郭秀春,王繼磊,王海輝,陳小艷,李圩田,周文輝*,武四新
( 1.河南大學(xué)中藥研究所,河南開(kāi)封475004; 2.河南大學(xué)化學(xué)化工學(xué)院,河南開(kāi)封475004; 3.河南大學(xué)特種功能材料重點(diǎn)實(shí)驗(yàn)室,河南開(kāi)封475004)
?
分子印跡電化學(xué)傳感器
郭秀春1,王繼磊2,王海輝3,陳小艷3,李圩田1,周文輝3*,武四新3
( 1.河南大學(xué)中藥研究所,河南開(kāi)封475004; 2.河南大學(xué)化學(xué)化工學(xué)院,河南開(kāi)封475004; 3.河南大學(xué)特種功能材料重點(diǎn)實(shí)驗(yàn)室,河南開(kāi)封475004)
摘要:分子印跡電化學(xué)傳感器能夠選擇性識(shí)別并檢測(cè)特定目標(biāo)化合物,因其設(shè)計(jì)簡(jiǎn)單、靈敏度高、價(jià)格低廉、攜帶方便、易于微型化和自動(dòng)化等優(yōu)點(diǎn),在臨床診斷、環(huán)境監(jiān)測(cè)、食品分析等方面越來(lái)越受到人們的關(guān)注.本文作者主要論述分子印跡技術(shù)與電化學(xué)技術(shù)相結(jié)合構(gòu)建分子印跡電化學(xué)傳感器,包括分子印跡電化學(xué)傳感器的種類,以及電化學(xué)方法制備分子印跡聚合物膜的常用單體等.對(duì)分子印跡電化學(xué)傳感器領(lǐng)域新出現(xiàn)的分子印跡聚合物-納米材料復(fù)合物以及納米結(jié)構(gòu)分子印跡聚合物也一并做了評(píng)述.
關(guān)鍵詞:分子印跡技術(shù);分子印跡聚合物;電化學(xué)傳感器
分子印跡技術(shù)( Molecular Imprinting Technique,MIT)是指制備對(duì)某一特定的目標(biāo)分子(模板分子)具有特異選擇性的聚合物的過(guò)程,所制備的聚合物稱為分子印跡聚合物( Molecularly Imprinted Polymer,MIP)[1].由于具有構(gòu)效預(yù)定性( Predetermination)、特異識(shí)別性( Specific Recognition)和廣泛實(shí)用性( Practicability)三大特點(diǎn),分子印跡技術(shù)及分子印跡聚合物已經(jīng)在化合物分離與富集、仿生傳感器、人工酶催化劑、抗體模擬酶、藥物手性拆分、藥物控制釋放、藥物篩選等諸多領(lǐng)域得到應(yīng)用,并顯示出誘人的應(yīng)用前景[2].分子印跡聚合物對(duì)目標(biāo)化合物具有特異性識(shí)別能力,使得其可以作為傳感器的敏感材料(識(shí)別元件)用于構(gòu)建分子印跡傳感器.分子印跡聚合物在富集并識(shí)別目標(biāo)化合物之后可以通過(guò)光、電、熱、質(zhì)、磁等轉(zhuǎn)化手段(換能器)轉(zhuǎn)化為可以分析的電信號(hào),并獲得目標(biāo)化合物的相關(guān)信息.相比于其他類型的傳感器,電化學(xué)傳感器因具有設(shè)計(jì)簡(jiǎn)單、靈敏度高、價(jià)格低廉、攜帶方便、易于微型化和自動(dòng)化等優(yōu)點(diǎn),在臨床診斷、環(huán)境監(jiān)測(cè)、食品分析等方面越來(lái)越受到人們的關(guān)注[3].結(jié)合分子印跡技術(shù)和電化學(xué)傳感器而來(lái)的分子印跡電化學(xué)傳感器在生物及化學(xué)傳感器領(lǐng)域獲得了廣泛的關(guān)注,成為國(guó)內(nèi)外的研究熱點(diǎn).本文作者將對(duì)分子印跡電化學(xué)傳感器進(jìn)行綜述.
分子印跡聚合物的制備過(guò)程就是在模板分子存在的條件下,使功能單體和交聯(lián)單體發(fā)生共聚,將模板分子被包埋在所形成的剛性聚合物材料內(nèi).采用一定的方法將模板分子從聚合物材料中洗脫出來(lái),就會(huì)在模板分子所占據(jù)的空間位置和結(jié)構(gòu)處留下來(lái)一個(gè)與模板分子在尺寸、形狀和結(jié)構(gòu)方面相匹配的三維孔洞.由于功能單體具有與模板分子官能團(tuán)互補(bǔ)的功能性官能團(tuán),因此所合成的分子印跡聚合物能夠特異性的與模板分子進(jìn)行識(shí)別和結(jié)合(圖1)[4].
圖1 分子印跡聚合物制備過(guò)程[4]Fig.1 Schematic illustration of the preparation of MIP[4]
根據(jù)分子印跡聚合物與換能器整合方式的不同,可以將分子印跡傳感器的制備方法分為間接法和直接法[5].間接法是先制備MIP膜或顆粒,然后將其整合至傳感器的換能器上;直接法則是采用原位聚合法直接在換能器表面制備MIP膜.應(yīng)該指出,間接法制備的MIP膜一般較厚,容易形成擴(kuò)散壁壘,使得響應(yīng)時(shí)間延長(zhǎng),同時(shí)識(shí)別元件與換能器的結(jié)合不好[6].針對(duì)以上問(wèn)題,研究者提出了多種方法來(lái)提高分子印跡傳感器的性能,包括旋涂[7],層層沉積[8-9],電化學(xué)聚合[10],接枝聚合[11]等.
根據(jù)電化學(xué)檢測(cè)技術(shù)的不同,電化學(xué)分子印跡傳感器分為電容型傳感器、電導(dǎo)型傳感器、電流型傳感器、電位型傳感器和壓電型傳感器.
2.1電容型傳感器
電容型傳感器由一個(gè)場(chǎng)效應(yīng)電容器組成,其內(nèi)部裝有分子印跡聚合物薄膜,并且該分子印跡聚合物薄膜必須是絕緣的.當(dāng)待測(cè)分析物在分子印跡聚合物薄膜上結(jié)合時(shí),電容型分子印跡電化學(xué)傳感器的電容將發(fā)生變化,并且電容變化的大小與分析物的量存在定量關(guān)系,因此根據(jù)電容的改變可實(shí)現(xiàn)對(duì)分析物的定量檢測(cè).電容型化學(xué)傳感器的優(yōu)點(diǎn)是無(wú)須加入額外的試劑或標(biāo)記,而且靈敏度高,操作簡(jiǎn)單,價(jià)格低廉.1994年MOSBACH等曾嘗試制備分子印跡電容傳感器,其敏感材料部分是苯丙氨酸的苯胺分子印跡聚合物膜,但是該試驗(yàn)并不成功,只部分獲得了定性檢測(cè)的效果.1999年,PANASYUK 等[12]改進(jìn)了該傳感器的制備方法,首次成功制備了分子印跡電容性傳感器.作者首先利用羥基苯硫酚與金電極之間的金硫鍵作用在金電極表面自組裝一層羥基苯硫酚膜,然后在苯丙氨酸(模板分子)存在條件下電化學(xué)聚合苯酚制備了分子印跡薄膜,最后再用烷基硫醇進(jìn)行封閉,最終實(shí)現(xiàn)了對(duì)苯丙氨酸的檢測(cè).
2.2電導(dǎo)型傳感器
電導(dǎo)型分子印跡傳感器的基本原理是電導(dǎo)(率)的轉(zhuǎn)換.在兩個(gè)電導(dǎo)電極中間用一層分子印跡聚合物薄膜隔開(kāi),當(dāng)待測(cè)分析物與分子印跡聚合物薄膜結(jié)合后分子印跡薄膜的電導(dǎo)率會(huì)發(fā)生變化.由于電導(dǎo)率的變化與分析物的量存在定量關(guān)系,從而實(shí)現(xiàn)分析物的檢測(cè).分子印跡電導(dǎo)傳感器的分子印跡膜不需要經(jīng)過(guò)復(fù)雜的固化程序,同時(shí)其檢測(cè)方法簡(jiǎn)單、電導(dǎo)信號(hào)響應(yīng)及平衡速度快.KRIZ等[13]以芐基三苯基氯化膦離子為模板制備分子印跡膜,利用電導(dǎo)法實(shí)現(xiàn)了芐基三苯基氯化膦的檢測(cè).在此基礎(chǔ)上,柴春彥等[14]發(fā)明了一種檢測(cè)氯霉素的電導(dǎo)型傳感器(圖2),其電極裝置由兩片絲網(wǎng)印刷電極平行設(shè)計(jì)組成,接線端子( 2)、電極連線( 3)與工作電極( 4)連成一體組成一條電極基體,電極基體則印刷在電極基片( 1)上,電極連線( 3)的表面覆蓋一層絕緣體( 5),接線端子( 2)是裸露的電導(dǎo)材料薄膜,兩片絲網(wǎng)刷電極中的一片的工作電極反應(yīng)區(qū)上覆蓋有氯霉素分子印跡膜( 6),而另一片中的電極為空白電極.
圖2 檢測(cè)氯霉素的分子印跡電導(dǎo)傳感器[14]Fig.2 MIP-based conductometric sensor for chloramphenicol[14]
2.3電流型傳感器
電流型分子印跡傳感器是依據(jù)在固定電位條件下不同的待測(cè)分析物的濃度與響應(yīng)電流之間存在一定的關(guān)系,據(jù)此來(lái)測(cè)定待測(cè)物的量.分子印跡電流傳感器的關(guān)鍵是分子印跡膜內(nèi)必須有一定的孔道,使待測(cè)分子(或探針?lè)肿?能夠穿過(guò)分子印跡膜到達(dá)電極表面,進(jìn)而發(fā)生氧化還原反應(yīng)而產(chǎn)生電流.該類傳感器可對(duì)電活性物質(zhì)進(jìn)行直接檢測(cè),也可對(duì)非電活性物質(zhì)進(jìn)行間接檢測(cè),即通過(guò)檢測(cè)探針?lè)肿?例如鐵氰化鉀)的電化學(xué)信號(hào)實(shí)現(xiàn)對(duì)非電活性物質(zhì)的檢測(cè).電流型傳感器根據(jù)采用的檢測(cè)手段的不同又可以分為差示脈沖伏安法、方波伏安法、循環(huán)伏安法、計(jì)時(shí)電流法等.KRIZ等[15]最先研制成功了電流型分子印跡電化學(xué)傳感器,該傳感器采用競(jìng)爭(zhēng)模式實(shí)現(xiàn)了嗎啡的檢測(cè).該傳感器對(duì)嗎啡的響應(yīng)電流隨嗎啡濃度的增大而增大,當(dāng)電流達(dá)到恒定值時(shí)再加入嗎啡的結(jié)構(gòu)類似物可待因,可待因與嗎啡競(jìng)爭(zhēng)結(jié)合替代下來(lái)部分嗎啡擴(kuò)散到金電極表面發(fā)生電化學(xué)氧化并產(chǎn)生一個(gè)小的峰電流.研究表明,嗎啡濃度在0.1~10 μg/mL內(nèi)增加時(shí),傳感器的峰電流呈線性增大并且嗎啡結(jié)構(gòu)類似物對(duì)測(cè)定沒(méi)有影響.
2.4電位型傳感器
電位型分子印跡傳感器是通過(guò)測(cè)量分子印跡膜結(jié)合待測(cè)分析物后電極電位變化的一類電化學(xué)傳感器.這類傳感器的特點(diǎn)是制備分子印跡膜時(shí)加入的模板分子不需要去除,同時(shí)待測(cè)分析物也不需要擴(kuò)散并穿過(guò)分子印跡膜,因此待測(cè)分析物的大小不受限制.MURRAY等[16]最先實(shí)現(xiàn)了電位型分子印跡傳感器的研制.他們制備了一系列的分子印跡聚合物,并制備了相應(yīng)的離子選擇性電極,利用電位法測(cè)定了鉛離子.該傳感器對(duì)鉛離子具有很強(qiáng)的選擇性,電位響應(yīng)與活度的對(duì)數(shù)具有良好的線性關(guān)系.
2.5壓電型傳感器
壓電型分子印跡傳感器是利用石英晶體的壓電特性,將分子印跡薄膜固定在石英晶體電極表面,分子印跡薄膜在結(jié)合待測(cè)分析物之后質(zhì)量發(fā)生變化,導(dǎo)致石英晶體轉(zhuǎn)化為石英晶體電極的諧振頻率發(fā)生變化.由于其諧振頻率變化量與待測(cè)物存在線性關(guān)系,因此通過(guò)計(jì)算機(jī)處理可以獲得極低的待測(cè)物含量.HAUPT等[17]最先將分子印跡聚合物和石英晶體微天平結(jié)合,成功構(gòu)建了壓電型分子印跡傳感器.作者以( S) -普萘洛爾為模板分子在石英晶體電極表面沉積制備了分子印跡膜,分子印跡膜結(jié)合模板分子之后發(fā)生質(zhì)量增加及相應(yīng)的頻率降低,頻率降低量與模板分子濃度在一定范圍內(nèi)呈線性,并且該分子印跡傳感器能夠區(qū)分( S) -普萘洛爾和( R) -普萘洛爾.
作為一種特殊的原位聚合方法,電化學(xué)聚合法制備分子印跡聚合物薄膜具有以下諸多優(yōu)點(diǎn): 1)制備簡(jiǎn)單,在功能單體和模板分子的溶液中進(jìn)行循環(huán)伏安掃描等操作就能實(shí)現(xiàn); 2)能夠在任何導(dǎo)電基底上獲得厚度可控的分子印跡薄膜[5].因此,本文作者主要討論通過(guò)電化學(xué)聚合法制備分子印跡膜,以及結(jié)合電化學(xué)檢測(cè)技術(shù)構(gòu)建電化學(xué)分子印跡傳感器.
3.1以吡咯為單體制備分子印跡聚合物膜
吡咯是電化學(xué)聚合制備分子印跡聚合物薄膜時(shí)最常用的單體,很早就有人嘗試?yán)秒娀瘜W(xué)聚合法制備聚吡咯類分子印跡聚合物.例如電化學(xué)聚合制備的聚吡咯分子印跡能夠吸附制備聚吡咯過(guò)程中所摻入的電解質(zhì)陰離子[18-19],采用該方法可以實(shí)現(xiàn)氯離子[18]和三磷酸腺苷[19]的電位法檢測(cè).幾年之后,HUTCHINS和BACHAS[20]采用同樣的方法電化學(xué)合成了聚吡咯分子印跡膜,并采用伏安法實(shí)現(xiàn)了硝酸鹽的檢測(cè),但得到的傳感器不具有特異性吸附的特點(diǎn),也能吸附其他的陰離子.需要指出的是,這些在分子印跡膜制備過(guò)程中添加的陰離子“模板分子”仍然留在分子印跡聚合物基體中并沒(méi)有被除去[21].研究者更進(jìn)一步發(fā)展了電化學(xué)聚合制備過(guò)氧化聚吡咯分子印跡膜,并實(shí)現(xiàn)了大量陰離子模板分子的檢測(cè).對(duì)于聚吡咯分子印跡聚合物識(shí)別體系,在電化學(xué)聚合制備分子印跡膜的過(guò)程中,聚吡咯基體中首先包埋相應(yīng)的陰離子模板分子,隨后采用過(guò)氧化而非采取傳統(tǒng)的洗滌法來(lái)去除模板分子,最終在過(guò)氧化聚吡咯的形成過(guò)程中,在聚吡咯膜中留下與模板分子互補(bǔ)的納米孔洞[22].過(guò)氧化過(guò)程實(shí)際上是通過(guò)復(fù)雜的機(jī)制來(lái)消除聚合物基體網(wǎng)絡(luò)中的正電荷,而最終實(shí)現(xiàn)模板分子的釋放與去除.與此同時(shí),在聚吡咯基體網(wǎng)絡(luò)中產(chǎn)生含氧基團(tuán)使得其能夠選擇性識(shí)別模板分子.SPURLOCK等[21]在這一研究方向上進(jìn)行了更進(jìn)一步的研究,他們用電化學(xué)聚合方法制備了帶電荷和中性模板分子(腺苷、肌苷以及三磷酸腺苷)的過(guò)氧化聚吡咯膜,但是遺憾的是所制備的聚吡咯對(duì)模板分子的選擇性識(shí)別能力仍然較低.DEORE等[23-24]實(shí)現(xiàn)了過(guò)氧化聚吡咯的分子印跡膜的制備,并且所制備的過(guò)氧化聚吡咯分子印跡膜對(duì)L-谷氨酸有明顯的手性選擇性識(shí)別能力.從此以后,吡咯被大量用于各類化合物的分子印跡聚合物的制備,并與多種換能器結(jié)合實(shí)現(xiàn)了不同化合物甚至生物大分子的檢測(cè),具體見(jiàn)表1.
表1 聚吡咯分子印跡電化學(xué)傳感器Table 1 MIP-based electrochemical sensors based on ppy
續(xù)表1
3.2以鄰苯二胺為單體制備分子印跡聚合物膜
鄰苯二胺( 1,2-苯二胺)也是電化學(xué)聚合制備分子印跡聚合物的常用單體,但是其文獻(xiàn)報(bào)道量遠(yuǎn)少于吡咯.ZAMBONIN等[10]首先報(bào)道了利用鄰苯二胺為單體制備分子印跡聚合物薄膜,并構(gòu)建了仿生傳感器.作者利用電化學(xué)聚合制備了葡萄糖分子印跡聚合物膜,并將其作為識(shí)別單元與石英晶體微天平結(jié)合實(shí)現(xiàn)了葡萄糖的檢測(cè).此后,研究者逐漸開(kāi)始采用鄰苯二胺均聚物[38-47]或者與其他單體共聚合[48-55]進(jìn)行分子印跡聚合物膜的制備.在不同pH緩沖溶液中,利用循環(huán)伏安法均能成功制備聚鄰苯二胺分子印跡膜,但是pH = 5.2的醋酸緩沖溶液仍是最常用的[10,38,46-47].聚鄰苯二胺形成的分子印跡膜較為緊密并且具有一定的剛性,因此具有較好的穩(wěn)定性,特別適合作為傳感器的識(shí)別單元.另一方面,在pH=5.2的醋酸緩沖溶液中制得的聚鄰苯二胺是不導(dǎo)電的,這一特征使得其很合適用于制備電容型分子印跡傳感器[39,41-42].例如,CHENG 等[39]在2001年首次用聚鄰苯二胺制得了葡萄糖印跡的電容傳感器.需要指出的是,以聚鄰苯二胺分子印跡膜為識(shí)別單元的電化學(xué)傳感器一般都需要浸泡于待測(cè)物溶液中較長(zhǎng)時(shí)間( 15 min以上)才能進(jìn)行測(cè)試,這造成了基于鄰苯二胺的分子印跡聚合物傳感器的平衡時(shí)間較長(zhǎng),檢測(cè)相對(duì)耗時(shí).
鄰苯二胺與其他單體的共聚物同樣可以用于分子印跡聚合物薄膜的制備.PENG等[48]首次用苯胺與鄰苯二胺共聚制備了硫酸阿托品的分子印跡聚合物,并結(jié)合波傳感器實(shí)現(xiàn)對(duì)阿托品的檢測(cè).間苯二酚也常常與鄰苯二胺形成共聚物制備分子印跡聚合物.WEETALL和ROGERS[49]在石墨電極上電化學(xué)合成了等物質(zhì)的量之比的間苯二酚與鄰苯二胺的共聚物分子印跡膜,利用該分子印跡膜分別印跡了3種不同的分子(染料熒光素、羅丹明以及農(nóng)藥2,4-二氯苯氧乙酸),不過(guò)該分子印跡膜需要使用大量的甲醇沖洗以去除模板分子.印跡有染料的分子印跡膜可以通過(guò)經(jīng)典的“再吸附實(shí)驗(yàn)”識(shí)別相應(yīng)的染料,最后將識(shí)別的染料洗脫至甲醇溶液中并記錄其熒光特性來(lái)檢測(cè)相應(yīng)的染料.2,4-二氯苯氧乙酸分子印跡膜修飾的電極可結(jié)合方波伏安法監(jiān)測(cè)連續(xù)加入2,4-二氯苯氧乙酸溶液的伏安響應(yīng).
表2 鄰苯二胺均聚物與共聚物分子印跡電化學(xué)傳感器Table 2 MIP-based electrochemical sensors based on homopolymers and copolymers of opd
3.3以酚類為單體制備分子印跡聚合物膜
酚類單體是另外一種用于電化學(xué)制備分子印跡膜的常見(jiàn)單體(表3).PANASYUK等[56]首次以苯酚為單體,通過(guò)電化學(xué)制備了分子印跡膜,實(shí)現(xiàn)了苯丙氨酸的印跡,并成功制備出第一個(gè)電容型分子印跡傳感器.在此基礎(chǔ)上,其他研究者成功制備出不同的聚酚類傳感器,實(shí)現(xiàn)了抗生素rifamycin SV ( RSV)[57]、茶堿[58]以及甲基紫精[59]等的檢測(cè).BLANCO-LóPEZ等[57]認(rèn)為RSV分子印跡膜的選擇性是基于聚酚薄膜的尺寸排阻效應(yīng)以及電荷分化差異.WILLNER課題組[59]則認(rèn)為形成印跡位點(diǎn)的原因是聚酚膜與模板分子之間的π-π相互作用.除了單純的酚類化合物,電化學(xué)制備分子印跡薄膜也常常選擇含有氨基的酚類化合物[60-62],因?yàn)樵擃惢衔锞酆系玫降谋∧さ目锥磧?nèi)含有功能化的基團(tuán),容易提高其與模板分子之間的選擇性識(shí)別能力.
表3 聚酚分子印跡電化學(xué)傳感器Table 3 MIP-based electrochemical sensors based on polyphenols
3.4其他單體制備分子印跡聚合物薄膜
大體上來(lái)說(shuō),能夠在電化學(xué)條件下聚合并且具有一定的活性功能團(tuán)的化合物都可以作為單體來(lái)制備分子印跡聚合物.除了上述吡咯、苯胺和多酚類化合物外,噻吩及其衍生物、苯磺酸及其衍生物等都可以作為單體,利用電化學(xué)聚合法來(lái)制備分子印跡膜,并進(jìn)行分子印跡傳感器的構(gòu)建,但是該類化合物大多比較昂貴,亦或合成和制備較為復(fù)雜,因此在此不再祥述.
單純分子印跡聚合物膜作為傳感器的識(shí)別元件,通常表現(xiàn)出吸附能力差和靈敏度不高的問(wèn)題.研究人員發(fā)現(xiàn)只有改善分子印跡聚合物膜的吸附動(dòng)力,縮短響應(yīng)時(shí)間并徹底地去除模板分子才能成功地獲得性能優(yōu)良的分子印跡傳感器[66].將納米材料與分子印跡聚合物復(fù)合或者雜化用作傳感器的識(shí)別單元,能夠使傳感器識(shí)別單元的表面積增大,提高分子印跡聚合物膜的導(dǎo)電性和電子傳遞能力,最終實(shí)現(xiàn)分子印跡電化學(xué)傳感器靈敏度的顯著提高.目前已有金、鉑納米顆粒、碳納米管以及石墨烯等材料被應(yīng)用于分子印跡電化學(xué)傳感器(表4).
表4 分子印跡聚合物-納米材料復(fù)合物分子印跡電化學(xué)傳感器Table 4 MIP-based electrochemical sensors based on MIP-nanomaterial composites
續(xù)表4
金、鉑納米顆粒具有優(yōu)良的電催化活性、生物相容性等優(yōu)點(diǎn),已經(jīng)被大量應(yīng)用于分子印跡電化學(xué)傳感器的性能改進(jìn).KAN等[67]在茶堿的分子印跡聚合物薄膜中加入了金納米顆粒,提高了分子印跡聚合物薄膜導(dǎo)電性.此實(shí)驗(yàn)中,作者在模板分子存在的條件下,先電化學(xué)聚合了鄰苯二胺.然后通過(guò)恒電位法在分子印跡薄膜表面沉積了一層金納米顆粒而使膜的導(dǎo)電性顯著提高(大約30倍).與傳統(tǒng)的分子印跡傳感器相比,金納米顆粒的加入使得分子印跡傳感器的線性范圍得到了增加,檢測(cè)限得到了降低.ZHOU等[68]首先將鉑納米顆粒固定在玻碳電極上,然后使6-巰基煙酸和模板分子β-雌二醇在鉑納米顆粒表面自組裝;然后利用循環(huán)伏安法使得自組裝膜發(fā)生電化學(xué)聚合;最后通過(guò)恒電位法去除模板分子得到對(duì)β-雌二醇具有識(shí)別能力的分子印跡電化學(xué)傳感器,其檢測(cè)靈敏度明顯高于沒(méi)有鉑納米顆粒修飾的分子印跡傳感器.
碳納米管是典型的一維納米材料,碳納米管較大的比表面積、較高的導(dǎo)電能力使其對(duì)電化學(xué)傳感器具有明顯的增敏效應(yīng).KAN等[69]將分子印跡聚合物與碳納米管復(fù)合得到相應(yīng)的復(fù)合材料并將其作為電極修飾材料,結(jié)合計(jì)時(shí)電流法實(shí)現(xiàn)了神經(jīng)傳遞介質(zhì)多巴胺的檢測(cè).石墨烯可以看作是將管狀的碳納米管剪切并鋪展開(kāi)來(lái)形成的二維納米材料,石墨烯具有優(yōu)異的導(dǎo)電、導(dǎo)熱和力學(xué)性能.因?yàn)槭┑拿總€(gè)原子都在石墨烯片層的表面,因此石墨烯與吸附分子之間的相互反應(yīng)以及電子傳輸非常靈敏[70].
隨著分子印跡聚合物與不同納米材料復(fù)合體系研究的深入,部分研究人員也開(kāi)始了多元復(fù)合體系的研究,比如分子印跡聚合物-石墨烯-金納米顆粒復(fù)合體系[71]等,多元復(fù)合體系結(jié)合了不同納米材料的特性,使得所制備的傳感器的性能得到了進(jìn)一步的提升.
相對(duì)于平面結(jié)構(gòu)的分子印跡膜,三維納米結(jié)構(gòu)的分子印跡聚合物作為傳感器的識(shí)別單元可以獲得較高的比表面積,并增加印跡位點(diǎn)數(shù)量和比例,以此來(lái)提高識(shí)別待測(cè)分析物的結(jié)合位點(diǎn)[77].基于以上考慮,很多研究者一直致力于納米結(jié)構(gòu)分子印跡膜的制備以及傳感器的構(gòu)建.
表5 納米結(jié)構(gòu)分子印跡聚合物電化學(xué)傳感器Table 5 MIP-based electrochemical sensors based on nanostructured MIPs
HUANG等[78]以樟腦磺酸為虛擬模板分子,電化學(xué)聚合得到了聚吡咯分子印跡納米線.該分子印跡納米線直徑約為100 nm,長(zhǎng)度為幾微米.研究者用法拉第阻抗譜研究了帶電分子結(jié)合到聚吡咯分子印跡納米線修飾電極表面時(shí)的界面變化.同時(shí),當(dāng)聚吡咯分子印跡納米線傳感器用于檢測(cè)苯丙氨酸時(shí)表現(xiàn)出明顯的手性選擇能力,即當(dāng)特定的對(duì)映異構(gòu)體被識(shí)別時(shí)會(huì)引起電子傳遞阻抗降低.
CHOONG等[79]首先在鍍鈦硅基底上生長(zhǎng)直立碳納米管陣列,然后以碳納米管陣列為三維支架,采用電化學(xué)方法制備咖啡因的分子印跡聚吡咯納米薄膜.所制備的分子印跡納米膜的厚度可控且具有較高的比表面積,同時(shí)碳納米管的高導(dǎo)電性使得分子印跡傳感器的電化學(xué)信號(hào)得到增強(qiáng).這個(gè)實(shí)驗(yàn)現(xiàn)象在檢測(cè)大的生物分子,例如蛋白質(zhì)等方面具有很好的應(yīng)用前景.采用類似的方法,CAI等[80]在碳納米管陣列的頂端,以蛋白質(zhì)為模板制備了聚苯酚納米殼層.作者利用阻抗可以監(jiān)測(cè)聚苯酚納米殼層對(duì)蛋白質(zhì)的識(shí)別,除了能高靈敏度和高選擇性地檢測(cè)蛋白質(zhì)外,該納米傳感器還能檢測(cè)到蛋白質(zhì)的構(gòu)象變換.利用此分子印跡傳感器,作者實(shí)現(xiàn)人乳頭瘤病毒-E7衍生蛋白的高靈敏度的檢測(cè)(檢測(cè)限低于pg/L).
MENAKER等[81]采用犧牲模板法合成了具有表面印跡位點(diǎn)的蛋白質(zhì)印跡微米或者納米線.研究者以聚碳酸酯微孔膜為犧牲模板,首先通過(guò)物理吸附將模板蛋白吸附付微孔濾膜的疏水面,然后將微孔濾膜固定于金電極表面,通過(guò)電化學(xué)聚合聚乙烯二氧噻吩以及聚苯乙烯磺酸制備分子印跡微米棒,最后用氯仿將微孔膜溶解掉.作者通過(guò)熒光吸附試驗(yàn)證明了所制備分子印跡材料的識(shí)別性能,分子印跡微米棒對(duì)模板蛋白的選擇性吸附大約是對(duì)牛血清蛋白的吸附的兩倍.
反蛋白石結(jié)構(gòu)是另外一種制備三維納米結(jié)構(gòu)分子印跡聚合物膜的方法,KAN等[82]首先將SiO2膠體晶體沉積在電極表面組裝成致密的堆積層;然后在SiO2膠體晶體表面和空隙處電沉積聚吡咯分子印跡聚合物,去掉模板分子之后得到三維有序大孔結(jié)構(gòu)的分子印跡聚合物膜;最終結(jié)合電化學(xué)方法實(shí)現(xiàn)了多巴胺的高靈敏檢測(cè).
ZHOU等[83]首先以電沉積法在ITO導(dǎo)電膜上制備稀疏的氧化鋅納米棒陣列,然后以此納米棒陣列為三維支架,通過(guò)電化學(xué)在氧化鋅納米棒陣列表面電沉積聚吡咯分子印跡納米膜,制得聚吡咯納米棒陣列修飾的ITO導(dǎo)電膜,將其作為傳感器的識(shí)別元件結(jié)合差示脈沖法實(shí)現(xiàn)了腎上腺素的高靈敏度的檢測(cè).
事實(shí)證明電化學(xué)與分子印跡技術(shù)相結(jié)合構(gòu)建分子印跡電化學(xué)傳感器非常具有吸引力,可以應(yīng)用于不同物質(zhì)特異性檢測(cè),并且通過(guò)雜交或雜化方法可以發(fā)展靈敏度更高的更復(fù)雜的電化學(xué)傳感器.在這一方面,將電化學(xué)技術(shù)與納米材料或納米結(jié)構(gòu)的分子印跡聚合物結(jié)合對(duì)發(fā)展新型的分子印跡電化學(xué)傳感器至關(guān)重要.雖然已有部分報(bào)道,但這一領(lǐng)域尚未成熟,仍有待廣大研究者繼續(xù)推動(dòng)分子印跡電化學(xué)傳感器的發(fā)展,最終使高靈敏度、高選擇性、高穩(wěn)定性的分子印跡電化學(xué)傳感器進(jìn)入分析儀器市場(chǎng).參考文獻(xiàn):
[1]姜忠義,吳洪.分子印跡技術(shù)[M ].北京:化學(xué)工業(yè)出版社,2003: 5-6.
[2]郭秀春,周文輝.分子印跡技術(shù)研究進(jìn)展[J].化學(xué)研究,2012,23: 103-110.
[3]KIMMEL D W,LEBLANC G,MESCHIEVITZ M E,et al.Electrochemical sensors and biosensors [J ].Anal Chem,2012,84: 685-707.
[4]KLEIN J U,WHITCOMBE M J,MULHOLLAND F,et al.Template-mediated synthesis of a polymeric receptor specific to amino acid sequences [J ].Angew Chem Int Ed,1999,38 ( 13/14) : 2057-2060.
[5]譚天偉.分子印跡技術(shù)及應(yīng)用[M].北京:化學(xué)工業(yè)出版社,2010: 188-189.
[6]PILETSKY S A.Electrochemical sensors based on molecularly imprinted polymers [J ].Electroanal,2002,14: 317-323.
[7]DAS K,PENELLE J,ROTELLO V M.Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film [J ].Langmuir,2003,19: 3921-3925.
[8 ]SHI F,LIU Z,WU G L,et al.Surface imprinting in layer-by-layer nanostructured films [J].Adv Funct Mater,2007,17: 1821-1827.
[9 ]NIU J,LIU Z,F(xiàn)U L,et al.Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives [J ].Langmuir,2008,24: 11988-11994.
[10]MALITESTA C,LOSITO I,ZAMBONIN P G.Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors [J ].Anal Chem,1999,71: 1366-1370.
[11]PANASYUK-DELANEY T,MIRSKY V M,ULBRICHT M,et al.Impedometric herbicide chemosensors based on molecularly imprinted polymers [J ].Anal Chim Acta,2001,435: 157-162.
[12]PANASYUK T L,Mirsky V M,PILETSKY S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors [J ].AnalChem,1999,71: 4609-4613.
[13 ]KRIZ D,KEMPE M,MOSBACH K.Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors [J].Sensor Actuat BChem,1996,31: 178-181.
[14]柴春彥,李鋒,王莉,等.檢測(cè)氯霉素的導(dǎo)電型電極及其分子印跡膜的制備方法:中國(guó),200810203012 [P].2009-05-06.
[15]KRIZ D,MOSBACH K.Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer [J].Anal Chim Acta,1995,300: 71 -75.
[16]MURRAY G M,JENKINS A L,BZHELYONSKY A,et al.Molecularly imprinted polymers for the selective sequestering and sensing of ions [J].J Hopkins APL Tech D,1997,1: 464-472.
[17 ]HAUPT K,NOWORYTA K,KUTNER W.Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance [J].Anal Commun,1999,36: 391-393.
[18 ]DONG S,SUN Z,LU Z.Chloride chemical sensor based on an organic conducting polypyrrole polymer [J].Analyst,1988,113: 1525-1528.
[19]BOYLE A,GENIES E M,LAPKOWSKI M.Application of the electronic conducting polymers as sensors: Polyaniline in the solid state for detection of solvent vapours and polypyrrole for detection of biological ions in solutions [J].Synth Met,1989,28: C769-C774.
[20]HUTCHINS R S,BACHAS L G.Nitrate-selective electrode developed by electrochemically mediated imprinting/ doping of polypyrrole [J].Anal Chem,1995,67: 1654 -1660.
[21 ]SPURLOCK L D,JARAMILLO A,PRASERTHDAM A,et al.Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes [J].Anal Chim Acta,1996,336: 37-46.
[22]SURYANARAYANAN V,WU C T,HO K C.Molecularly imprinted electrochemical sensors [J].Electroanal,2010,22: 1795-1811.
[23 ]DEORE B,CHEN Z,NAGAOKA T.Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix [J ].Anal Sci,1999,15: 827-828.
[24 ]DEORE B,CHEN Z D,NAGAOKA T.Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole [J ].Anal Chem,2000,72: 3989-3994.
[25 ]SYRITSKI V,REUT J,MENAKER A,et al.Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid [J].Electrochim Acta,2008,53: 2729-2736.
[26]SHIIGI H,OKAMURA K,KIJIMA D,et al.Fabrication process and characterization of a novel structural isomer sensor molecularly imprinted overoxidized polypyrrole film [J].Electrochem Solid-State Lett,2003,6: H1-H3.
[27]SHIIGI H,KIJIMA D,IKENAGA Y,et al.Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film [J ].J Electrochem Soc,2005,152: H129-H134.
[28]TAKEDA S,YAGI H,MIZUGUCHI S,et al.A highly sensitive amperometric adenosine triphosphate sensor based on molecularly imprinted overoxidized polypyrrole [J].J Flow Injection Anal,2008,25: 77-79.
[29]XIE C,GAO S,GUO Q,et al.Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element [J].Microchim Acta,2010,169: 145-152.
[30 ]OZCAN L,SAHIN Y.Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode [J].Sensor Actuat B-Chem,2007,127: 362-369.
[31]OZKORUCUKLU S P,SAHIN Y,ALSANCAK G.Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole [J].Sensors-Basel,2008,8: 8463-8478.
[32]EBARVIA B S,CABANIIIA S,SEVIlla F.Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole [J ].Talanta,2005,66: 145-152.
[33]ALLBANO D R,SEVILLA F.Piezoelectric quartz crystal sensor for surfactant based on molecularly imprinted polypyrrole [J].Sens Actuat B-Chem,2007,121: 129 -134.
[34]SUEDEE R,INTAKONG W,LIEBERZEIT P A,et al.Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water [J].J Appl Polym Sci,2007,106: 3861-3871.
[35]VINJAMURI A K,BURRIS S C,DAHL D B.Caffeine and theobromine selectivity using molecularly imprinted polypyrrole modified electrodes [J].ECS Trans,2008,13: 9-20.
[36 ]?ZCAN L,SAHIN M,SAHIN Y.Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid[J].Sensors-Basel,2008,8: 5792-5805.
[37 ]NAMVAR A,WARRINER K.Microbial imprinted polypyrrole/poly ( 3-methylthiophene) composite films for the detection of Bacillus endospores [J].Biosens Bioelectron,2007,22: 2018-2024.
[38]PENG H,ZHANG J,NIE L,et al.Development of a thickness shear mode acoustic sensor based on an electrosynthesized molecularly imprinted polymer using an underivatized amino acid as the template [J ].Analyst,2010,126: 189-194.
[39]CHENG Z,WANG E,YANG X.Capacitive detection of glucose using molecularly imprinted polymers [J].Biosens Bioelectron,2001,16: 179-185.
[40]FENG L,LIU Y,TAN Y,et al.Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers [J].Biosens Bioelectron,2004,19: 1513-1519.
[41]YANG L,WEI W,XIA J,et al.Capacitive biosensor for glutathione detection based on electropolymerized molecularly imprinted polymer and kinetic investigation of the recognition process [J ].Electroanal,2005,17: 969-977.
[42]LIU X,LI C,WANG C,et al.The preparation of molecularly imprinted poly( o-phenylenediamine) membranes for the specific O,O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by AC impedance and cyclic voltammetry [J].J Appl Polym Sci,2006,101: 2222-2227.
[43 ]WEN W,SHITANG H,SHUNXHOU L,et al.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator [J].Sensor Actuat B-Chem,2007,125: 422-427.
[44]KANG J,ZHANG H,WANG Z,et al.A novel amperometric sensor for salicylic acid based on molecularly imprinted polymer-modified electrodes [J ].Polym-Plast Technol Eng,2009,48: 639-645.
[45]LIU Y,SONG Q J,WANG L.Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer [J].Microchem J,2009,91: 222-226.
[46]LI J,JIANG F,WEI X.Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination [J].Anal Chem,2010,82: 6074-6078.
[47]LI J,JIANG F,LI Y,et al.Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier [J ].Biosens Bioelectron,2011,26: 2097-2101.
[48]PENG H,LIANG C,ZHOU A,et al.Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine [J ].Anal Chim Acta,2000,423: 221-228.
[49]WEETALL H H,ROGERS K R.Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes [J].Talanta,2004,62: 329-335.
[50 ]GOMEZ-CABALLERO A,ARANZAZU GOICOLEA M,BARRIO R J.Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes [J ].Analyst,2005,130: 1012-1018.
[51]WEETALL H H,HATCHETT D W,ROGERS K R.Electrochemically deposited polymer-coated gold electrodes selective for 2,4-dichlorophenoxyacetic acid [J].Electroanalysis,2005,17: 1789-1794.
[52 ]GOMEZ-CABALLERO A,UNCETA N,ARANZAZU GOICOLEA M,et al.Voltammetric determination of metamitron with an electrogenerated molecularly imprinted polymer microsensor [J].Electroanal,2007,19: 356-363.[53]OUVANG R,LEI J,JU H,et al.A Molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid [J].Adv Funct Mater,2007,17: 3223 -3230.
[54 ]GOMEZ-CABALLERO A,UNCETA N,ARANZAZU GOICOLEA M,et al.Evaluation of the selective detection of 4,6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in a semiorganic media [J ].Sensor Actuat B-Chem,2008,130: 713-722.
[55 ]SONG W,CHEN Y,XU J,et al.Dopamine sensor based on molecularly imprinted electrosynthesized polymers[J].J Solid State Electrochem,2010,14: 1909-1914.
[56]PANASYUK T L,MIRSKY V M,PILETSKY S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors [J].Anal Chem,1999,71: 4609-4613.
[57]BLANCO-LóPEZ M C,GUTIERREZ-FERNANDEZ S,LOBO-CASTANON M J,et al.Electrochemical sensing with electrodes modified with molecularly imprinted polymer films [J].Anal Bioanal Chem,2004,378: 1922-1928.[58]WANG Z,KANG J,LIU X,et al.Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer [J].Int J Polym Anal Ch,2007,12: 131-142.
[59]RISKIN M,TEL-VERED R,WILLNER I.The imprint of electropolymerized polyphenol films on electrodes by donor-acceptor interactions: Eelective electrochemical sensing of N,N'-dimethyl-4,4'-bipyridinium ( methyl viologen) [J].Adv Funct Mater,2007,17: 3858-3863.
[60]PENG H,YIN F,ZhOU A,et al.Characterization of electrosynthesized poly-( o-aminophenol) as a molecular imprinting material for sensor preparation by means of quartz crystal impedance analysis [J].Anal Lett,2002,35: 435-450.
[61 ]LIAO H,ZHANG Z,LI H,et al.Preparation of the molecularly imprinted polymers-based capacitive sensor specific for tegafur and its characterization by electrochemical impedance and piezoelectric quartz crystal microbalance[J].Electrochim Acta,2004,9: 4101-4107.
[62]LI J,ZHAO J,WEI X.A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol [J].Sensor Actuat B-Chem,2009,40: 663-669.
[63]HUAN S,HU S,SHEN G,et al.Au microelectrode based on molecularly imprinted oligomer film for rapid electrochemical sensing [J ].Anal Lett,2003,36: 2401-2416.
[64]PAN M F,F(xiàn)ANG G Z,LIU B,et al.Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application [J].Anal Chim Acta,2011,690: 175-181.
[65]LUO N,HATCHETT D W,ROGERS K R.Recognition of pyrene using molecularly imprinted electrochemically deposited poly( 2-mercaptobenzimidazole) or poly ( resorcinol) on gold electrodes [J ].Electroanal,2007,19: 2117-2124.
[66 ]RISKIN M,TEL-VERED R,BOURENKO T,et al.Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles: Development of an electrochemical TNT sensor based on π-donoracceptor interactions [J].J Am Chem Soc,2008,130: 9726-9733.
[67]KAN X,LIU T,ZHOU H,et al.Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination [J ].Microchim Acta,2010,171: 423-429.
[68]YUAN LH,ZHANG J,ZHOU P,et al.Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol [J].Biosens Bioelectron,2011,29: 29 -33.
[69]KAN X W,ZHAO Y,GENG Z R,et al.Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition [J].J.Phys Chem C,2008,112: 4849-4854.
[70]ROCHEFORT A,WUEST J D.Interaction of substituted aromatic compounds with grapheme [J].Langmuir,2009,25: 210-215.
[71]MEHMET L Y,NECIP A,TANJU E,et al.Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid [J ].RSC Adv,2015,5: 65953-65962.
[72]STOBIECKA M,DEEB J,HEPEL M.Molecularly templated polymer matrix films for biorecognition processes: Sensors for evaluating oxidative stress and redox buffering capacity [J].ECS Trans,2009,19: 15-32.
[73]ZHANG J,WANG Y,LV R,et al.Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film [J ].Electrochim Acta,2010,55: 4039-4044.
[74 ]LAKSHMI D,BOSSI A,WHITCOMBE MJ,et al.Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element [J].Anal Chem,2009,81: 3576-3584.
[75]RISKIN M,TEL-VERED R,LIOUBASHEVSKI O,et al.Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite [J ].J Am Chem Soc,2009,131: 7368-7378.
[76]RISKIN M,TEL-VERED R,F(xiàn)RASCONI M,et al.Stereoselective and chiroselective surface plasmon resonance ( SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites [J ].Chem Eur J,2010,16: 7114-7120.
[77 ]WHITCOMBE M J,CHIANELLA I,LARCOMBE L,et al.The rational development of molecularly imprinted polymer-based sensors for protein detection [J ].Chem Soc Rev,2011,40: 1547-1571.
[78]HUANG J,WEI Z,CHEN J.Molecular imprinted polypyrrole nanowires for chiral amino acid recognition [J].Sensor Actuat B-Chem,2008,134: 573-578.
[79 ]CHOONG C,BENDALL J S,MILNE W I.Carbon nanotube array: A new MIP platform [J].Biosens Bioelectron,2009,25: 652-656.
[80]CAI D,REN L,ZHAO H,et al.A molecular-imprint nanosensor for ultrasensitive detection of proteins [J].Nat Nanotechnol,2010,5: 597-601.
[81 ]MENAKER A,SVRITSKI V,REUT J,et al.Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition [J].Adv Mater,2009,21: 2271-2275.
[82]KAN X W,LI C,ZHOU H,et al.Three dimensional ordered macroporous electrochemical sensor for dopamine recognition and detection [J ].Am J Biomed Sci,2012,4: 184-193.
[83]LI H H,WANG H H,LI W T,et al.A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays [J ].Sensor Actuat B-Chem,2016,222: 1127-1133.
[責(zé)任編輯:毛立群]
Molecularly Imprinted Polymer-Based Electrochemical Sensors
GUO Xiuchun1,WANG Jilei2,WANG Haihui3,CHEN Xiaoyan3,LI Weitian1,ZHOU Wenhui3*,WU Sixin3
( 1.Institute of Chinese Materia Medica,Henan University,Kaifeng 475004,Henan,China;
2.College of Chemistry and Chemical Engineering,Henan University,Kaifeng 475004,Henan,China; 3.The Key Laboratory for Special Functional Materials,Henan University,Kaifeng 475004,Henan,China)
Abstract:Molecularly imprinted polymer-based electrochemical sensors are capable of selective recognition and detection of target molecules.And,they have attracted considerable attention in clinical diagnostics,environmental monitoring and food analysis fields due to their simplicity,high sensitivity,low cost,easy to carry,possibility of easy miniaturization and automation.This review highlights the combining of molecular imprinting technology and electrochemical sensors for construction molecularly imprinted polymer-based electrochemical sensors ( MIP-based electrochemical sensors),including the types of MIP-based electrochemical sensors and monomers used for electrosynthesis of MIPs for MIP-based electrochemical sensors.New emerging MIP /nanomaterials and nanostructured MIPs in MIP-based electrochemical sensors are also reviewed.
Keywords:molecular imprinting technology ( MIT) ; molecularly imprinted polymer ( MIP) ; electrochemical sensors
作者簡(jiǎn)介:郭秀春( 1982-),女,副教授,研究方向?yàn)樗幬锓治觯?通訊聯(lián)系人,zhouwh@ henu.edu.cn.
基金項(xiàng)目:國(guó)家自然科學(xué)基金( U1204214).
收稿日期:2015-10-03.
中圖分類號(hào):O635
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-1011( 2016) 01-0001-11