何怡,門彬,楊曉芳,徐慧,王東升,*
1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,環(huán)境水質(zhì)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100085 2. 中國(guó)科學(xué)院大學(xué),北京 100049
生物擾動(dòng)對(duì)沉積物中重金屬遷移轉(zhuǎn)化影響的研究進(jìn)展
何怡1,2,門彬1,#,楊曉芳1,徐慧1,王東升1,*
1. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,環(huán)境水質(zhì)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100085 2. 中國(guó)科學(xué)院大學(xué),北京 100049
沉積物是重金屬在環(huán)境中遷移轉(zhuǎn)化的重要媒介。生物擾動(dòng)能改變沉積物的物理化學(xué)組成,從而影響沉積物中重金屬的賦存形態(tài)和遷移轉(zhuǎn)化特征。文章介紹了生物擾動(dòng)的定義和種類,生物擾動(dòng)的影響因素以及擾動(dòng)過(guò)程中影響污染物釋放的主要因素,并綜述了近年來(lái)生物擾動(dòng)對(duì)沉積物中重金屬鎘、銅、鋅、鉛和其他重金屬的環(huán)境行為影響。
重金屬;沉積物;遷移轉(zhuǎn)化;生物擾動(dòng)
水體污染物的來(lái)源主要包括外源輸入和內(nèi)源釋放。隨著環(huán)境管理的不斷完善,外源輸入逐漸得到有效控制,內(nèi)源釋放的影響就顯得尤為突出。許多水體的治理經(jīng)驗(yàn)表明,在治理工作后期,工作難點(diǎn)基本都轉(zhuǎn)到如何有效控制沉積物的內(nèi)源釋放問(wèn)題上來(lái)[1]。以往普遍認(rèn)為未受污染的顆粒物沉降到受污染的沉積物表面形成保護(hù)層是受污染河床及其相鄰水層自然修復(fù)的主要過(guò)程[2]。近期的研究表明,沉積物作為水體重金屬的“源”和“匯”,在溫度、鹽度、pH值、離子強(qiáng)度、氧化還原電位等環(huán)境條件的改變下,富集在其中的重金屬會(huì)再次釋放到水體中,造成二次污染[3]。一些研究已經(jīng)表明,底棲生物的行為會(huì)改變沉積物的孔隙度、壓實(shí)程度、pH值、氧化還原電位,從而影響污染物在沉積物、孔隙水和上覆水之間的物質(zhì)交換,造成污染物的二次釋放[2,4-10]。生物擾動(dòng)將污染沉積物顆粒帶到沉積物與水相的界面處,再懸浮的顆粒為生活在沉積物表層的底棲生物提供了一個(gè)污染性的居住環(huán)境[1-2,11-16]。同時(shí),沉積物也為底棲生物提供了食物源,成為食物鏈的一個(gè)重要環(huán)節(jié)[17]。
沉積物在重金屬遷移轉(zhuǎn)化過(guò)程中扮演了重要角色,而生物擾動(dòng)能對(duì)沉積物中重金屬的遷移轉(zhuǎn)化產(chǎn)生重要影響,近年來(lái),生物擾動(dòng)對(duì)沉積物中重金屬的環(huán)境行為的影響研究得到廣泛關(guān)注。本文綜述了生物擾動(dòng)對(duì)沉積物中重金屬遷移轉(zhuǎn)化影響的一些研究進(jìn)展,為深入研究生物擾動(dòng)對(duì)重金屬的遷移轉(zhuǎn)化的影響特征提供基礎(chǔ)資料。
1.1 生物擾動(dòng)的定義
“生物擾動(dòng)”出現(xiàn)的基礎(chǔ)是達(dá)爾文發(fā)現(xiàn)蚯蚓對(duì)土壤顆粒的搬運(yùn)過(guò)程[18],而在水生系統(tǒng)中最早發(fā)現(xiàn)的相關(guān)描述是海蚯蚓對(duì)海沙的物理擾動(dòng)[19]?!吧飻_動(dòng)”一詞最早出現(xiàn)在一篇足跡化石學(xué)論文的標(biāo)題中,用以描述潮間帶海洋沉積物中動(dòng)物群的蹤跡[20]。在水生科學(xué)中,生物擾動(dòng)主要用來(lái)描述動(dòng)物重建顆粒物與生物結(jié)構(gòu)對(duì)現(xiàn)代沉積物在生物學(xué)、生態(tài)學(xué)與生物地球化學(xué)方面性質(zhì)的影響[21-22]。隨著研究的深入,水環(huán)境中的生物擾動(dòng)定義為生活在淺層沉積物表面或內(nèi)部的生物的一系列活動(dòng),包括埋孔、攝食、灌溉和排泄導(dǎo)致的結(jié)果[12]。近年來(lái),研究者將水生環(huán)境中的生物擾動(dòng)定義為,所有由生物直接或間接影響沉積物結(jié)構(gòu)而發(fā)生的遷移過(guò)程[23]。
1.2 生物擾動(dòng)的分類
生物擾動(dòng)主要包括顆粒重建和洞穴通水2類[23]。顆粒重建指生物的運(yùn)動(dòng)導(dǎo)致的顆粒物移動(dòng)和混合[24-25],洞穴通水指由于生物的埋孔、掘穴導(dǎo)致的水的流通[26-27]。
根據(jù)生物對(duì)顆粒物重建的模式可以將生物分為生物擴(kuò)散者、向上傳送者、向下傳送者與交換者[28-32]。其中生物擴(kuò)散者包括生活在沉積物表層的招潮蟹(Uca spp.)與沙蟹(Scopimera spp.)[33],較大型的底棲生物有魚類[34],生活在沉積物幾厘米深度的心形海膽(spatangoid, Echinocardium spp.)[35],以及一些蛇尾蟲(Amphiura filiformis)、多毛梯額蟲(Scalibregma inflatum)、雙殼類的Abra nitida[36],另外還包括大量多毛綱生物(eg. Nereis diversicolor, Marenzelleria viridis)[32,37]。向上傳送者一般是沉積物中頭部在沉積物中攝食的物種,例如海蚯蚓(Arenicola marina)[38]、竹蟲(Clymenella torquata)[39]、海蛄蝦[40]、沙蝦(Callianassa kraussi)[41]等。向下傳送者與向上傳送者相反,它們主要是沉積物表層攝食顆粒物,然后排泄至深層沉積物中,如環(huán)節(jié)動(dòng)物的Cirriformia grandis[42]與縮頭蟲(Praxillella sp.)[43]等。交換者是在沉積物中打洞并持續(xù)性掘穴的底棲動(dòng)物,如沙蟹(Ocypode spp.)、招潮蟹(Uca spp.)[33]等。
生物因呼吸或攝食,會(huì)通過(guò)掘穴形成半封閉式或開放式的通道,上覆水進(jìn)入通道沖刷沉積物,使得非原位的溶解物質(zhì)快速遷移,對(duì)沉積物產(chǎn)生生物灌溉的作用[44-45]。大量多毛類動(dòng)物與昆蟲幼蟲通過(guò)蠕動(dòng)來(lái)移動(dòng)水流[46-48],雙殼類、心形海膽與另外一些多毛類動(dòng)物依賴于睫狀肌的作用[47-49],甲殼類動(dòng)物則利用腹肢的有力跳動(dòng)來(lái)制造水流[50-51]。
1.3 生物擾動(dòng)對(duì)沉積物自然修復(fù)過(guò)程的影響
過(guò)去普遍認(rèn)為未受污染的顆粒物沉降在沉積物的表層可為受污染沉積物河床的自然修復(fù)帶來(lái)四大好處,一是覆蓋在受污染沉積物的表層減緩溶解態(tài)污染物向外擴(kuò)散;二是通過(guò)降低水流的擾動(dòng),減少顆粒物的再懸浮,使水流帶走的只是未受污染的顆粒物;三是深度掩埋受污染的沉積物;四是為淺層棲息生物提供一個(gè)干凈的棲息地,可以減少人類通過(guò)食物鏈攝取污染物[2]。但是底棲生物的擾動(dòng)改變了這一自然修復(fù)過(guò)程,如寡毛綱(環(huán)節(jié))動(dòng)物可以將污染物帶到沉積物的表層[4]。其他生物物種(如魚類)對(duì)顆粒物的移動(dòng)能力相對(duì)低效,但也可以將污染物帶到沉積物的表層。這些物種的聯(lián)合擾動(dòng)作用可以改變10 cm或更深的沉積物的物理化學(xué)性質(zhì),同時(shí)孔隙水中的污染物也會(huì)受到生物擾動(dòng)的影響。因此,底棲生物擾動(dòng)對(duì)河床上受污染顆粒物的搬運(yùn)是污染物重回水層的一個(gè)重要過(guò)程;同時(shí),生物擾動(dòng)過(guò)程將受污染的顆粒物帶到沉積物表層,使這些顆粒物可以發(fā)生再懸浮,并為這些表層的底棲生物提供了受污染的棲息環(huán)境[1-2,12,14-16]?;诖耍飻_動(dòng)作為水相-沉積物界面耦合過(guò)程的一個(gè)重要機(jī)制越來(lái)越受到人們重視。
1.4 生物擾動(dòng)及過(guò)程中污染物二次釋放的影響因素
1.4.1 溫度
在溫差較大的地區(qū),溫度與擾動(dòng)強(qiáng)度呈正相關(guān),但是這種關(guān)系并不緊密,溫度每升高15 °C,生物擾動(dòng)的強(qiáng)度增加2到3倍[52-53]。但是在水溫變化較小時(shí),溫度對(duì)生物擾動(dòng)作用影響并不強(qiáng)烈[54]。
1.4.2 底棲生物的種類與密度
底棲生物的種類決定了其生活習(xí)性,無(wú)脊椎動(dòng)物與魚類可能通過(guò)多種方式混合沉積物顆粒。例如,顫蚓是一種重要的“傳送帶”供食器,因其具有密集的居群能通過(guò)選擇性攝取淤泥與黏土快速重組底層堆積物[55]。另外一些研究者[56-57]發(fā)現(xiàn),“管路擴(kuò)散者”(e.g., Hediste diversicolor)較“生物擴(kuò)散者”(e.g., bivalves)對(duì)海洋沉積物中的生物化學(xué)過(guò)程影響更大?!肮苈窋U(kuò)散者”類的動(dòng)物制造了非常密集的會(huì)發(fā)生層間擴(kuò)散的管路系統(tǒng),并在洞穴的底部進(jìn)行生物轉(zhuǎn)運(yùn)。這種動(dòng)物群掘穴的行為通常對(duì)化學(xué)通量和微生物活動(dòng)具有明顯的影響。隨著H. diversicolor掘穴至更深的沉積物,其將對(duì)大量體積的沉積物起到灌溉的作用,從而影響孔隙水的化學(xué)性質(zhì)、氨基鹽的釋放以及活性細(xì)菌。Jiang等[58]比較了2種節(jié)足動(dòng)物,羽搖蚊與中國(guó)長(zhǎng)足搖蚊的生物擾動(dòng)效率,作者發(fā)現(xiàn)2種生物在攝食與掘穴方面差別很大,某些羽搖蚊種族在營(yíng)養(yǎng)輸送上作用更重要。
原位研究底棲生物的密度對(duì)生物擾動(dòng)的影響時(shí)發(fā)現(xiàn),由于環(huán)境因素過(guò)于復(fù)雜,未能得到生物擾動(dòng)強(qiáng)度與生物密度單一顯著相關(guān)性[59-60]。但在實(shí)驗(yàn)室模擬中,擾動(dòng)生物為單一生物時(shí),生物的密度越大,生物擾動(dòng)強(qiáng)度越大,例如高密度的沙蠶對(duì)沉積物的擾動(dòng)強(qiáng)度明顯高于低密度[37]。Reible等[61]將Forbes和Forbes[62]的模型改進(jìn)后代入數(shù)據(jù),發(fā)現(xiàn)生物擾動(dòng)導(dǎo)致的釋放通量與生物量的平方根成正比。
1.4.3 沉積物有機(jī)質(zhì)含量
食物供給間接影響了底棲生物的擾動(dòng)強(qiáng)度[59]。以沉積物有機(jī)碎屑為食的底棲生物,攝食速率與有機(jī)碳占沉積物比例的相關(guān)性為負(fù)相關(guān)[63]。由此,在有機(jī)質(zhì)含量較低的沉積物中,底棲生物為了生存會(huì)攝食大量的沉積物,產(chǎn)生強(qiáng)烈的擾動(dòng)作用[36]。
1.4.4 生物擾動(dòng)過(guò)程中污染物二次釋放的影響因素
生物擾動(dòng)對(duì)污染物歸趨的影響依賴于污染物的物理化學(xué)性質(zhì)、沉積物的生物地球化學(xué)性質(zhì)、污染物的位置(如分布在沉積物的表面、深層或在沉積物各層中均勻分布)以及生物擾動(dòng)的模式和強(qiáng)度等[4,6],例如,生物沖洗對(duì)溶解度高的化合物的影響較大,而顆粒物的運(yùn)動(dòng)對(duì)疏水性的化合物影響較大[6]。在好氧沉積物中,F(xiàn)e/Mn氧化物或氫氧化物以及有機(jī)物是金屬離子的重要結(jié)合位點(diǎn)[64-67],在缺氧沉積物中,則是金屬硫化物占主導(dǎo)地位[68-70]。因此,由于沉積物性質(zhì)的不同,生物擾動(dòng)改變其物理化學(xué)性質(zhì)如pH值、溶解氧濃度等的程度不同,由此對(duì)污染物遷移轉(zhuǎn)化造成的影響各異[71]。疏水性的有機(jī)污染物如PCBs,吸附在沉積物顆粒上有較高濃度,因此顆粒物在生物擾動(dòng)過(guò)程中再懸浮時(shí),會(huì)向上覆水輸入更多的疏水性污染物,顯示出強(qiáng)烈的生物擾動(dòng)結(jié)果[2]。一般來(lái)說(shuō),污染物在沉積物中的埋藏深度越深,生物擾動(dòng)導(dǎo)致的污染物遷移越弱,所顯示出來(lái)的生物擾動(dòng)強(qiáng)度越弱[4]。各種影響因素使得生物擾動(dòng)結(jié)果十分復(fù)雜,區(qū)別各種因素的影響作用有待更進(jìn)一步的研究。
生物擾動(dòng)能改變沉積物中重金屬的形態(tài)或垂直分布,甚至導(dǎo)致其從沉積物中釋放至上覆水。生物類型不同,對(duì)重金屬在沉積物-水界面的環(huán)境行為影響各異(表1)。
2.1 鎘(Cd)
生物擾動(dòng)能通過(guò)不同方式改變Cd在沉積物中的形態(tài)。淺溝蛤與薄唇鮻攝食河口沉積物中的碎屑后,通過(guò)消化作用,排出的糞球中含有的碳酸鹽結(jié)合態(tài)Cd濃度較攝食沉積物中高,從而改變了沉積物中Cd的賦存形態(tài)[72]。另外,顫蚓的生物擾動(dòng)主要通過(guò)呼吸作用及其代謝產(chǎn)物的有氧分解使沉積物氧化還原電位下降速度和幅度增大,從而影響沉積物中碳酸鹽結(jié)合態(tài)Cd的變化,而有機(jī)質(zhì)或硫化物結(jié)合態(tài)Cd以及殘?jiān)鼞B(tài)Cd則是在生物擾動(dòng)的作用下,以再懸浮沉積物顆粒的形式向上覆水中遷移[73]。
生物擾動(dòng)還會(huì)改變Cd在沉積物與孔隙水中的分布。顫蚓的擾動(dòng)將沉積物-水界面的顆粒物重建,為Cd提供新的的吸附位點(diǎn),會(huì)增加Cd富集層的厚度[74]。幽靈蝦掘穴的生物通道壁上Cd的含量會(huì)明顯高于表層沉積物的濃度[75],這是因?yàn)橛撵`蝦在通道壁上分泌的物質(zhì)富含有機(jī)化合物并且通道壁上的顆粒平均粒徑較周圍沉積物小[76-77],而沉積物的污染與其含有的有機(jī)質(zhì)、粘土含量呈正相關(guān)[78],有機(jī)質(zhì)與粘土?xí)骄奂罅緾d[71],因而通道壁上有較高含量的Cd。蟹類的掘穴、覓食等可以降低表層沉積物中酸揮發(fā)性硫化物(AVS)的濃度,從而使與其結(jié)合的Cd釋放出來(lái),增加孔隙水中Cd的濃度,而未受擾動(dòng)的深層孔隙水中Cd的濃度則低于表層沉積物[79]。生物擾動(dòng)提高沉積物的氧含量,增加了Cd的溶解度[80],從而增加了孔隙水中Cd的濃度[81]。
表1 生物擾動(dòng)對(duì)沉積物中重金屬的影響Table 1 Influnce of bioturbation on the heavy metals in sediment
生物擾動(dòng)促進(jìn)沉積物向上覆水中釋放Cd。顫蚓[82]與湖蠅[83]能使污染沉積物顆粒再懸浮,從而顯著促進(jìn)其中Cd向水相中釋放,且Cd大部分為顆粒態(tài)。其他研究者也得到了同樣的結(jié)果,他們發(fā)現(xiàn)顫蚓的生物擾動(dòng)能顯著增加上覆水中顆粒態(tài)Cd的濃度[73,84]。羽搖蚊幼蟲在沉積物表層開始打洞時(shí)會(huì)明顯促進(jìn)Cd的遷移,之后的濃度降低也十分明顯,但始終高于無(wú)生物擾動(dòng)的處理組[13],這些均與生物打洞時(shí),沉積物的曝氣及再懸浮顆粒物有關(guān)[85-86]。在投加藻類喂食的情況下,Marenzelleria積極的攝食行為、掘穴通水以及此多毛綱動(dòng)物的移動(dòng),增加了水的運(yùn)動(dòng),因此沉積物與沉積物-水界面中Cd的物理遷移增加[87]。魚的擾動(dòng)能增加上覆水中Cd的含量,但是并不能提高大型蚤對(duì)Cd的攝取,鯉魚的尺寸與水中總懸浮顆粒物正相關(guān),水中總懸浮顆粒物增加會(huì)加大其與Cd的結(jié)合能力,從而降低Cd的生物有效性[88]。
2.2 銅(Cu)
生物擾動(dòng)能改變沉積物中Cu的形態(tài)、分布以及促進(jìn)Cu向上覆水中擴(kuò)散。生物擾動(dòng)能增加孔隙水中鐵錳氧化態(tài)Cu的濃度,并通過(guò)改變沉積物的氧化還原電位間接促進(jìn)Cu自孔隙水向上覆水?dāng)U散,改變Cu在沉積物中的垂直分布[73]。羽搖蚊幼蟲在沉積物表層開始打洞時(shí)會(huì)明顯促進(jìn)Cu的遷移,但之后的濃度降低也十分明顯,接近無(wú)生物擾動(dòng)的處理組[13],濃度的降低應(yīng)該是上覆水中鐵錳氧化物吸附了游離Cu,氧化共沉淀于沉積物中造成的[89-90]。也有研究表明,生物的擾動(dòng)對(duì)Cu的遷移性影響較小[91]。
2.3 鋅(Zn)
淺溝蛤與薄唇鮻攝食沉積物中碎屑后,經(jīng)消化作用,排出的糞球中可交換態(tài)Zn的含量較攝食沉積物顆粒高,改變了Zn的形態(tài)分布[72]。幽靈蝦的掘穴作用會(huì)導(dǎo)致Zn的遷移,掘穴通道壁上存在的Zn濃度明顯高于表層沉積物里的Zn,生物淋洗作用導(dǎo)致更多的溶解態(tài)金屬離子與沉積物顆粒接觸,從而形成了掘穴的通道壁,或因幽靈蝦選擇性使用沉積物顆粒建造通道壁,被使用的沉積物顆粒對(duì)金屬離子有相對(duì)強(qiáng)烈的親和力[75]。生物擾動(dòng)同樣能促進(jìn)沉積物中Zn的釋放。生物擾動(dòng)通過(guò)淋洗作用,含氧上覆水進(jìn)入沉積物中使得沉積物氧化分解,加快了沉積物中Zn的釋放速率[92],促進(jìn)Zn向上覆水中釋放[73]。湖蠅能顯著促進(jìn)沉積物中Zn的釋放,溶解態(tài)Zn主要通過(guò)擴(kuò)散作用釋放至上覆水,另外則是AVS結(jié)合態(tài)Zn的氧化分解[79,93],釋放至上覆水中的Zn的總濃度與上覆水濁度具有良好的相關(guān)性[83]。生物擾動(dòng)作用加劇時(shí)(片腳類Victoriopisa australiensis為強(qiáng)生物擾動(dòng)狀態(tài),雙殼類Tellina deltoidalis為弱生物擾動(dòng)狀態(tài)),沉積物中Zn的通量也會(huì)增加[94]。也有研究表明,底棲生物的擾動(dòng)會(huì)氧化Fe(II),使得鐵氧化物沉淀,吸附了孔隙水中的Zn,從而降低了Zn的通量[95]。2個(gè)有悖的結(jié)論,表明生物擾動(dòng)對(duì)沉積物中Zn的通量的影響十分復(fù)雜。
2.4 鉛(Pb)
實(shí)驗(yàn)室模擬研究表明,顫蚓的生物擾動(dòng)使沉積物顆粒位置與Pb的吸附位在沉積物-水界面不斷更新[96],從而促進(jìn)水中Pb向沉積物深層擴(kuò)散,改變其垂直分布[84],同時(shí),顫蚓的生物擾動(dòng)能通過(guò)改變沉積物的氧化還原電位促進(jìn)Pb自孔隙水向上覆水中釋放,但只在沉積物厚度小于5 cm比較顯著[73]。顫蚓的擾動(dòng)作用對(duì)上覆水中溶解態(tài)Pb的濃度影響較小,主要是通過(guò)沉積物顆粒的再懸浮貢獻(xiàn)顆粒態(tài)Pb濃度[97]。雙殼類Tellina deltoidalis的生物擾動(dòng)作用對(duì)沉積物中Pb的釋放作用也不明顯[98]。因此,生物擾動(dòng)對(duì)沉積物中溶解態(tài)Pb的遷移影響作用有限。而Pb在沉積物中的富集開始被誤解為沉積作用,實(shí)際上生物擾動(dòng)作用才是主要控制因素[99]。
2.5 其他重金屬
生物擾動(dòng)增加了沉積物的氧含量,促進(jìn)沉積物中甲基汞向水相釋放[100-102]。Cardoso等[103]通過(guò)短期(72 h)的生物擾動(dòng)實(shí)驗(yàn)發(fā)現(xiàn),生物擾動(dòng)對(duì)汞從沉積物到水中的遷移不能產(chǎn)生影響作用,沉積物中的汞主要以硫化物的形式沉淀下來(lái),與鐵錳氧化物或有機(jī)質(zhì)結(jié)合。筆者[104]的研究發(fā)現(xiàn),泥鰍、羽搖蚊幼蟲與顫蚓的生物擾動(dòng)作用在前期促進(jìn)溶解態(tài)鉈(Tl)的釋放,后期為抑制作用,這與上覆水pH值、Fe/Mn氧化物和浮游生物有關(guān),且擾動(dòng)強(qiáng)度為泥鰍 > 羽搖蚊幼蟲 > 顫蚓。羽搖蚊幼蟲明顯促進(jìn)沉積物中鉬(Mo)與(U)的釋放,對(duì)錳(Mn)與鎳(Ni)在初期掘穴時(shí)有明顯促進(jìn)釋放作用,雖然后期促進(jìn)作用減弱,但釋放濃度始終高于無(wú)生物擾動(dòng)的處理組,而對(duì)鐵(Fe)、鈷(Co)、鈰(Ce),在前期顯著的促進(jìn)作用后,上覆水中濃度明顯降低到與無(wú)生物擾動(dòng)對(duì)照組相接近的水平[13],上覆水中重金屬濃度降低可能是Fe/Mn氧化物的吸附共沉淀導(dǎo)致的[89-90]。因生物擾動(dòng)作用,掘穴類蜉蝣生物Hexagenia較淺水底的片腳生物Hyalella存在下,上覆水中游離Ni濃度高[105],從表象上看,Hexagenia的擾動(dòng)減少了AVS的量,從而提高了Ni的可利用性和毒性[106]。對(duì)比顫蚓與羽搖蚊幼蟲對(duì)鈾(U)污染沉積物中U釋放的影響發(fā)現(xiàn),顫蚓對(duì)沉積物的重組使得釋放至上覆水中的U濃度較高,而羽搖蚊幼蟲對(duì)沉積物的改造作用較小,對(duì)U釋放影響不明顯[107],這受限于實(shí)驗(yàn)中高濃度的U對(duì)羽搖蚊幼蟲存活、生長(zhǎng)、發(fā)育等的潛在有害效應(yīng),導(dǎo)致其生物擴(kuò)散作用減弱[108]。顫蚓消耗氧氣,使得沉積物缺氧,孔隙水中溶解態(tài)Mn的濃度和通量降低,這很可能是厭氧微生物與顫蚓競(jìng)爭(zhēng)不穩(wěn)定有機(jī)碳,使得代謝減少導(dǎo)致的[109]。利用熒光延時(shí)沉積物剖面成像和平板薄膜擴(kuò)散梯度技術(shù)原位研究生物擾動(dòng)與沉積物中Fe(II)、Mn(II)的可利用性的關(guān)系,發(fā)現(xiàn)雖然可以同時(shí)原位收集生物擾動(dòng)作用的高分辨率的圖片及Fe/Mn的數(shù)據(jù),但是由于顆粒物和孔隙水的混合過(guò)程具有時(shí)間與空間上的差異,二者并不一致,影響因素比較復(fù)雜[110]。示蹤劑分析表明,鯉魚擾動(dòng)顆粒物的有效深度大約為3 cm,生物擾動(dòng)作用下溶解態(tài)Mn濃度較對(duì)照組低[111]。生物擾動(dòng)可以促進(jìn)、減少或者不影響重金屬污染物從沉積物向水體中的釋放。
沉積物中的重金屬濃度較高時(shí),對(duì)其中的底棲生物會(huì)有一定的毒性[112]。一些無(wú)脊椎動(dòng)物可以通過(guò)胃腸道的上皮細(xì)胞對(duì)重金屬的解毒能力,使得體內(nèi)重金屬累積濃度升高,直到細(xì)胞與其包容物一起凋亡[113-117]。一篇關(guān)于金屬攝取的綜述文章總結(jié)到,在實(shí)驗(yàn)室研究金屬攝取中發(fā)現(xiàn),無(wú)脊椎動(dòng)物對(duì)金屬的攝取比脊椎動(dòng)物的濃度因子高[118],其他研究者還發(fā)現(xiàn)在同一棲息地,捕食者對(duì)重金屬的富集量低于通過(guò)其他攝食習(xí)性的動(dòng)物[119-120]。例如,暴露28 d的富集實(shí)驗(yàn)中,顫蚓、羽搖蚊幼蟲與泥鰍對(duì)Tl的富集能力大小為顫蚓>羽搖蚊幼蟲>泥鰍[104]。另外,由于重金屬的性質(zhì)不同,生物對(duì)不同重金屬的富集能力也有所差異。羽搖蚊幼蟲對(duì)Cu、Zn、Pb的富集能力大小為Cu > Zn > Pb[121]。河蜆對(duì)Cd的富集能力高于Zn[83],這可能是由于Cd2+的離子半徑為0.92 A,與Ca2+的離子半徑接近(Ca2+, 0.94 A),因此可能通過(guò)鈣離子的通道或其他潛在途徑進(jìn)入細(xì)胞[122]。暴露方式不同,生物的富集能力也會(huì)有所不同。投加藻類喂食條件下較無(wú)投加條件下,明顯增加了河蜆對(duì)Cd的富集量[82]。重金屬可以通過(guò)鰓被動(dòng)擴(kuò)散進(jìn)入魚體,也可以被浮游植物和其他微生物富集后,通過(guò)食物鏈進(jìn)入魚體[123]。
生物擾動(dòng)在作用過(guò)程中受到溫度、生物種類與密度、沉積物有機(jī)質(zhì)含量等因素的影響。生物擾動(dòng)對(duì)污染物歸趨的影響依賴于污染物的物理化學(xué)性質(zhì)、沉積物的生物地球化學(xué)性質(zhì)、污染物的位置(如分布在沉積物的表面、深層或在沉積物各層中均勻分布)以及生物擾動(dòng)的模式和強(qiáng)度等。國(guó)內(nèi)外對(duì)水層-底棲界面耦合過(guò)程的研究已開展多年,并積累了相當(dāng)基礎(chǔ)。生物擾動(dòng)可以促進(jìn)、減少或者不影響重金屬污染物從沉積物向水體中的釋放。生物通過(guò)運(yùn)動(dòng)、攝食、排泄等導(dǎo)致沉積物顆粒再懸浮、向沉積物內(nèi)部輸入新鮮上覆水與氧氣、改變沉積物物理化學(xué)性質(zhì)等,從而影響富集于沉積物中重金屬的形態(tài)、分布以及向上覆水中釋放。
以往生物擾動(dòng)對(duì)沉積物中重金屬釋放規(guī)律影響的研究中,由于原位研究影響因素過(guò)于復(fù)雜,更多的是從模擬實(shí)驗(yàn)中的現(xiàn)象入手,并且這些現(xiàn)象之間有著很大的差異。這些重大差異的背后是對(duì)生物擾動(dòng)過(guò)程中的微觀反應(yīng)機(jī)制認(rèn)識(shí)不足,制約了對(duì)生物擾動(dòng)過(guò)程中污染物歸趨變化的認(rèn)識(shí)。因此,要弄清楚生物擾動(dòng)過(guò)程對(duì)重金屬的影響,有效控制沉積物的內(nèi)源釋放,勢(shì)必需要對(duì)生物擾動(dòng)過(guò)程中沉積物-水界面的微觀過(guò)程有更深入的了解。隨著現(xiàn)代分析技術(shù)的進(jìn)步,人們已開始從分子水平上認(rèn)識(shí)重金屬在環(huán)境界面上的遷移轉(zhuǎn)化過(guò)程機(jī)制。重金屬形態(tài)分析也由化學(xué)形態(tài)分析、化學(xué)提取方法及各種分級(jí)方法發(fā)展到動(dòng)力學(xué)形態(tài)分析技術(shù)研究。這些方法已經(jīng)廣泛應(yīng)用到水體重金屬形態(tài)研究和生物有效性評(píng)價(jià)上,為深入了解生物擾動(dòng)過(guò)程重金屬在沉積物-水界面的微觀過(guò)程提供了新思路和技術(shù)基礎(chǔ)。
[1] 孫剛, 盛連喜, 千賀裕太郎. 生物擾動(dòng)在水層-底棲界面耦合中的作用[J]. 生態(tài)環(huán)境, 2006, 15(5): 1106-1110
Sun G, Sheng L X, Senga Y. Advance in bioturbation effect in benthic-pelagic interface [J]. Ecology and Environment, 2006, 15(5): 1106-1110 (in Chinese)
[2] Thibodeaux L J, Bierman V J. The bioturbation-driven chemical release process [J]. Environmental Science & Technology, 2003, 37(13): 252A-258A
[3] van Ryssen R, Leermakers M, Baeyens W. The mobilisation potential of trace metals in aquatic sediments as a tool for sediment quality classification [J]. Environmental Science & Policy, 1999, 2(1): 75-86
[4] Josefsson S, Leonardsson K, Gunnarsson J S, et al. Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments [J]. Environmental Science & Technology, 2010, 44(19): 7456-7464
[5] Granberg M E, Gunnarsson J S, Hedman J E, et al. Bioturbation-driven release of organic contaminants from baltic sea sediments mediated by the invading polychaete Marenzelleria neglecta [J]. Environmental Science & Technology, 2008, 42(4): 1058-1065
[6] Banta G T, Andersen O. Bioturbation and the fate of sediment pollutants-Experimental case studies of selected infauna species [J]. Vie Milieu, 2003, 53(4): 233-248
[7] Lagauzere S, Pischedda L, Cuny P, et al. Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination [J]. Environmental Pollution, 2009, 157(4): 1234-1242
[8] Hunting E R, Mulder C, Kraak M H S, et al. Effects of copper on invertebrate-sediment interactions [J]. Environmental Pollution, 2013, 180: 131-135
[9] Nogaro G, Burgin A J, Schoepfer V A, et al. Aluminum sulfate (alum) application interactions with coupled metal and nutrient cycling in a hypereutrophic lake ecosystem [J]. Environmental Pollution, 2013, 176: 267-274
[10] 龐俊曉, 游靜. 生物擾動(dòng)對(duì)沉積物中污染物環(huán)境行為與生物可利用性的影響[J]. 生態(tài)毒理學(xué)報(bào), 2013, 8(6): 805-816
Pang J X, You J. Influence of bioturbation on fate and bioavailability of sediment-associated contaminants [J]. Asian Journal of Ecotoxicology, 2013, 8(6): 805-816 (in Chinese)
[11] Mermillod-Blondin F, Nogaro G, Vallier F, et al. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems [J]. Chemosphere, 2008, 72(2): 213-223
[12] Rhoads D C. Organism-sediment relations on the muddy sea floor [J]. Oceanography and Marine Biology Annual Review, 1974, 12: 263-300
[13] Schaller J. Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? [J]. Chemosphere, 2014, 107: 336-343
[14] Simpson S L, Apte S C, Batley G E. Effect of short term resuspension events on trace metal speciation in polluted anoxic sediments [J]. Environmental Science & Technology, 1998, 32(5): 620-625
[15] Tengberg A, Almroth E, Hall P. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: In situ measurements using new experimental technology [J]. Journal of Experimental Marine Biology and Ecology, 2003, 285: 119-142
[16] Widdows J, Brinsley M D, Bowley N, et al. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments [J]. Estuarine Coastal and Shelf Science, 1998, 46(1): 27-38
[17] Bettinetti R, Ponti B, Marziali L, et al. Biomonitoring of lake sediments using benthic macroinvertebrates [J]. Trac-Trends in Analytical Chemistry, 2012, 36: 92-102
[18] Darwin C. The Formation of Vegetable Mould through the Action of Worms with Observation on Their Habits [M]. London: John Murray, 1881
[19] Davison C. On the amount of sand brought up by lobworms to the surface [J]. Geological Magazine, 1891, 8: 489-493
[20] Sch?fer W. Biogene sedimentation im gefolge von bioturbation [J]. Senckenbergiana, 1952, 33: 1-12
[21] Rhoads D C. Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts [J]. Journal of Geology, 1967, 75: 461-476
[22] Winston J E, Anderson F E. Bioturbation of sediments in a northern temperate estuary [J]. Marine Geology, 1971, 10(1): 39-49
[23] Kristensen E, Penha-Lopes G, Delefosse M, et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences [J]. Marine Ecology Progress Series, 2012, 446: 285-302
[24] Kristensen E, Haese R R, Kostka J E. Biogenic Particle Reworking and Bacterial-Invertebrate Interactions in Marine Sediments [M]// Solan M, Wigham B D. Interactions between Macro-and Microorganisms in Marine Sediments. John Wiley & Sons, Inc., 2005, 60: 105-124
[25] Maire O, Lecroart P, Meysman F, et al. Quantification of sediment reworking rates in bioturbation research: A review [J]. Aquatic Biology, 2008, 2(3): 219-238
[26] Kristensen E, Kostka J E. Macrofaunal Burrows and Irrigation in Marine Sediment: Microbiological and Biogeochemical Interactions [M]// Solan M, Wigham B D. Interactions between Macro-and Microorganisms in Marine Sediments. John Wiley & Sons, Inc., 2005, 60: 125-157
[27] Meysman F J R, Galaktionov O S, Gribsholt B, et al. Bio-irrigation in permeable sediments: An assessment of model complexity [J]. Journal of Marine Research, 2006, 64(4): 589-627
[28] Boudreau B P. Mathematics of tracer mixing in sediments. 1. Spatially-dependent, diffusive mixing [J]. American Journal of Science, 1986, 286(3): 161-198
[29] Boudreau B P. Mathematics of tracer mixing in sediments. 2. Nonlocal mixing and biological conveyor-belt phenomena [J]. American Journal of Science, 1986, 286(3): 199-238
[30] Gardner L R, Sharma P, Moore W S. A regeneration model for the effect of bioturbation by fiddler-crabs on Pb-210 profiles in salt-marsh sediments [J]. Journal of Environmental Radioactivity, 1987, 5(1): 25-36
[31] Francois F, Poggiale J C, Durbec J P, et al. A new approach for the modelling of sediment reworking induced by a macrobenthic community [J]. Acta Biotheoretica, 1997, 45(3-4): 295-319
[32] Francois F, Gerino M, Stora G, et al. Functional approach to sediment reworking by gallery-forming macrobenthic organisms: Modeling and application with the polychaete Nereis diversicolor [J]. Marine Ecology Progress Series, 2002, 229: 127-136
[33] Penha-Lopes G, Bartolini F, Limbu S, et al. Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? [J]. Marine Pollution Bulletin, 2009, 58(11): 1694-1703
[34] D'Andrea A F, Lopez G R, Aller R C. Rapid physical and biological particle mixing on an intertidal sandflat [J]. Journal of Marine Research, 2004, 62(1): 67-92
[35] Lohrer A M, Thrush S F, Hunt L, et al. Rapid reworking of subtidal sediments by burrowing spatangoid urchins [J]. Journal of Experimental Marine Biology and Ecology, 2005, 321(2): 155-169
[36] Gilbert F, Hulth S, Grossi V, et al. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): Importance of faunal biovolume [J]. Journal of Experimental Marine Biology and Ecology, 2007, 348(1-2): 133-144
[37] Duport E, Stora G, Tremblay P, et al. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776 [J]. Journal of Experimental Marine Biology and Ecology, 2006, 336(1): 33-41
[38] Valdemarsen T, Wendelboe K, Egelund J T, et al. Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery [J]. Journal of Experimental Marine Biology and Ecology, 2011, 410: 45-52
[39] Dobbs F C, Whitlatch R B. Aspects of deposit-feeding by the polychaete Clymenella torquata [J]. Ophelia, 1982, 21(2): 159-166
[40] Pillay D, Branch G M. Bioengineering Effects of Burrowing Thalassinidean Shrimps on Marine Soft-Bottom Ecosystems [M]// Gibson R N, Atkinson R J A, Gordon J D M. eds. Oceanography and Marine Biology: An Annual Review, Vol 49. Vol 49-Oceanography and Marine Biology. CRC Press, 2011: 137-191
[41] Branch G M, Pringle A. The impact of the sand prawn Callianassa kraussi stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora [J]. Journal of Experimental Marine Biology and Ecology, 1987, 107(3): 219-235
[42] Shull D H, Yasuda M. Size-selective downward particle transport by cirratulid polychaetes [J]. Journal of Marine Research, 2001, 59(3): 453-473
[43] Levin L, Blair N, DeMaster D, et al. Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope [J]. Journal of Marine Research, 1997, 55(3): 595-611
[44] Kristensen E. Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biogeochemistry in coastal marine sediments [J]. Geochemical Transactions, 2001, 2(1): 92
[45] Shull D H, Benoit J M, Wojcik C, et al. Infaunal burrow ventilation and pore-water transport in muddy sediments [J]. Estuarine Coastal and Shelf Science, 2009, 83(3): 277-286
[46] Barrow M J, Wells R M G. Ventilation and oxygen extraction in an arenicolid polychaete [J]. Comparative Biochemistry and Physiology A-Physiology, 1982, 73(3): 491-495
[47] Riisgard H U, Larsen P S. Water pumping and analysis of flow in burrowing zoobenthos: An overview [J]. Aquatic Ecology, 2005, 39(2): 237-258
[48] Morad M R, Khalili A, Roskosch A, et al. Quantification of pumping rate of Chironomus plumosus larvae in natural burrows [J]. Aquatic Ecology, 2010, 44(1): 143-153
[49] Specht D T, Lee H. Direct measurement technique for determining ventilation rate in the deposit feeding clam Macoma nasuta (Bivalvia, Tellinaceae) [J]. Marine Biology, 1989, 101(2): 211-218
[50] Stamhuis E J, Videler J J, de Wilde P. Optimal foraging in the thalassinidean shrimp Callianassa subterranea: Improving food quality by grain size selection [J]. Journal of Experimental Marine Biology and Ecology, 1998, 228(2): 197-208
[51] Forster S, Graf G. Impact of irrigation on oxygen flux into the sediment: Intermittent pumping by Callianassa subterranea and ‘piston-pumping’ by Lanice conchilega [J]. Marine Biology, 1995, 123(2): 335-346
[52] Martin W R, Sayles F L. Seasonal cycles of particle and solute transport processes in nearshore sediments - Rn-222/Ra-226 and Th-234/U-238 disequilibrium at a site in Buzzards Bay, MA [J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 927-943
[53] Gerino M, Aller R C, Lee C, et al. Comparison of different tracers and methods used to quantify bioturbation during a spring bloom: 234-thorium, luminophores and chlorophyll a [J]. Estuarine Coastal and Shelf Science, 1998, 46(4): 531-547
[54] Wheatcroft R A. Time-series measurements of macrobenthos abundance and sediment bioturbation intensity on a flood-dominated shelf [J]. Progress in Oceanography, 2006, 71(1): 88-122
[55] Dafoe L T, Rygh A L, Yang B, et al. A new technique for assessing tubificid burrowing activities, and recognition of biogenic grading formed by these oligochaetes [J]. Palaios, 2011, 26(1-2): 66-80
[56] Cardoso P G, Lillebo A I, Lopes C B, et al. Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments: A mesocosms laboratory experiment [J]. Marine Pollution Bulletin, 2008, 56(2): 325-334
[57] Michaud E, Desrosiers G, Mermillod-Blondin F, et al. The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface [J]. Journal of Experimental Marine Biology and Ecology, 2006, 337(2): 178-189
[58] Jiang P H, Ji L, Xiao W J, et al. Bioturbation of two chironomid species on nutrient exchange at sediment-water interface in a Chinese shallow eutrophic lake [J]. Fresenius Environmental Bulletin, 2010, 19(5A): 902-910
[59] Turnewitsch R, Witte U, Graf G. Bioturbation in the abyssal Arabian Sea: Influence of fauna and food supply [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2000, 47(14): 2877-2911
[60] Hughes D J, Gage J D. Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin [J]. Progress in Oceanography, 2004, 63(1-2): 29-55
[61] Reible D D, Popov V, Valsaraj K T, et al. Contaminant fluxes from sediment due to tubificid oligochaete bioturbation [J]. Water Research, 1996, 30(3): 704-714
[62] Forbes V E, Forbes T L. Integrated Ecotoxicology: Linking Fate and EFFECT within a Biological Hierarchy [M]// Ecotoxicology in Theory and Practice. New York: Chapman & Hall, 1994: 149-183
[63] Cammen L M. Ingestion rate: Empirical model for aquatic deposit feeders and detritivores [J]. Oecologia, 1980, 44(3): 303-310
[64] Saulnier I, Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada [J]. Applied Geochemistry, 2000, 15(2): 191-210
[65] Li X D, Shen Z G, Wai O W H, et al. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary [J]. Chemical Speciation and Bioavailability, 2000, 12(1): 17-25
[66] Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: Remobilisation and demobilisation [J]. Science of the Total Environment, 2001, 266(1-3): 195-202
[67] Fan W H, Wang W X, Chen J S, et al. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China [J]. Marine Pollution Bulletin, 2002, 44(8): 820-826
[68] Ditoro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediments - The role of acid volatile sulfide [J]. Environmental Toxicology and Chemistry, 1990, 9(12): 1487-1502
[69] Zhuang Y Y, Allen H E, Fu G M. Effect of aeration of sediment on cadmium binding [J]. Environmental Toxicology and Chemistry, 1994, 13(5): 717-724
[70] Caetano M, Madureira M J, Vale C. Metal remobilisation during resuspension of anoxic contaminated sediment: Short-term laboratory study [J]. Water Air and Soil Pollution, 2003, 143(1-4): 23-40
[71] Eggleton J, Thomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events [J]. Environment International, 2004, 30(7): 973-980
[72] Pedro S, Duarte B, Reis G, et al. Metal partitioning and availability in estuarine surface sediments: Changes promoted by feeding activity of Scrobicularia plana and Liza ramada [J]. Estuarine, Coastal and Shelf Science, 2015, 167(Part A): 240-247
[73] 喬倩倩. 顫蚓擾動(dòng)存在下影響沉積物中重金屬形態(tài)和釋放的因素研究[D]. 長(zhǎng)春: 吉林大學(xué), 2011: 19-41
Qiao Q Q. Study on the influence factors of the speciation and release of heavy metals in sediment with tubificid bioturbation [D]. Changchun: Jilin University, 2011: 19-41 (in Chinese)
[74] Ciutat A, Anschutz P, Gerino M, et al. Effects of bioturbation on cadmium transfer and distribution into freshwater sediments [J]. Environmental Toxicology and Chemistry, 2005, 24(5): 1048-1058
[75] Klerks P L, Felder D L, Strasser K, et al. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL [J]. Marine Chemistry, 2007, 104(1-2): 17-26
[76] Devaugelas J, Buscail R. Organic matter distribution in burrows of the thalassinid crustacean Callichirus laurae, Gulf of Aqaba (Red Sea) [J]. Hydrobiologia, 1990, 207: 269-277
[77] Felder D L, Griffis R B. Dominant Infaunal Communities at Risk in Shoreline Habitats: Burrowing Thalassinid Crustacea [M]. New Orleans: U.S. Department of Interior MMS, Gulf of Mexico OCS Regional Office, 1994: 87
[78] Feijtel T C, Delaune R D, Patrick W H. Biogeochemical control on metal distribution and accumulation in Louisiana sediments [J]. Journal of Environmental Quality, 1988, 17(1): 88-94
[79] Peterson G S, Ankley G T, Leonard E N. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments [J]. Environmental Toxicology and Chemistry, 1996, 15(12): 2147-2155
[80] Gambrell R P, Wiesepape J B, Patrick W H, et al. The effects of pH, redox, and salinity on metal release from a contaminated sediment [J]. Water Air and Soil Pollution, 1991, 57(1): 359-367
[81] Green A S, Chandler G T. Meiofaunal bioturbation effects on the partitioning of sediment-associated cadmium [J]. Journal of Experimental Marine Biology and Ecology, 1994, 180(1): 59-70
[82] Ciutat A, Gerino M, Boudou A. Remobilization and bioavailability of cadmium from historically contaminated sediments: Influence of bioturbation by tubificids [J]. Ecotoxicology and environmental Safety, 2007, 68(1): 108-117
[83] Ciutat A, Boudou A. Bioturbation effects on cadmium and zinc transfers from a contaminated sediment and on metal bioavailability to benthic bivalves [J]. Environmental Toxicology and Chemistry, 2003, 22(7): 1574-1581
[84] 路永正, 閻百興. 顫蚓擾動(dòng)作用對(duì)鉛鎘在沉積物-水相中遷移的影響[J]. 中國(guó)環(huán)境科學(xué), 2010, 30(2): 251-255
Lu Y Z, Yan B X. Effect of bioturbation by worms on the transport of Pb and Cd between sediments and waters[J]. China Environments Science, 2010, 30(2): 251-255 (in Chinese)
[85] Lewandowski J, Hupfer M. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: A laboratory study [J]. Limnology and Oceanography, 2005, 50(4): 1106-1118
[86] Lagauzere S, Moreira S, Koschorreck M. Influence of bioturbation on the biogeochemistry of littoral sediments of an acidic post-mining pit lake [J]. Biogeosciences, 2011, 8(2): 339-352
[87] Hedman J E, Bradshaw C, Thorsson M H, et al. Fate of contaminants in Baltic Sea sediments: Role of bioturbation and settling organic matter [J]. Marine Ecology Progress Series, 2008, 356: 25-38
[88] Wall S B, Isely J J, LaPoint T W. Fish bioturbation of cadmium-contaminated sediments: Factors affecting Cd availability to Daphnia magna [J]. Environmental Toxicology and Chemistry, 1996, 15(3): 294-298
[89] Goldberg E D. Marine geochemistry.1. Chemical scavengers of the sea [J]. Journal of Geology, 1954, 62(3): 249-265
[90] Chapman P M, Wang F Y, Janssen C, et al. Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(10): 2221-2243
[91] Sundelin B, Eriksson A K. Mobility and bioavailability of trace metals in sulfidic coastal sediments [J]. Environmental Toxicology and Chemistry, 2001, 20(4): 748-756
[92] Simpson S L, Pryor I D, Mewburn B R, et al. Considerations for capping metal-contaminated sediments in dynamic estuarine environments [J]. Environmental Science & Technology, 2002, 36(17): 3772-3778
[93] Di Toro D M, Mahony J D, Gonzalez A M. Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide [J]. Environmental Toxicology and Chemistry, 1996, 15(12): 2156-2167
[94] Remaili T M, Simpson S L, Amato E D, et al. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment [J]. Environmental Pollution, 2016, 208(Part B): 590-599
[95] Simpson S L, Batley G E. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments [J]. Environmental Toxicology and Chemistry, 2003, 22(2): 424-432
[96] Matisoff G. Effects of Bioturbation on Solute and Particle Transport in Sediments [M]. Chelsea: Ann Arbor Press, 1995: 201-272
[97] 呂繼濤. 顫蚓生物擾動(dòng)對(duì)沉積物中重金屬釋放及形態(tài)分布的影響[D]. 長(zhǎng)春: 吉林大學(xué), 2009: 18-37
Lv J T. Effect of tubificid bioturbation on the release and speciation of heavy metals in sediment [D]. Changchun: Jilin University, 2009: 18-37 (in Chinese)
[98] Atkinson C A, Jolley D F, Simpson S L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments [J]. Chemosphere, 2007, 69(9): 1428-1437
[99] Crusius J, Kenna T C. Ensuring confidence in radionuclide-based sediment chronologies and bioturbation rates [J]. Estuarine, Coastal and Shelf Science, 2007, 71(3-4): 537-544
[100]Hammerschmidt C R, Fitzgerald W F. Sediment-water exchange of methylmercury determined from shipboard benthic flux chambers [J]. Marine Chemistry, 2008, 109(1-2): 86-97
[101]Benoit J M, Shull D H, Harvey R M, et al. Effect of bioirrigation on sediment-water exchange of methylmercury in Boston Harbor, Massachusetts [J]. Environmental Science & Technology, 2009, 43(10): 3669-3674
[102]King J K, Saunders F M, Lee R F, et al. Coupling mercury methylation rates to sulfate reduction rates in marine sediments [J]. Environmental Toxicology and Chemistry, 1999, 18(7): 1362-1369
[103]Cardoso P G, Lillebo A I, Lopes C B, et al. Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments: A mesocosms laboratory experiment [J]. Marine Pollution Bulletin, 2008, 56(2): 325-334
[104]He Y, Men B, Yang X F, et al. Bioturbation/bioirrigation effect on thallium released from reservoir sediment by different organism types [J]. Science of the Total Environment, 2015, 532: 617-624
[105]Brumbaugh W G, Besser J M, Ingersoll C G, et al. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: Toward more environmentally realistic nickel partitioning [J]. Environmental Toxicology and Chemistry, 2013, 32(11): 2482-2494
[106]Besser J M, Brumbaugh W G, Ingersoll C G, et al. Chronic toxicity of nickel-spiked freshwater sediments: Variation in toxicity among eight invertebrate taxa and eight sediments [J]. Environmental Toxicology and Chemistry, 2013, 32(11): 2495-2506
[107]Lagauzère S, Boyer P, Stora G, et al. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae) [J]. Chemosphere, 2009, 76(3): 324-334
[108]Dias V, Vasseur C, Bonzorn J M. Exposure of Chironomus riparius larvae to uranium: Effects on survival, development time, growth, and mouthpart deformities [J]. Chemosphere, 2008, 71(3): 574-581
[109]Anschutz P, Ciutat A, Lecroart P, et al. Effects of tubificid worm bioturbation on freshwater sediment biogeochemistry [J]. Aquatic Geochemistry, 2012, 18(6): 475-497
[110]Teal L R, Parker E R, Solan M. Coupling bioturbation activity to metal (Fe and Mn) profiles in situ [J]. Biogeosciences, 2013, 10(4): 2365-2378
[111]Ritvo G, Kochba M, Avnimelech Y. The effects of common carp bioturbation on fishpond bottom soil [J]. Aquaculture, 2004, 242(1-4): 345-356
[112]布吉紅, 陳輝輝, 許宜平, 等. 遼河表層沉積物重金屬生態(tài)風(fēng)險(xiǎn)與綜合毒性表征[J]. 生態(tài)毒理學(xué)報(bào), 2014, 9(1): 24-34
Bu J H, Chen H H, Xu Y P, et al. Ecological risk of interstitial water heavy metals and toxicity characterization of surface sediments in branches of Liaohe River [J]. Asian Journal of Ecotoxicology, 2014, 9(1): 24-34 (in Chinese)
[113]Ahearn G A, Duerr J M, Zhuang Z, et al. Ion transport processes of crustacean epithelial cells [J]. Physiological and Biochemical Zoology, 1999, 72(1): 1-18
[114]Amiard J C, Amiard-Triquet C, Barka S, et al. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers [J]. Aquatic Toxicology, 2006, 76(2): 160-202
[115]Khati W, Ouali K, Mouneyrac C, et al. Metallothioneins in Aquatic Invertebrates: Their Role in Metal Detoxification and Their Use in Biomonitoring [M]// Salame C, Aillerie M, Khoury G. eds. Terragreen 2012: Clean Energy Solutions for Sustainable Environment. Vol 18-Energy Procedia. Beirut, Lebanon, 2012: 784-794
[116]Burgos M G, Rainbow P S. Uptake, accumulation and excretion by Corophium volutator (Crustacea : Amphipoda) of zinc, cadmium and cobalt added to sewage sludge [J]. Estuarine Coastal and Shelf Science, 1998, 47(5): 603-620
[117]Nassiri Y, Rainbow P S, Amiard-Triquet C, et al. Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea : Amphipoda) [J]. Marine Biology, 2000, 136(3): 477-484
[118]Taylor D. The significance of the accumulation of cadmium by aquatic organisms [J]. Ecotoxicology and Environmental Safety, 1983, 7(1): 33-42
[119]van Hattum B, Timmermans K R, Govers H A. Abiotic and biotic factors influencing in situ trace metal levels in macroinvertebrates in freshwater ecosystems [J]. Environmental Toxicology and Chemistry, 1991, 10(2): 275-292
[120]Timmermans K R, Vanhattum B, Kraak M H S, et al. Trace-metals in a littoral foodweb: Concentrations in organisms, sediment and water [J]. Science of the Total Environment, 1989, 87-88: 477-494
[121]Men B, He Y, Yang X, et al. Bioturbation effects on heavy metals fluxes from sediment treated with activated carbon [J]. Environmental Science and Pollution Research, 2016, 23(9): 9114-9121
[122]Schaller J, Brackhage C, Mkandawire M, et al. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: A review [J]. Science of the Total Environment, 2011, 409(23): 4891-4898
[123]Bosch A C, O'Neill B, Sigge G O, et al. Heavy metals in marine fish meat and consumer health: A review [J]. Journal of the Science of Food and Agriculture, 2016, 96(1): 32-48
◆
Bioturbation Effect on the Migration and Transformation of Heavy Metals in Sediment: A Review
He Yi1,2, Men Bin1,#, Yang Xiaofang1, Xu Hui1, Wang Dongsheng1,*
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2. University of the Chinese Academy of Sciences, Beijing 100049, China
Received 3 May 2016 accepted 27 May 2016
Heavy metal contaminated sediments may pose a risk for the ecological quality of surface waters. Bioturbation can change the physical and chemical properties of the sediment, and therefore have significant effects on the occurence, migration and transformation of heavy metals in the sediment. This paper introduced the definition and types of bioturbation, the main factors influencing the pollutant release during the process of the disturbance, and reviewed bioturbation effects on the environmental behavior of heavy metals in sediments such as copper, zinc, lead, cadmium and other heavy metals.
heavy metal; sediment; migration; transformation; bioturbation
國(guó)家自然科學(xué)基金(No. 41201498)
何怡(1987-),女,博士,研究方向?yàn)橹亟饘傥廴究刂疲珽-mail: heyi.216216@163.com
*通訊作者(Corresponding author), E-mail: wgds@rcees.ac.cn
10.7524/AJE.1673-5897.20160413002
2016-05-03 錄用日期:2016-05-27
1673-5897(2016)6-025-12
X171.5
A
王東升(1970-),男,博士,研究員,主要研究方向?yàn)榄h(huán)境水質(zhì)學(xué)、混凝科學(xué)與技術(shù)。
門彬(1983-),女,博士,助理研究員,主要研究方向?yàn)槲⒔缑嫠|(zhì)化學(xué)、沉積物界面過(guò)程、重金屬污染過(guò)程與控制。
# 共同通訊作者(Co-corresponding author), E-mail: binmen@rcees.ac.cn
何怡, 門彬, 楊曉芳, 等. 生物擾動(dòng)對(duì)沉積物中重金屬遷移轉(zhuǎn)化影響的研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(6): 25-36
He Y, Men B, Yang X F, et al. Bioturbation effect on the migration and transformation of heavy metals in sediment: A review [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 25-36 (in Chinese)