殷 鐸,金章東,張 飛,張小龍,王夏青,彭玉梅
(1. 中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061;2. 中國科學院大學,北京 100049;3. 中國科學院青藏高原研究所 中國科學院青藏高原環(huán)境變化與地表過程重點實驗室,北京 100101)
喀拉庫里表層沉積物組成的
分布特征及其物質來源
殷 鐸1,2,金章東1,張 飛1,張小龍3,王夏青1,彭玉梅1
(1. 中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061;2. 中國科學院大學,北京 100049;3. 中國科學院青藏高原研究所 中國科學院青藏高原環(huán)境變化與地表過程重點實驗室,北京 100101)
喀拉庫里地處帕米爾高原東部,整個湖區(qū)被中緯度西風帶貫穿,湖水主要由冰川融水和夏季降水補給,對氣候變化響應敏感,是重建西風氣候和冰川環(huán)境演變的理想區(qū)域,然而對于喀拉庫里沉積物的組成和來源還知之甚少。本文以喀拉庫里表層沉積物為研究對象,獲得了其組成及空間分布特征,進而探討了其物源及輸入方式。根據沉積物粒度、礦物組成及湖水等深線分布,表層沉積物可分為三種類型:第Ⅰ類以細砂粒為主,以高石英和低粘土為特征,分布在近湖岸;第Ⅲ類以分選良好的細粉砂為主,主要分布在深湖區(qū);第Ⅱ類粗、細顆?;祀s,分選性差,位于Ⅰ、Ⅲ類沉積物過渡區(qū)域??瓗炖锍练e物的SiO2含量同粒徑呈正相關關系,粒徑越大、含量越高;Al2O3、Fe2O3和K2O則相反。結合河流泥沙和慕士塔格冰芯中粉塵顆粒的粒度分布及區(qū)域氣候特征,初步認為深湖區(qū)分選良好的細粉砂可能主要來自西風攜帶的高空粉塵,而近岸細砂是巖石就地物理風化的產物。這些認識對于鉆點的選取及沉積序列氣候、環(huán)境信息的提取具有重要價值。
喀拉庫里;表層沉積物;粒度;礦物學;元素;控制因素
北半球中緯度西風帶是聯(lián)系北大西洋氣候和東亞季風氣候的紐帶,在一定意義上控制著亞歐內陸干旱-半干旱地區(qū)的氣候變化。西風環(huán)流攜帶來自大西洋的水汽,是亞歐腹地降水的主要來源,同時其還攜帶粉塵,對區(qū)域地表土壤侵蝕、沉積物的運移和堆積等具有重要的意義(屈文軍等,2004;王可麗等,2005)。帕米爾高原位于新疆的西南部,地跨塔吉克斯坦、阿富汗和中國,是帕米爾-楚科奇山帶和阿爾卑斯-喜馬拉雅山脈的山結,也是西風帶的主要影響區(qū)域(毛瑋嶧等,2006,王治民等,2007;陳杰等,2011;潘正陽等,2013)。
喀拉庫里地處帕米爾高原東部,整個湖區(qū)被中緯度西風帶貫穿,是典型的開放性高原淡水湖泊,對氣候變化的響應較為敏感,加之該地區(qū)地廣人稀,人類活動干擾較小,是重建區(qū)域氣候環(huán)境演變的理想區(qū)域。張瑞江(2010)通過對湖盆流域古冰川遺跡的遙感圖像分析,認為喀拉庫里是冰川演變過程中因冰磧阻塞而成,形成于末次冰期,原湖泊面積至少為20.05 km2,現在已被分割為大小不等的3個湖泊,面積至少縮小了13.24 km2。
湖泊沉積物保存著大量與氣候環(huán)境演化緊密相關的沉積學和生物學信息,是研究地表物質的運移、堆積及其控制因素的理想對象。例如,Liu et al(2014)基于從喀拉庫里獲取的一根長8.3 m的巖芯,重建了全新世晚期連續(xù)、高分辨率的沉積記錄,并揭示出四次冰川擴張的時間。然而,有關該湖泊沉積物組成、空間分布特征及其與冰川進退和西風氣候的關系還知之甚少,這對于提取湖泊沉積記錄的氣候環(huán)境信息是至關重要的。
本文通過對喀拉庫里30個表層沉積物、6個河流沉積物和風成沙樣品的粒度、礦物學和元素含量等分析,獲得了喀拉庫里表層沉積物組成及其空間分布特征,進而探討其物質來源,為深入認識該湖泊現代沉積過程和利用湖泊沉積物重建氣候環(huán)境演變歷史提供科學基礎和依據。
喀拉庫里(38°25.32' — 38°27.57'N,75°02.27' —75°04.17'E)位于帕米爾高原東部的慕士塔格冰川(峰頂海拔約為7546 m)腳下,距離南側冰川約20 km,是一個開放的淡水湖泊(圖1)。湖水補給主要來自冰川融水,徑流集中在夏季融冰期??瓗炖锸堑湫偷谋兒軈^(qū)域構造限制,湖盆呈南北向的三角形,南寬北窄,總體地勢南低北高,闊克薩伊河流經整個湖盆,向北約3 km后匯入康西瓦河。湖面海拔約為3661 m(2014年),湖泊面積為4.73 km2,平均水深15 m,最大水深約為20 m(圖2)。
圖1 喀拉庫里流域地形圖及河流沉積物和風成沙采樣點右上角為喀拉庫里地理位置和西風示意圖(西風走向參考Xu et al(2009))。Fig.1 Shaded relief map of Kala Kul Lake and the sampling locations of river sediments and wind-derived sand samples Inserted showing the geophysical locations of the lake and the mid-latitude westerly jet (Xu et al, 2009).
圖2 喀拉庫里湖水等深線及表層沉積物采樣點Fig.2 Isobathic contours of lake water and sampling locations of surface lake sediment samples in Kala Kul Lake
湖區(qū)荒漠氣候特征明顯,受西風氣候主導,終年干旱寒冷,冰川發(fā)育廣泛。根據喀拉庫里南部約75 km處塔縣(37.77°N,75.23°E,海拔約為3100 m)1961至2009年氣象觀測資料,該區(qū)年平均氣溫約為1.3℃,年平均降水量僅為127 mm,主要其中在夏季(5 — 8月),年蒸發(fā)量在1500 mm以上(張瑞江,2010;Liu et al,2014)。此外,湖區(qū)夏季高溫期風沙天氣較頻繁,近地面風速可達2.5 m · s-1以上(數據來自慕士塔格西風帶綜合觀測研究站)(Wu et al,2008;Cao et al,2009)。流域內植被稀疏,以一年生、多年生矮小灌木及墊狀植物為主,生長期短暫,主要集中在6 — 8月(Xu et al,2006;楊清理等,2012)。流域內出露的基巖主要為花崗閃長巖和二長花崗巖(康磊等,2013)。
于2014年6—7月,在喀拉庫里采集了30個表層(頂部2 cm)湖泊沉積物樣品,湖水深度范圍為0.5 — 18.5 m,采樣點和湖水等深線分布如圖2所示。同時,在闊克薩伊河入湖口附近采集了河流沉積物和風成沙樣品各一個,在康西瓦河沿岸采集風成沙樣品4個(圖1)。樣品帶回實驗室后,在烘箱中烘干、稱重,以待分析。
湖泊沉積物和風成沙樣品加H2O2和HCl去除有機質和碳酸鹽后,其粒度分布利用英國馬爾文公司生產的Mastersizer 2000型激光粒度儀進行測量,測量范圍為0.02 — 2000 μm,平均粒徑重復測量誤差小于3%。湖泊沉積物的礦物組成利用X射線衍射儀(XRD)分析,所用儀器為荷蘭帕納科公司的X’Pert Pro MPD多晶X射線衍射儀,使用超能陣列探測器,發(fā)射和散射狹縫均是1°,索拉狹縫為0.04 rad,防散射狹縫為6.60 mm,用鎳片過濾掉Kβ峰。在Cu靶、40 kV、40 mA的檢測條件下連續(xù)掃描,范圍為3°—70°(2θ),步長為0.016711 °/步,速度為0.07111 s/步。物相定性和半定量分析使用該儀器自帶的X’Pert Highscore軟件。表層沉積物樣品經熔樣后利用X熒光分析法測定常、微量元素:先將樣品烘干,并研磨至200目以下,采用荷蘭帕科納公司生產的Axios advanced(PW4400)型X熒光光譜儀(XRF),所測元素的含量值進行了碳酸鹽校正,分析誤差小于2%。以上實驗均在中國科學院地球環(huán)境研究所黃土與第四紀地質國家重點實驗室完成。
3.1 粒度特征
喀拉庫里30個表層沉積物粒度分布見圖3,主要參數列于表1中(其中:Md為中值粒徑;Mz為平均粒徑;S為分選系數;Sk為偏度;Kg為峰態(tài))。表層沉積物Md的變化范圍為4.40 —136.17 μm,細粒組分高值區(qū)主要分布在喀拉庫里中部、西南部(深水區(qū)),細粒組分低值區(qū)主要分布在西北、東北湖岸區(qū)域。根據粒度特征,結合湖水等深線分布,可以將表層沉積物分成三個類型,圖4為三類沉積物的粒級組分比例分配三角圖。
圖3 喀拉庫里第Ⅰ、Ⅱ、Ⅲ類表層沉積物(a、b、c)、風成沙及河流沉積物(d)、慕士塔格冰芯粉塵(e)的粒度分布頻率曲線(數據引自Wake et al(1994)和Wu et al(2009))Fig.3 Grain-size distributions of types Ⅰ, Ⅱ, and Ⅲ (a — c) of surface lake sediments from Kala Kul Lake. Also shown the grain-size distributions of (d) river sediment and wind-driven sand samples as well as (e) eolian dust collected from glacier in the Mustagh Ata ice cap (data from Wake et al (1994) and Wu et al (2009))
表1 喀拉庫里表層湖泊沉積物粒度特征值、主要礦物及氧化物含量Tab.1 Grain-size, mineralogical and geochemical compositions of the lake surface sediments from Kala Kul Lake
(續(xù)表1 Continued Tab.1)
第Ⅰ類沉積物粒度的自然頻率分布曲線為雙峰形態(tài)(圖3a),Sk平均值為0.50,峰態(tài)中等,屬于極正偏形態(tài),主峰眾數粒徑的范圍為54.7 ± 11.2 μm,次峰集中在8.1 ± 4.6 μm。細砂組分占絕對優(yōu)勢,百分含量52.5% — 76.5%,平均分選系數為1.35,分選相對較差。樣品包含7個樣品(KL-9、KL-12、KL-32、KL-37、KL-40、KL-46和KL-49號),主要分布在闊克薩伊河入湖口前緣淺灘區(qū)和東部湖岸,湖水平均深度為7.3 m。
第Ⅱ類沉積物以粉砂為主,粒度的自然分布頻率曲線呈雙峰模式(圖3b),兩峰的眾數粒徑分別集中在4.2 ± 0.5 μm和23.2 ± 9.7 μm,峰度平坦,偏度范圍– 0.12 — 0.25,多數為正偏,表明粉砂占優(yōu)勢(53.1% — 80.7%),細砂含量為9.0% — 36.4%。此類沉積樣品的特點是粗、細顆?;祀s,分選性相對較差。樣品包括KL-11、KL-15、KL-20、KL-33、KL-34、KL-48、KL-50、KL-51號等8個樣品。從空間上來說,第Ⅱ類沉積樣品主要分布于第Ⅰ、Ⅲ類型的過渡區(qū)域,平均水深11.0 m。
第Ⅲ類沉積物以細粉砂和粘粒為主,其中細粉砂占61.0% — 77.4%,其次為粘土,含量為9.3% — 24.7%,分選系數平均值為0.90;其粒度的自然分布頻率曲線近似呈正態(tài)分布,表現為單峰模式(圖3c),主峰眾數粒徑約在4.2 ± 0.4 μm,平均峰度為1.12,峰態(tài)尖銳。此類樣品共包括15個樣品(KL-16 — 19、KL-21 — 27、KL-29、KL-43 — 45),分布范圍廣,位于湖泊西南部及中部深水區(qū),最淺采樣點位水深11.0 m,平均水深15.9 m。
圖4 第Ⅰ、Ⅱ、Ⅲ類沉積物粒級組分比例分配三角圖Fig.4 Textural classifi cation of types Ⅰ, Ⅱ, and Ⅲ of surface lake sediments from Kala Kul Lake
3.2 礦物學特征
湖泊沉積物的礦物種類及其組合蘊含了豐富的區(qū)域地質和環(huán)境信息,是環(huán)境研究的敏感性指標之一(金章東,2011)。根據XRD衍射圖譜可知,喀拉庫里表層沉積物的礦物組成基本一致(圖5),主要由5種礦物組成:鈉長石(33% — 41%)、石英(12% — 35%)、黑云母(14% — 23%)、綠泥石(13% — 24%)及方解石(2% — 16%),相對百分含量見表1;個別樣品中含少量或極少量的水鈉錳礦、鋅鋁蛇紋石等。五種礦物中,以鈉長石、石英含量為最高,占沉積物礦物總量的40% — 70%。此外,鈉長石和黑云母含量相對穩(wěn)定,而石英、方解石和綠泥石含量變化差異較大。
第Ⅰ類沉積物中含量最高的礦物是鈉長石,占33% — 39%,石英次之,平均含量為31%,綠泥石(13% — 15%)和黑云母(14% — 15%)所占比例基本相當,方解石(2% — 7%)含量比前兩者低;相對于第Ⅰ類,第Ⅱ類沉積物樣品的石英含量略低,為13% — 22%,綠泥石和黑云母含量基本保持一致,方解石(3% — 16%)含量略高;第Ⅲ類沉積物礦物組成中,黑云母和綠泥石含量相對Ⅰ、Ⅱ兩種類型略高。鈉長石的含量在三類沉積物中無明顯變化。
圖5 喀拉庫里表層沉積物代表性樣品的XRD衍射圖譜Fig.5 X-Ray diffraction diagrams of nine typical samples of lake surface sediments from Kala Kul Lake
3.3 元素組成特征
沉積物中主要氧化物和Sr含量統(tǒng)計分析顯示(表1),表層沉積物總體上相對富集SiO2和Al2O3,而Sr含量變化范圍是132.6 — 385.3 ppm。
對于第Ⅰ類沉積物,SiO2百分含量為73.05% — 82.48%,在三種沉積物中最高,Al2O3(11.54% — 14.18%)、Fe2O3(2.36% — 4.35%)和K2O(2.69% — 3.49%)含量均低于其他兩類沉積物;第Ⅱ類沉積物元素組成中,CaO(2.77% — 15.94%,KL-48樣品達27.34%)和Sr(平均值216.8 ppm)較高,其余氧化物均值居中;對第Ⅲ類沉積物,SiO2、CaO、Sr在此類沉積物中含量呈現低值,Al2O3(18.84% — 21.57%)、Fe2O3(8.08% — 9.57%)、K2O(4.81% — 5.64%)變化不大,標準偏差均小于1.0。
4.1 喀拉庫里表層沉積物礦物和氧化物組成及空間變化
湖泊沉積物的組分受到諸多因素的控制,包括物源、流域氣候條件、侵蝕和風化、搬運過程中的分選和聚集作用、沉積自生作用、后生改造作用等(如Last and Smol,2001;Jin et al,2006)。對于一個淡水湖泊,外源礦物是其湖泊沉積物最基本的組分,而碎屑礦物和粘土礦物可以反映一個湖泊系統(tǒng)的主要物理因素。石英和長石類硅酸鹽礦物不易風化,具有較好的化學穩(wěn)定性,是碎屑礦物的主要成分(金章東,2011;張成琦等,2015)??瓗炖锉韺映练e物的礦物組成以碎屑礦物為主,粘土礦物含量較低,這是該流域地處高原,終年干旱少雨,氣候寒冷,風化弱的結果。另外,沉積物中基本沒有碳酸鹽等自生礦物,表明該淡水湖內化學沉淀和生物活動均極弱。三類沉積物中碎屑礦物相對含量的差異則主要與粒度和物源有關。第Ⅰ類沉積物中高含量的長石和石英反映其弱風化的產物,粒度也粗,主要分布在湖岸附近;第Ⅲ類沉積物以細顆粒為特征,云母和綠泥石含量相對Ⅰ、Ⅱ兩種類型略高,風化程度稍強,主要分布在深湖區(qū)。
與礦物組成相對應,第Ⅰ類沉積物的SiO2含量高于第Ⅱ和Ⅲ類沉積物,可能表明粗顆粒沉積物中SiO2含量較高,這可以從SiO2含量空間等值線分布圖(圖6a)及其與粒度的正相關(圖7a)得到進一步證實;與此相反,Al2O3、Fe2O3、K2O等氧化物含量富集在細粒沉積物中,在空間分布上具有一致性(圖6),它們與中值粒徑呈負相關(圖7 b — d),其含量主要反映粘土含量的變化(方海超等,2015)。另一方面,喀拉庫里表層沉積物中Sr和CaO均較低,特別是深水區(qū)的第Ⅲ類沉積物(圖6),進一步表明該流域內較弱的風化作用,加之流域內基巖以花崗閃長巖和二長花崗巖為主,因此僅有少量的Sr和CaO被帶入到湖泊中,并且兩者均與粒徑基本無關。此外,位于湖泊中部的KL-48沉積物具有高達27.34%的CaO和385.3 ppm的Sr含量,其他氧化物均呈極端低值。是什么原因造成該樣品異常的化學組成,有待進一步研究。
4.2 喀拉庫里表層沉積物粒度特征及其對物源的指示
從上述分析可知,喀拉庫里表層沉積物礦物和化學組成均與粒度緊密相關。沉積物的粒度分布可反映物源、水動力、湖泊水位等因素(H?kanson and Jansson,1983;Vandenberghe,2013;Xiao et al,2015)。一般來說,湖泊表層沉積物的粒度分布從湖岸至湖心區(qū),隨著水深的增加,湖水的水動力條件(物理能量)由強變弱,逐步沉積,顆粒逐漸變細且平行于湖岸線呈同心環(huán)帶狀分布,即湖泊沉積物會出現“礫-砂-粉砂-粘土”的環(huán)帶狀變化(Campbell,1998;陳敬安等,2000;古立峰等,2012)??瓗炖飳儆诘湫偷谋兒?,其水下地形相對復雜。從湖水等深線分布可見,喀拉庫里有兩個深水區(qū),其中最深且大的深水區(qū)位于湖中心偏東部,平均水深18.0 m,另一深水區(qū)偏西南,最大水深16.2 m。兩者之間(KL-48—50號樣品)水深僅為6.7 — 11.3 m,其湖底可能為一臺地或沙脊(圖2)。南側的闊克薩伊河為一辮狀水系,其注入喀拉庫里有兩個主要入湖口(KL-9和KL-12號樣品位置)。入湖口處,水深快速增加,由KL-12采樣點的0.5 m水深增加至KL-16采樣點的11 m,沉積物類型由Ⅰ類迅速轉為Ⅲ類,可能是河流攜帶碎屑礦物快速堆積的結果。東岸水深和沉積物類型的變化也很類似,在離岸200 —300 m水深快速增加到13 m,沉積物類型也由Ⅰ類經Ⅱ類迅速轉為Ⅲ類。從最深湖區(qū)往北至出口流入康西瓦河,湖水深度變化較緩,以Ⅲ類沉積物為特征。由此可以判斷,喀拉庫里表層沉積物的礦物組成、元素分布呈現三種類型的差異性分布主要是受到湖盆水下復雜地形和物源的影響。沉積物的粒度分布可以反映水動力信息,廣泛用于判斷沉積環(huán)境變化(如H?kanson and Jansson,1983;Xiao et al,2015)。由圖3可知,第Ⅰ類沉積物顆粒以40 — 150 μm組分為主,主峰眾數粒徑約為54.7 ± 11.2 μm,這些沉積物以細砂組分為特征,粒徑較大。具雙峰特征的第Ⅱ類沉積物眾數粒徑分別集中在4.2 ± 0.5 μm和23.2 ± 9.7 μm,主要分布在湖岸至湖心的水深快速增加區(qū)域,分布范圍窄。深湖區(qū)的第Ⅲ類沉積物50 — 150 μm組分基本消失,優(yōu)勢組分在2 — 8 μm。三類沉積物的粒度自然頻率分布曲線反映了這些沉積物不同的來源和輸入形式(劉曉清等,2013)。
圖6 喀拉庫里表層沉積物主要氧化物和Sr含量空間分布圖Fig.6 The spatial distribution of the contents of the major oxides and Sr of the surface lake sediment samples from Kala Kul Lake
圖7 喀拉庫里表層沉積物中值粒徑與主要氧化物的相關性分析Fig.7 Correlations of median size with major oxides (SiO2, Al2O3, and Fe2O3) of the surface lake sediment samples from Kala Kul Lake
喀拉庫里湖區(qū)位于冰川末端,地表徑流的流量主要取決于受溫度控制的冰川融水。春夏季節(jié),闊克薩伊河攜帶碎屑物注入喀拉庫里。然而,由于闊克薩伊河徑流量低、流速慢,且為一辮狀水系,入湖前流經一片沼澤地,其攜帶的外源碎屑物有限,大部分堆積在入湖口前緣淺灘區(qū),形成分選性較差的第Ⅰ類沉積物。隨著離岸距離和水深的增加,水動力條件逐漸減弱,沉積物粒徑迅速降低,轉變?yōu)榈冖蝾惓练e物。然而,第Ⅱ類沉積物僅分布在較窄的范圍,隨著水深快速增加,轉變?yōu)榉植甲顝V的第Ⅲ類沉積物(圖2)。這同樣表現在氧化物含量的變化梯度上(圖6)。
然而,類似的粒度分布和梯度變化同樣出現在湖泊東岸的表層沉積物中:靠近東岸的第Ⅰ類沉積物(KL-32、KL-37和KL-40)和第Ⅱ類沉積物(KL-33和KL-34)也分布在較窄的范圍,在短距離內轉變?yōu)榈冖箢惓练e物(圖2和圖6)。最重要的是,近東岸的這三個樣品具有與闊克薩伊河口附近的KL-9和KL-12基本相同的粒度組成特征,均屬于第Ⅰ類沉積物(圖3a)??瓗炖飽|側并沒有河流輸入,那么這些具有相同粒度組成的粗顆粒沉積物是如何進入湖泊的呢?野外觀察可見,在喀拉庫里岸邊,以及包括康西瓦河和闊克薩伊河的附近河岸,廣泛分布著粒度較為均一的細砂。這些細砂(KL-S2 — S5)和闊克薩伊河的河流沉積物(KL-S1)的粒度主峰值均集中在61.3 ± 11.0 μm,次峰在11.1 ± 1.6 μm,可判定這些細砂主要來源于受冰川或河流作用,經物理風化產生的巖石碎屑,主要來源于湖盆流域及其周邊山地,然后經近地面滾動,或短距離風力作用搬運過來的碎屑顆粒。在夏季,在頻繁的風力作用下,細顆粒組分可進行長距離、乃至高空搬運,這些50 — 150 μm組分的細砂也可經風力作用發(fā)生搬移,并經分選形成粒度較為均一的細砂,因此我們稱之為“風成沙”(圖3d)。通過與附近風成沙和闊克薩伊河沉積物樣品的粒度分布模式比較可見,第Ⅰ類沉積物具有與這些細砂十分類似的粒度頻率分布曲線。由此,認為喀拉庫里近湖岸的第Ⅰ類沉積物和第Ⅱ類沉積物的粗顆粒組分主要是這些就地物理風化的風成沙經地表徑流或風力進入湖泊的。
干旱-半干旱區(qū)的湖泊沉積物組成還受到粉 塵 輸入的影 響(Jin et al,2009,2015;Vandenberghe,2013)。對于喀拉庫里地區(qū),夏季風沙天氣較為頻繁(Wu et al,2008;魏林波等,2012),風塵顆粒的輸入是顯而易見的。由慕士塔格冰川中大氣粉塵的通量可知,每年有大量的顆粒物經西風攜帶降落在冰川上。慕士塔格冰川中的顆粒年通量為247 — 607 μg · cm2· a-1(Wake et al,1994),或平均為330 μg · cm2· a-1(宮曉倩等,2012),并且這些粉塵主要出現在夏季高溫期(Wu et al,2008)。氣團反軌跡追蹤結果表明,慕士塔格粉塵的主要源區(qū)是西亞(如伊朗-阿富汗高原)和中亞地區(qū),這些源區(qū)的塵暴頻發(fā)期出現在夏季(5 — 8月份)(Wu et al,2008),數量上多以細顆粒(< 5 μm)為主(Wu et al,2006)。圖3c和圖3e為喀拉庫里第Ⅲ類表層沉積物與大氣粉塵顆粒物的粒度分布曲線對比,后者來自慕士塔格冰川中大氣粉塵(Wake et al,1994,Wu et al,2009)。不難發(fā)現,喀拉庫里第Ⅲ類沉積物的優(yōu)勢組分(2 — 8 μm)和冰芯中來自遠源的高空粉塵粒度頻率分布曲線對應良好。研究表明,風成來源物質沉降后,粒度特征基本保持不變,例如泛濫平原和構造盆地中黃土粒度與黃土高原的粒度組成基本一致(Vandenberghe and Spanjaard,2012;Licht et al,2014)。因此初步判定,喀拉庫里表層湖泊沉積物的細粒級組分可能主要來自于西風從西亞和中亞地區(qū)攜帶的高空粉塵。
通過對喀拉庫里表層沉積物粒度、礦物組成及元素含量的空間變化分析,結合周邊風成沙的組分,探討了該湖泊表層沉積物的物源及其控制因素,得到如下初步認識:
(1)根據沉積物粒度、礦物組成,結合湖水等深線,喀拉庫里表層沉積物主要有三種類型,分別以細砂、細-粉砂粒混合和細粉砂為主,三類沉積物中鈉長石、黑云母和綠泥石含量較高,表明高寒地帶流域巖石的弱風化作用;
(2)喀拉庫里表層沉積物的化學組成與粒度和湖水深度密切相關,SiO2含量同粒徑呈正相關關系,深湖區(qū)細粒沉積物中的Al2O3、Fe2O3和K2O含量高,在空間分布上具有一致性,與粒徑呈負相關關系;
(3)依賴流水和風力的共同作用,喀拉庫里表層沉積物主要有兩個來源:粒徑在50 μm左右的粗粉砂、細砂等主要來自湖區(qū)周圍巖石物理風化的產物,通過徑流或風力作用攜帶至湖濱帶;深湖區(qū)均一的細粉砂則可能主要是由西風作用從西亞和中亞地區(qū)輸送過來的粉塵。
致謝:中國科學院青藏高原研究所鄔光劍提供部分慕士塔格冰芯粒度實驗數據,孫有斌研究員在寫作過程中給予討論和建議,在此一并表示感謝。
陳 杰, 李 濤, 李文巧, 等. 2011. 帕米爾構造結及鄰區(qū)的晚新生代構造與現今變形[J]. 地震地質, 33(2): 241 – 259. [Chen J, Li T, Li W Q, et al. 2011. Late Cenozoic and present tectonic deformation in the Pamir Saliment, Northwestern China [J]. Seismology and Geology, 33(2): 241 – 259.]
陳敬安, 萬國江, 徐經意, 等. 2000. 洱海沉積物粒度記錄與氣候干濕變遷[J]. 沉積學報, 18(3): 341 – 345. [Chen J A, Wan G J, Xu J Y, et al. 2000. Sediment particle sizes and the dry-humid transformation of the regional climate in Erhai Lake [J]. Acta Sedimentologica Sinica, 18(3): 341 – 345.]
方海超, 黃 朋, 周 宇, 等. 2015. 北黃海表層沉積物常量元素分布特征及其控制因素分析[J]. 海洋科學, 39(4): 108 – 116. [Fang H C, Huang P, Zhou Y, et al. 2015. Distribution and controlling factors of the major elements in surface sediments of the North Yellow Sea [J]. Marine Sciences, 39(4): 108 – 116.]
宮曉倩, 鄔光劍, 張成龍, 等. 2012. 基于冰芯記錄與遙感數據的近期青藏高原粉塵變化研究[J]. 冰川凍土, 34(2): 257 – 266. [Gong X Q, Wu G J, Zhang C L, et al. 2012. Dust change over the Tibetan Plateau in recent years using ice core records and satellite remote sensing data [J]. Journal of Glaciology and Geocryology, 34(2): 257 – 266.]
古立峰, 劉 永, 占 玄, 等. 2012. 湖泊沉積物粒度分析方法在古氣候環(huán)境研究中的應用[J]. 化工礦產地 質, 34(3): 169 – 174. [Gu L F, Liu Y, Zhan X, et al. 2012. The application of grain size of lake sediments inreconstructing the paleoclimate and paleoenvironment [J]. Geology of Chemical Minerals, 34(3): 169 – 174.]
金章東. 2011. 湖泊沉積物的礦物組成、成因、環(huán)境指示及研究進展[J]. 地球科學與環(huán)境學報, 33(1): 34 – 44. [Jin Z D. 2011. Composition, origin and environmental interpretation of minerals in lake sediments and recent progress [J]. Journal of Earth Sciences and Environment, 33(1): 34 – 44.]
康 磊, 校培喜, 高曉峰, 等. 2013. 西昆侖慕士塔格巖體的巖石地球化學特征,巖石成因及其構造意義[J]. 地質通報, 31(12): 2001 – 2014. [Kang L, Xiao P X, Gao X F, et al. 2013. Geochemical characteristics and petrogenesis of Muztagata intrusion in Western Kunlun orogenic belt and their tectonic significance [J]. Geological Bulletin, 31(12): 2001 – 2014.]
劉曉清, 王亞萍, 張振文, 等. 2013. 陜西紅堿淖湖底表層沉積物粒度特征[J]. 地球環(huán)境學報, 4(4): 1371 – 1378. [Liu X Q, Wang Y P , Zhang Z W, et al. 2013. Grain size characteristics of the surface deposit in Hongjiannao Lake in northern Shanxi Province [J]. Journal of Earth Environment, 4(4): 1371 – 1378.]
毛瑋嶧, 孫本國, 王 鐵,等. 2006. 近50年來喀什噶爾河流域氣溫、降水及徑流的變化趨勢[J]. 干旱區(qū)研究, 36(1): 531 – 538. [Mao W Y, Sun B G, Wang T, et al. 2006. Change trends of temperature, precipitation and runoff volume in the Kaxgar River Basin since recent 50 years [J]. Arid Zone Research, 36(1): 531 – 538.]
潘正陽, 何建坤, 盧雙疆. 2013. 帕米爾高原現代地殼運動首期GPS觀測及處理[J]. 地球科學與環(huán)境學報, 35(1): 103 – 110. [Pan Z Y, He J K, Lu S J. 2013. Data procession and the first Epoch GPS survey of recent crustal movement in Pamir Plateau [J]. Journal of Earth Sciences and Environment, 35(1): 103 – 110.]
屈文軍, 張小曳, 王 丹, 等. 2004. 西風帶研究的重要意義[J]. 海洋地質與第四紀地質, 24(1): 125 – 132. [Qu W J, Zhang X Y, Wang D, et al. 2004. The importance signifi cance of westerly wind study [J]. Marine Geology & Quaternary Geology, 24(1): 125 – 132.]
王可麗, 江 灝, 趙紅巖. 2005. 西風帶與季風對中國西北地區(qū)的水汽輸送[J]. 水科學進展, 16(3): 432 – 438. [Wang K L, Jiang H, Zhao H Y. 2005. Atmospheric water vapor transport from westerly and monsoon over the Northwest China [J]. Advances in Water Science, 16(3): 432 – 438.]
王治民, 王曉強, 朱令人, 等. 2007. 南天山及帕米爾高原現代地殼水平形變[J]. 高原地震, 27(6): 29 – 34. [Wang Z M, Wang X Q, Zhu L R, et al. 2007. Recent horizontal crustal deformation in Tianshan and Pamir Plateau area [J]. Plateau Earthquake Research, 27(6): 29 – 34.]
魏林波, 周甘霖, 王式功, 等. 2012. 亞洲副熱帶高空西風急流活動的氣候特征及其與我國部分地區(qū)夏季降水的關系[J]. 高原氣象, 31(1): 87 – 93. [Wei L B, Zhou G L, Wang S G, et al. 2012. Climatic features of Asian upper westerly jet activities and their relationship with summer precipitation in partly areas of China [J]. Plateau Meteorology, 31(1): 87 – 93.]
楊清理, 翟 偉, 閻 平, 等. 2012. 中國帕米爾高原喀拉庫勒湖地區(qū)的植物物種多樣性[J]. 江蘇農業(yè)科學, 40(2): 259 – 261. [Yang Q L, Zhai W, Yan P, et al. 2012. Species diversity of plants on Kala Kul Lake catchment, Pamir Plateau, China [J]. Journal of Jiangsu Agricultural Sciences, 40(2): 259 – 261.]
張成琦, 李 育, 周雪花, 等. 2015. 晚第四紀湖泊沉積物鹽類與碎屑礦物反相關關系的沉積學解釋[J]. 冰川凍土, 37(1): 95 – 108. [Zhang C Q, Li Y, Zhou X H, et al. 2015. A sedimentological interpretation of the inverse correlation between saline mineral and detrital mineral in the Late Quaternary lake sediments [J]. Journal of Glaciology and Geocryology, 37(1): 95 – 108.]
張瑞江. 2010. 卡拉庫勒湖成因的遙感分析[J]. 國土資源遙感, 86: 69 – 71. [Zhang R J. 2010. A Genetic analysis of the Kalakul Lake based on remote sensing images [J]. Remote Sensing for Land & Resources, 86: 69 – 71.]
Campbell C. 1998. Late Holocene lake sedimentology and climate change in Southern Alberta, Canada [J]. Quaternary Research, 49(1): 96 – 101.
Cao J J, Xu B Q, He J Q, et al. 2009. Concentrations, seasonal variations, and transport of carbonaceous aerosols at a remote mountainous region in western China [J]. Atmospheric Environment, 43(29): 4444 – 4452.
H?kanson L, Jansson M. 1983. Principles of lake sedimentology [M]. Berlin: Springer: 316.
Jin Z D, An Z S, Yu J M, et al. 2015. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial [J]. Quaternary Science Reviews, 122: 63 – 73.
Jin Z D, Li F C, Cao J J, et al. 2006. Geochemistry ofDaihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering [J]. Geomorphology, 80(3/ 4): 147 – 163.
Jin Z D, You C F, Yu J M. 2009. Toward a geochemical mass balance of major elements in Lake Qinghai, NE Tibetan Plateau: a significant role of atmospheric deposition [J]. Applied Geochemistry, 24: 1901 – 1907.
Last W M, Smol J P. 2001. Tracking environmental change using lake sediments [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Licht A, Van C M, Abels H A, et al. 2014. Asian monsoons in a late Eocene greenhouse world [J]. Nature, 513: 501 – 506.
Liu X Q, Herzschuh U, Wang Y B, et al. 2014. Glacier fl uctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records [J]. Geophysical Research Letters, 41, doi:10.1002/ 2014GL060444.
Vandenberghe J. 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identifi cation [J]. Earth Science Research, 121: 18 – 30.
Vandenberghe J, Spanjaard G. 2012. Natural evolution versus human impact in a present-day fluvial catchment: the Geul River, southern Netherlands [J]. Geomorphology, 159 – 160: 1 – 14.
Wake C P, Mayewski P A, Li Z, et al. 1994. Modern eolian dust deposition in central Asia [J]. Tellus, 46B: 220 – 233.
Wu G J, Yao T D, Xu B Q, et al. 2006. Grain size record of microparticles in the Muztagata ice core [J]. Science in China (Series D: Earth Sciences), 49(1): 10 – 17.
Wu G J, Yao T D, Xu B Q, et al. 2008. Seasonal variations of dust record in the Muztagata ice cores [J]. Chinese Science Bulletin, 53(16): 2506 – 2512.
Wu G J, Yao T D, Xu B Q, et al. 2009. Volume-size distribution of microparticles in ice cores from the Tibetan Plateau [J]. Journal of Glaciology, 55: 859 – 868.
Xiao J L, Fan J W, Zhai D Y, et al. 2015. Testing the model for linking grain-size component to lake level status of modern clastic lakes [J]. Quaternary International, 355: 34 – 43.
Xu B Q, Cao J J, Hansen J, et al. 2009. Black soot and the survival of Tibetan glaciers [J]. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22114 – 22118.
Xu B Q, Yao T D, Lu A X, et al. 2006. Variation of near-surface atmospheric CO2, H2O concentrations during summer on Mustagh Ata [J]. Science in China (Series D: Earth Sciences), 49(1): 18 – 26.
Spatial distribution of surface lake sediment compositions in Kala Kul Lake and its implications for provenances
YIN Duo1,2, JIN Zhangdong1, ZHANG Fei1, ZHANG Xiaolong3, WANG Xiaqing1, PENG Yumei1
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)
Background, aim, and scope Kala Kul Lake (38°25.32' — 38°27.57'N, 75°02.27' — 75°04.17'E, 3661 m above sea level) is located in the eastern part of the Pamir Plateau and is a hydrologically-open freshwater lake mainly fed by meltwater from the Mustagh Ata ices and rainfall in summer. The climate of the lake catchment is dominated by northern hemisphere mid-latitude westerly jet carrying rain and dust in summer. Owing to little human activity, lake sediment in Kala Kul Lake has been considered to be ideal for reconstructing regional climate and environment evolution, and even for glacial advanceand retreat. However, until now little is known about the compositions, spatial distribution and sources of the lake sediments, as well as their relationship with the glacier variations and the westerly climate. The objectives of this study are (1) to obtain the mineralogical and geochemical compositions of the surface lake sediments and (2) to address the spatial distribution and sources of the sediments in Kala Kul Lake. Materials and methods Thirty samples of surface sediments (topmost 2 cm) were collected in June and July 2014 across Kala Kul Lake with the water depths ranging from 0.5 m to 18.5 m. Meanwhile, one river sediment and five wind-driven sand samples were collected surrounding the catchment. After pretreated by adding H2O2and HCl to remove organic matter, carbonates, and iron oxides, grain size distribution was measured by a Malvern 2000 laser diffraction instrument with 100 bins ranging from 0.02 μm to 2000 μm. X-ray diffraction and fluorescence spectrometer were used for analyzing mineralogical and elemental compositions. Results Being combining the grain size parameters with water depth, surface lake sediment samples were classified into three types. The type Ⅰ sediments are distributed in the near lake shore and are characterize by fine sand with double peaks, high contents of quartz and low clays, Fe2O3, and K2O. The type Ⅲ sediments are dominated by fine and clayey silt that are well sorted and are mainly distributed in the deep water area. The contents of SiO2, CaO, and Sr in the type Ⅲ sediments are the lowest in all types of sediments, with constant contents of Al2O3, Fe2O3, and K2O with the standard deviations less than 1.0. At the narrow area between the typesⅠand Ⅲ, there are the type Ⅱ sediments that are mixed with poorly-sorted coarse and fine particles. Discussion Since Kala Kul Lake belongs to a typical moraine lake, lakebed topography, sediment sources, grain sorting and focusing play dominant roles in the difference of detrital mineralogy and elements in the three types of surface sediments in the lake. The lake has a relatively complex topography of the lakebed, such that water depth affects mineral compositions and spatial distribution of major elements of the surface lake sediments. Comparison of the grainsize distributions of the three types of surface sediments with those of eolian dust from Mustagh Ata ice cap, five wind-driven sand and one river sediment samples indicate that the typesⅠandⅡ sediments might mainly stem from local fine sand detrital transported by wind and rivers, whereas the type Ⅲ sediments (2 — 8 μm in size) may be dominated by eolian dust carried by the westerly jet during the summer from western and central Asia, as same as those trapped in the Mustagh Ata ices. Conclusions In Kala Kul Lake, the well-sorted fine and clayey silt dominated in the deep water area might stem from eolian dust by the westerly jet during the summer, whereas the fine sand and silt near lake shore are from local detrital transported by wind and rivers into the lake. High contents of albite and biotite but low clays in the fine detrital mineral are mainly the products of physical eroded rocks after sorted by strong wind, indicating weak weathering within the catchment. Recommendations and perspectives The fine and clayey silt in deep lake therefore is potential for reconstructing the history of dust input and westerly jet in central Asia.
Kala Kul Lake; surface lake sediment; grain size; mineralogy; elements; sediment sources
JIN Zhangdong, E-mail: zhdjin@ieecas.cn
10.7515/JEE201604006
2016-03-06;錄用日期:2016-06-01
Received Date:2016-03-06;Accepted Date:2016-06-01
國家自然科學基金項目(41403111,41225015)
Foundation Item:National Natural Science Foundation of China (41403111, 41225015)
金章東,E-mail: zhdjin@ieecas.cn