膨大期55 d,以A2處理最大(337.27 μg/(m2·h)),分別是A1和CK1的2.10和10.83倍(P<0.05),而與CK2處理差異性不顯著(P=0.641)。此外,成熟期109 d有1個較小的排放峰值,A1、CK1、A2和CK2處理土壤N2O排放通量分別為17.54、13.19、55.07和45.09 μg/(m2·h))。不同灌水水平,加氣和不加氣處理對土壤N2O排放次峰值影響不顯著(P>0.05);而充分灌溉加氣與不加氣處理均較對應(yīng)的虧缺灌溉加氣與不加氣處理顯著增加了土壤N2O排放次峰值(P<0.05)。
圖1 不同灌溉模式下溫室番茄地土壤N2O排放Fig.1 Change of N2O flux from soils in tomato fields under different irrigation treatments
番茄整個生育期土壤N2O平均排放通量以A2處理最大(38.00 μg/(m2·h)),分別較A1和CK1處理增大85.9%和264.7% (P<0.05),而與CK2處理差異性不顯著(P>0.05)(表2)。
表2 番茄不同生育階段土壤N2O排放通量Table 2 N2O fluxes from soils in tomato fields at different growth stages
在番茄不同生育階段,土壤N2O階段排放通量的變化規(guī)律與整個生育期變化規(guī)律基本一致。番茄開花坐果期,土壤N2O的平均排放通量在A1與CK1處理間差異性不顯著,但在A2與CK2間差異性顯著(P<0.05);番茄果實膨大期,土壤N2O的平均排放通量在A2與CK2處理間差異性不顯著,但在A1與CK1差異顯著(P<0.05);番茄成熟期,土壤N2O的平均排放通量在A1與CK1、A2與CK2處理間差異性均不顯著(P>0.05),說明番茄生育后期向土壤中加氣對土壤N2O排放通量影響不顯著。不同加氣灌溉模式下,開花坐果期和成熟期的土壤N2O階段平均排放通量值接近,但均小于番茄果實膨大期的土壤N2O階段平均排放通量。
2.1.2土壤N2O排放通量與土壤水分的關(guān)系
由于溫室番茄種植地膜覆蓋作用及秋冬季棚內(nèi)溫度較低造成土壤蒸發(fā)量下降,番茄整個生育期內(nèi),土壤含水量維持在較高水平(圖2)。土壤濕度會影響土壤N2O的產(chǎn)生和向大氣中的擴(kuò)散。不同加氣灌溉模式下,除N2O排放主峰值點外,溫室番茄地土壤N2O排放通量隨土壤含水量增加而增加,不同灌水水平不加氣處理土壤N2O排放通量與WFPS呈指數(shù)正相關(guān)關(guān)系(P<0.05),而加氣處理兩者關(guān)系不顯著(P>0.05)(圖3)。土壤N2O排放峰值與土壤含水量呈負(fù)相關(guān)關(guān)系,A1、CK1、A2和CK2處理峰值分別出現(xiàn)在WFPS為49.5%~51.9%、46.0%~50.9%、47.5%~52.1%和48.4%~50.6%條件下(圖2)。
圖2 不同加氣灌溉模式下土壤N2O排放通量與土壤充水孔隙率變化Fig.2 N2O flux and soil water-filled pore space WFPS under different aerated irrigation treatments
圖3 土壤N2O排放通量與土壤充水孔隙率的關(guān)系Fig.3 Relationship between N2O flux and soil WFPS
2.2加氣灌溉番茄地土壤N2O排放量
表3所示,充分灌溉條件下,加氣較不加氣處理對番茄整個生育期土壤N2O排放量影響差異性不顯著(P=0.078);而虧缺灌溉條件下,加氣灌溉極顯著增加了番茄整個生育期土壤N2O排放量(P<0.01);且充分灌溉較對應(yīng)的虧缺灌溉也極顯著增加了番茄整個生育期土壤N2O排放量(P<0.01)。以A2處理番茄整個生育期的土壤N2O排放量最大(120.34 mg/m2),分別是A1和CK1處理的1.89和4.21倍(P<0.01),而與CK2處理差異性不顯著(P=0.078)。番茄不同生育階段,土壤N2O排放量的變化規(guī)律一致均為:A2>CK2>A1>CK1。不同加氣灌溉模式下,A1、CK1、A2和CK2處理土壤N2O階段排放量均主要集中在番茄果實膨大期,分別為50.77、16.06、100.56和91.90 mg/m2。
表3 番茄不同生育階段土壤N2O排放量Table 3 Cumulative emissions of N2O from soils in tomato fields at different growth stages
3.1加氣灌溉對溫室番茄地土壤N2O排放的影響
不同加氣灌溉模式下土壤N2O排放在番茄整個生育期內(nèi)均大致呈現(xiàn)先增加后減小的趨勢,且主峰值和次峰值分別出現(xiàn)在果實膨大期的55 d和成熟期的109 d,而其他時期排放水平較低(圖1)。這種現(xiàn)象在前人研究中也有出現(xiàn)[18-20],比如Weslien等[18]指出設(shè)施胡蘿卜菜地土壤N2O排放峰值發(fā)生在7月24日(39 d),此時土壤充水孔隙率相對較低。楊巖等[19]在研究設(shè)施有機(jī)大白菜地土壤N2O排放規(guī)律時發(fā)現(xiàn),土壤N2O排放量均為施氮后最高,其后逐漸降低,但在8月31日、9月16日和10月9日均出現(xiàn)上升的趨勢。出現(xiàn)這種現(xiàn)象的原因可能與當(dāng)時土壤含水量和供產(chǎn)生N2O的基質(zhì)含量多少有關(guān)。本文N2O排放主峰值點處的土壤含水量較前期土壤含水量低,增加了土壤孔隙度和氣體擴(kuò)散能力,更利于氣體排放。且有研究表明滴灌會造成相對頻繁的干濕交替現(xiàn)象[21],增加了死亡微生物的量以及打亂了土壤環(huán)境和有機(jī)物之間的相互作用,從而使得土壤有效碳和氮的礦化量增加[21],使土壤的硝化和反硝化量顯著高于長期濕潤的土壤,進(jìn)而引發(fā)N2O的釋放高峰[21-22]。此次試驗由于只施基肥,番茄生育前期供產(chǎn)生N2O的基質(zhì)較多,可能造成果實膨大期55 d處的N2O劇烈排放。
番茄整個生育期不同加氣灌溉模式下土壤N2O平均排放通量為10.42~38.00 μg/(m2·h),這在前人研究的設(shè)施菜地土壤N2O排放通量變化范圍之內(nèi)[19,23]。比如,楊巖等[19]得出不同水肥處理下N2O平均排放通量變化范圍為20.2~156.0 μg/(m2·h)。張婧等[23]在研究不同施肥處理設(shè)施蔬菜地典型種植模式(番茄-白菜-生菜)土壤N2O排放時得出,N2O平均排放通量變化范圍為30~360 μg/(m2·h)。但這些結(jié)果遠(yuǎn)高于大田試驗觀測值[24-25],這可能是因為設(shè)施蔬菜地比露天栽培蔬菜和大田作物具備較好的水熱條件;此外設(shè)施菜地較高的氮肥投入也導(dǎo)致N2O較高的排放[23]。
加氣灌溉改變了土壤中氧氣含量[15-16],改變了硝化、反硝化反應(yīng)所需的條件[26-27],通過影響土壤中微生物量和各種酶活性[28],進(jìn)而影響土壤N2O排放。僅有氧氣含量的改變對N2O排放影響的研究主要集中在室內(nèi)培養(yǎng)或湖泊中[9,26-27,29],但加氣灌溉對設(shè)施菜地土壤N2O排放的研究尚未見報道。本文通過溫室小區(qū)試驗利用靜態(tài)箱氣相色譜法研究不同加氣灌溉模式對溫室番茄地土壤N2O排放的影響時得出,虧缺灌溉條件下加氣較不加氣處理顯著增加了土壤N2O排放(P<0.01),而充分灌溉條件下加氣與不加氣處理對土壤N2O排放影響不顯著(P=0.078),可能原因是虧缺灌溉較充分灌溉具有更好的土壤孔隙,加氣對土壤微生物和酶活性影響顯著,促進(jìn)土壤N2O明顯排放所致。此外,充分灌溉較對應(yīng)的虧缺灌溉也顯著增加了土壤N2O排放(P<0.01),主要由于充分灌溉較對應(yīng)的虧缺灌溉造成土壤缺氧狀態(tài),促使反硝化反應(yīng)發(fā)生,從而促進(jìn)土壤N2O排放;且加氣充分灌溉處理由于向土壤中增加了氧氣含量,抑制N2O向N2轉(zhuǎn)化,因此造成更多的N2O排放。不同加氣灌溉模式下,番茄果實膨大期的土壤N2O排放大于番茄開花坐果期和成熟期,出現(xiàn)這種現(xiàn)象的可能原因是加氣灌溉對設(shè)施蔬菜不同生育階段土壤微生物和酶活性的影響不同[28]。
由于此次試驗錯過了番茄苗期與部分開花坐果期,可能導(dǎo)致某些N2O排放峰值沒有被捕捉到,有待在將來的試驗中完善與論證。
3.2加氣灌溉對溫室番茄地土壤N2O排放通量與土壤水分間關(guān)系的影響
土壤水分是影響土壤N2O排放的主要影響因子之一。本文研究中除主峰值點外,不同灌水水平不加氣處理土壤N2O排放通量隨土壤含水量增加而增加,兩者呈指數(shù)正相關(guān)關(guān)系(P<0.05)(圖3),且不同加氣灌溉模式下溫室番茄地土壤N2O排放峰值出現(xiàn)在土壤充水孔隙率為46.0%~52.1%范圍內(nèi)(圖2)。大量研究表明,土壤N2O排放通量與土壤充水孔隙率呈指數(shù)相關(guān)關(guān)系。Liu等[30]在研究北方棉花地N2O日排放通量時得出,N2O日排放通量分別與土溫和土壤充水孔隙率呈指數(shù)關(guān)系。Weslien等[18]和Kallenbach等[24]也得出N2O排放通量與土壤充水孔隙率和土壤溫度呈正相關(guān)。但所給出的WFPS的范圍不一,Smith等[31]指出當(dāng)土壤硝態(tài)氮降低到5 kg/hm2以下及土壤充水孔隙率在50%~90%時,N2O排放與土壤充水孔隙率呈指數(shù)關(guān)系。張婧等[23]研究設(shè)施蔬菜地不同施肥處理對土壤N2O排放影響時發(fā)現(xiàn),番茄地N2O排放通量與土壤充水孔隙率存在顯著正相關(guān)關(guān)系(P<0.05),且WFPS在60%~75%條件下有利于N2O的產(chǎn)生和排放。但是,絕大部分研究表明設(shè)施菜地較高的N2O排放通量出現(xiàn)在40%~75%的土壤充水孔隙率[7,23,32],這與本文的研究結(jié)果一致。
溫室番茄地加氣灌溉試驗表明,利用文丘里計作為加氣設(shè)備,通過地下滴灌系統(tǒng)把空氣加入根區(qū),促進(jìn)了土壤N2O排放。與不加氣灌溉相比,充分灌溉條件下,加氣未顯著增加秋冬茬溫室番茄地土壤N2O排放;而虧缺灌溉條件下,加氣顯著增加了土壤N2O排放;且充分灌溉較對應(yīng)的虧缺灌溉也顯著增加了土壤N2O排放。以加氣充分灌溉番茄整個生育期的N2O排放量最大(120.34 mg/m2),分別是加氣虧缺灌溉和不加氣虧缺灌溉的1.89和4.21倍,而與不加氣充分灌溉差異性不顯著。此外,不同加氣灌溉模式下土壤N2O排放主要集中在番茄果實膨大期。
溫室番茄地土壤N2O排放通量與土壤20 cm深度處的含水量關(guān)系密切。除主峰值點外,土壤N2O排放通量隨土壤含水量增加而增加,不同灌水水平不加氣處理土壤N2O排放通量與土壤充水孔隙率呈指數(shù)正相關(guān)關(guān)系;峰值出現(xiàn)在土壤充水孔隙率為46.0%~52.1%條件下。
[參考文獻(xiàn)]
[1] 彭世彰,侯會靜,徐俊增,等. 稻田CH4和N2O綜合排放對控制灌溉的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(13):41-43. Peng Shizhang, Hou Huijing, Xu Junzeng, et al. CH4and N2O emissions response to controlled irrigation of paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 41-43. (in Chinese with English abstract)
[2] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21stcentury[J]. Science, 2009, 326(5949): 123-125.
[3] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013.
[4] Organization for Economic Cooperation and Development (OECD). Environmental Indicators for Agriculture: Methods and Results[M]. Vol 3. Paris: Publications Service, OECD, 2001: 281-283.
[5] 郭世榮,孫錦,束勝,等. 我國設(shè)施園藝概況及發(fā)展趨勢[J].中國蔬菜,2012(18):1-14. Guo Shirong, Sun Jin, Shu Sheng, et al. Analysis of general situation, characteristics, existing problems and development trend of protected horticulture in China[J]. China Vegetables, 2012(18): 1-14. (in Chinese with English abstract)
[6] 王敬國. 設(shè)施菜田退化土壤修復(fù)與資源高效利用[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2011.
[7] 宋賀,潘廣元,陳清,等. 中國北方設(shè)施菜田壟-畦土壤N2O和NO年排放特征比較[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(12):2472-2477. Song He, Pan Guangyuan, Chen Qing, et al. Comparison of N2O and NO emissions from ridged and furrowed soils in a greenhouse in Northern China[J]. Journal of Agro-Environment Science, 2014, 33(12): 2472-2477. (in Chinese with English abstract)
[8] Malla G, Bhatia A, Pathak H, et al. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors[J]. Chemosphere, 2005, 58(2): 141-147.
[9] Khalil K, Mary B, Penault P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2concentration[J]. Soil Biology & Biochemistry, 2004(36): 687-699.
[10] Abuarab M, Mostafa E, Ibrahim M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of Advanced Research, 2013, 4: 493-499.
[11] 陳新明,Dhungel J, Bhattarai S,等. 加氧灌溉對菠蘿根區(qū)土壤呼吸和生理特性的影響[J]. 排灌工程機(jī)械學(xué)報,2010,28(16):543-547. Chen Xinming, Dhungel J, Bhattarai S, et al. Impact of oxygation on soil respiration and crop physiological characteristics in pineapple[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(16): 543-547. (in Chinese with English abstract)
[12] Niu Wenquan, Fan Wentao, PERSAUD N, et al. Effect of post-irrigation aeration on growth and quality of greenhouse cucumber[J]. Pedosphere, 2013, 23(6): 790-798.
[13] 雷宏軍,臧明,張振華,等. 循環(huán)曝氣地下滴灌的溫室番茄生長與品質(zhì)[J]. 排灌工程機(jī)械學(xué)報,2015,33(3):253-259. Lei Hongjun, Zang Ming, Zhang Zhenhua, et al. Growth and quality of greenhouse tomato under cycle aerated subsurface drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(3): 253-259. (in Chinese with English abstract)
[14] 康躍虎. 實用型滴灌灌溉計劃制定方法[J]. 節(jié)水灌溉,2004(3):11-15. Kang Yuehu. Applied method for drip irrigation scheduling[J]. Water Saving Irrigation, 2004(3): 11-15. (in Chinese with English abstract)
[15] 朱艷,蔡煥杰,侯會靜. 不同生育期加氣灌溉對番茄根區(qū)土壤環(huán)境和產(chǎn)量的影響[EB/OL]. [2015-01-20].北京:中國科技論文在線. http://www.paper.edu.cn/releasepaper/ content/201501-525.Zhu Yan, Cai Huanjie, Hou Huijing. Effects of aerated irrigation at different growth stages on root-zone environment and yield of tomato[EB/OL]. [2015-01-20]. Beijing: Sciencepaper Online. http://www.paper.edu.cn/releasepaper/ content/201501-525. (in Chinese with English abstract)
[16] 尹曉霞. 加氣灌溉對溫室番茄根區(qū)土壤環(huán)境及產(chǎn)量的影響研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2014. Yin Xiaoxia. Research on the Effects of Aeration Irrigation on Soil Environment and Yield of Tomato Root-zone in Greenhouse[D]. Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)
[17] Franzluebbers A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils[J]. Applied Soil Ecology, 1999, 11(1): 91-101.
[18] Weslien P, Rütting T, Kasimir-Klemedtsson ?, et al. Carrot cropping on organic soil is a hotspot for nitrous oxide emissions[J]. Nutrient Cycling in Agroecosystems, 2012, 94(2/3): 249-253.
[19] 楊巖,孫欽平,李吉進(jìn),等. 不同水肥處理對設(shè)施菜地N2O排放的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2013,19(2):430-436. Yang Yan, Sun Qinping, Li Jijin, et al. Effects of different fertilizer and irrigation levels on N2O emission from greenhouse vegetable lands[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 430-436. (in Chinese with English abstract)
[20] 張仲新,李玉娥,華珞,等. 不同施肥量對設(shè)施菜地N2O排放通量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(5):269-275. Zhang Zhongxin, Li Yu’e, Hua Luo, et al. Effects of different fertilizer levels on N2O flux fromprotected vegetable land[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(5): 269-275. (in Chinese with English abstract)
[21] 梁東麗,同延安,Ove Emteryd,等. 灌溉和降水對旱地土壤N2O氣態(tài)損失的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2002,8(3):298-302. Liang Dongli, Tong Yanan, Ove Emteryd, et al. Effect of irrigation and rainfall on the N2O losses in dryland[J]. Plant Nutrition and Fertilizer Science, 2002, 8(3): 298-302. (in Chinese with English abstract)
[22] 徐文彬,劉廣深,劉維屏. 降雨和土壤濕度對貴州旱田土壤N2O釋放的影響[J]. 應(yīng)用生態(tài)學(xué)報,2002,13(1):67-70. Xu Wenbin, Liu Guangshen, Liu Weiping. Effects of precipitation and soil moisture on N2O emissions from upland soils in Guizhou[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 67-70. (in Chinese with English abstract)
[23] 張婧,李虎,王立剛,等. 京郊典型設(shè)施蔬菜地土壤N2O排放特征[J]. 生態(tài)學(xué)報,2014,34(14):4090-4098. Zhang Jing, Li Hu, Wang Ligang, et al. Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs[J]. Acta Ecologica Sinica, 2014, 34(14): 4090-4098. (in Chinese with English abstract)
[24] Kallenbach C M, Rolston D E, Horwath W R. Cover cropping affects soil N2O and CO2emissions differently depending on type of irrigation[J]. Agriculture, Ecosystems and Environment, 2010, 137: 251-260.
[25] 梁東麗,同延安,Ove Emteryd,等. 干濕交替對旱地土壤N2O氣態(tài)損失的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2002,20(2):28-31,48. Liang Dongli, Tong Yanan, Ove Emteryd, et al. The effects of wetting and drying cycles on N2O emission in dryland[J]. Agricultural Research in the Arid Areas, 2002, 20(2): 28-31, 48. (in Chinese with English abstract)
[26] Hwang S, Hanaki K. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production[J]. Bioresource Technology, 2000, 71: 159-165.
[27] Liikanen A, Martikainen P J. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake[J]. Chemosphere, 2003, 52: 1287-1293.
[28] 李元,牛文全,張明智,等. 加氣灌溉對大棚甜瓜土壤酶活性與微生物數(shù)量的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2015(8):1-11. Li Yuan, Niu Wenquan, Zhang Zhiming, et al. Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015(8): 1-11. (in Chinese with English abstract)
[29] Jiang Tao, Li Guoxue, Tang Qiong, et al. Effects of aeration method and aeration rate ongreenhouse gas emissions during composting of pig feces in pilot scale[J]. Journal of Environmental Science, 2015: 1-9.
[30] Liu Chunyuan, Zheng Xunhua, Zhou Zaixing, et al. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China[J]. Plant and Soil, 2010, 332: 123-134.
[31] Smith K A, Thomson P E, Cloyton H, et al. Effect of temperature, water content and nitrogen fertilization on emissions of nitrous[J]. Atmospheric Environment, 1998, 19: 3301-3309.
[32] Hosono T, Hosoi N, Akiyama H, et al. Measurements of N2O and NO emissions during tomato cultivation using a flow-through chamber system in a glasshouse[J]. Nutrient Cycling in Agroecosystems, 2006, 75(1/2/3): 115-134.
Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation
Chen Hui, Hou Huijing※, Cai Huanjie, Zhu Yan
(1. Key Laboratory for Agriculture Soil and Water Engineering in Arid Area Ministry of Education, Northwest A&F University, Yangling 712100, China;2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China)
Abstract:Global warming and ozone depletion caused by greenhouse gas emissions are two major global environmental issues. The contribution of facility vegetable fields abundant with high N input to soil nitrous oxide emissions cannot be negligible. Crop growth, yield and water use efficiency under aerated irrigation have been done much work, while the effects of aerated irrigation on greenhouse gas emissions have never been reported. Changes of oxygen content in the soil caused by the aerated irrigation are bound to affect the production and emissions of nitrous oxide. Field experiments by using the method of static chamber/gas chromatography were conducted to determine the effects of aerated irrigation on seasonal N2O fluxes, and cumulative emissions of N2O from soils in greenhouse tomato fields in autumn-winter season and soil water-filled pore space (WFPS) at 20 cm depth in the solar greenhouse of the Key Laboratory of Agricultural Soil and Water Engineering in Arid Area sponsored by Ministry of Education (34°20′N, 108°04′E), at Northwest A&F University, in Yangling, Shaanxi Province of China, from August 13, 2014 to December 28, 2014. Two factors (irrigation and aeration) were designed in the experiment to reveal the effects of aerated irrigation on soil N2O emissions. Four treatments with three replications (each plot size 4.0 m × 0.8 m) were contained in the experiment: aerated deficit irrigation (A1), unaerated deficit irrigation (CK1), aerated full irrigation (A2) and unaerated full irrigation (CK2). The results showed that N2O fluxes under different irrigation methods roughly showed a trend of decrease after the first increase. The first and secondary peaks of N2O fluxes were observed at fruit expanding stage and maturing stage of tomato, respectively, while kept at a low level in other periods. Both seasonal N2O fluxes and cumulative emissions of N2O at different growth stage of tomato followed the same pattern: A2>CK2>A1>CK1. And both N2O fluxes and cumulative emissions of N2O from soils in tomato fields at different growth stages for each treatment mainly concentrated at fruit expanding stage. In addition, aeration and full water supply treatments increased the soil N2O emissions during the whole tomato growth period compared to unaeration and deficit water supply treatments. The average value of N2O fluxes (38.00 μg/(m2·h)) for A2 treatment increased by 85.9% and 264.7% compared with that for A1 and CK1 treatment (P<0.05), respectively, while the difference was not significant when compared to CK2 treatment (P>0.05). The maximum value about cumulative emission of N2O (120.34 mg/m2) for A2 treatment was 1.89 and 4.21 times as much as A1 and CK1 (P<0.01), respectively, while the difference was not significant when compared to CK2 treatment (P=0.078). Compared with unaerated irrigation, aerated irrigation did not increase N2O emissions from soils in greenhouse tomato fields significantly under full water supply condition (P=0.078), while increased N2O emissions significantly under deficit water supply condition (P<0.01). In addition, WFPS kept at a relatively high level for each treatment during the whole tomato growth stage. Except the main peaks, N2O fluxes increased with WFPS increasing. Exponential positive correlations between N2O fluxes and soil water-filled pore space (WFPS) were observed under unaerated irrigation methods of different irrigation level (P<0.05), while the relationships under aerated irrigation methods were not significant (P>0.05). Furthermore, peaks of N2O emissions were negative with WFPS, and N2O intense release was observed when WFPS was between 46.0%-52.1%. The results suggested that aerated irrigation increased soil N2O emissions in tomato fields, and the difference was significant under deficit water supply condition. This study provides valuble information for assessing farmland ecological effects of aerated irrigation and mitigating greenhouse gas emissions to greenhouse soils.
Keywords:soils; greenhouse gas; emission control; N2O; aerated irrigation; tomato
通信作者:※侯會靜,女,山東泰安人,講師,博士,主要從事節(jié)水灌溉理論與農(nóng)田生態(tài)效應(yīng)研究。楊凌西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。Email:hjhou@nwsuaf.edu.cn
作者簡介:陳慧,女,四川南充市,博士生,主要從事節(jié)水灌溉與灌溉排水新技術(shù)。楊凌西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。
基金項目:國家自然科學(xué)基金項目(51309192);中央高?;究蒲袠I(yè)務(wù)專項基金(Z109021510);西北農(nóng)林科技大學(xué)博士點基金(2012BSJJ006)
收稿日期:2015-06-30
修訂日期:2015-12-10
中圖分類號:S275
文獻(xiàn)標(biāo)志碼:A
文章編號:1002-6819(2016)-03-0111-07
doi:10.11975/j.issn.1002-6819.2016.03.016