吳鐵梅 閆素梅 格日樂瑪
(內(nèi)蒙古農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院,呼和浩特010018)
沉默信息調(diào)節(jié)因子1對脂類代謝的調(diào)控作用
吳鐵梅閆素梅*格日樂瑪
(內(nèi)蒙古農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院,呼和浩特010018)
摘要:沉默信息調(diào)節(jié)因子1(SIRT1)通過脫乙酰作用能抑制脂肪生成相關(guān)基因過氧化物酶體增殖物激活受體γ(PPARγ)和固醇調(diào)節(jié)元件結(jié)合蛋白1c(SREBP1c)的轉(zhuǎn)錄活性,從而抑制脂肪細(xì)胞分化,降低脂肪沉積,促進(jìn)脂肪動員。SIRT1通過調(diào)節(jié)脂類代謝相關(guān)的信號通路SIRT1-腺苷酸活化蛋白激酶(AMPK)和SIRT1-哺乳動物雷帕霉素靶蛋白(mTOR)減少脂肪合成,加快脂肪分解,降低脂肪的沉積量。本文主要綜述了SRIT1通過相關(guān)轉(zhuǎn)錄因子與信號通路對動物脂類代謝的調(diào)節(jié)作用,為進(jìn)一步研究動物的脂類代謝及改善肉品質(zhì)提供依據(jù)。
關(guān)鍵詞:沉默信息調(diào)節(jié)因子1;脂類代謝;轉(zhuǎn)錄因子;信號通路
隨著人類現(xiàn)代生活水平的提高,人們對肉品質(zhì)有了更高的要求,更加注重脂肪的含量與脂肪酸組成。因此,深入了解動物脂類代謝的調(diào)節(jié)機(jī)制對改善肉品質(zhì)具有重要的理論意義。沉默信息調(diào)節(jié)因子1(silent information regulator 1,SIRT1)是一種煙酰胺嘌呤二核苷酸依賴的組蛋白脫乙酰酶,與哺乳動物酵母菌酶Sir2具有同源性,所以在生物學(xué)功能上兩者存在一致性。SIRT1基因可控制細(xì)胞周期,抑制細(xì)胞凋亡和炎癥反應(yīng),保護(hù)神經(jīng)和抗氧化應(yīng)激,促進(jìn)糖和脂類代謝與神經(jīng)元增殖分化,參與自噬過程[1]。關(guān)于SIRT1在動物脂肪代謝領(lǐng)域的調(diào)節(jié)作用的研究已經(jīng)取得一定進(jìn)展,Picard等[2]研究指出,SIRT1可以通過對過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptors,PPARγ)活性的抑制,下調(diào)與脂肪沉積相關(guān)的基因轉(zhuǎn)錄,抑制脂肪細(xì)胞的分化,降低脂肪的沉積,但關(guān)于其確切的機(jī)制尚不清楚。本文主要綜述SIRT1對動物脂類代謝的調(diào)節(jié)機(jī)制,為通過調(diào)節(jié)動物的脂類代謝來改善肉品質(zhì)提供依據(jù)。
1SIRT1對脂類代謝相關(guān)轉(zhuǎn)錄因子的調(diào)節(jié)
1.1參與脂類代謝的主要轉(zhuǎn)錄因子
脂肪生成相關(guān)基因的表達(dá)在脂肪細(xì)胞的脂類代謝中發(fā)揮關(guān)鍵作用[3],其表達(dá)水平由許多轉(zhuǎn)錄因子調(diào)節(jié)[4]。脂肪組織中脂肪生成和脂類分解作用是通過內(nèi)源遺傳機(jī)制(基因表達(dá)和內(nèi)源因子調(diào)節(jié))之間的相互作用,外部調(diào)控因子(激素、外在因素和營養(yǎng)代謝產(chǎn)物)之間的相互作用以及細(xì)胞內(nèi)的局部相互作用產(chǎn)生[5]。參與脂肪酸沉積的調(diào)控系統(tǒng)主要包括脂肪生成酶基因[如乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACC)、脂蛋白脂酶(lipoprotein lipase,LPL)、脂肪酸結(jié)合蛋白(fatty acid binding protein 4,F(xiàn)ABP4)和硬脂酰輔酶A去飽和酶(stearoyl-CoA desaturase,SCD)]、脂肪酸氧化酶基因[如肉毒堿棕櫚?;D(zhuǎn)移酶1B(carnitine palmitoyltransferase 1B,CPT1B)和肉毒酰O-乙酰轉(zhuǎn)移酶(carnitine O-acetyltransferase,CRAT)]以及轉(zhuǎn)錄調(diào)節(jié)因子PPARs和固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element binding factor, SREBP)。在研究不同品種牛脂肪組織沉積調(diào)控系統(tǒng)比較[6-7]中已經(jīng)發(fā)現(xiàn)了這些基因在脂肪細(xì)胞分化中的作用和表達(dá)模式[6,8-9]。PPARs是屬于核受體超家族的成員,在脂類分解代謝和儲存中起重要作用,目前為止,已經(jīng)鑒定PPARs家族有3種亞型,即PPARα、PPARβ/δ和PPARγ[10-11]。在不同的細(xì)胞中PPARs通過視黃酸受體和類視黃醇X受體配體依賴方式的異源二聚化增加多種基因的表達(dá)[11-15]。其中,PPARγ主要在脂肪組織和巨噬細(xì)胞中表達(dá),與調(diào)節(jié)脂類和糖代謝密切相關(guān),并與控制肥胖及其相關(guān)疾病有關(guān)[10-11]。PPARγ是成脂分化中的主要因素,促進(jìn)前體脂肪細(xì)胞向成熟脂肪細(xì)胞分化和細(xì)胞中脂滴的聚集[16]。Kersten等[17]研究表明,脂肪細(xì)胞中PPARγ的表達(dá)量高,能選擇性地誘導(dǎo)LPL在脂肪組織的表達(dá),調(diào)節(jié)脂肪細(xì)胞的信號轉(zhuǎn)導(dǎo),減緩脂解速度,同時增加甘油三酯(triacylglycerol,TG)的合成。因此,PPARγ在PPARs家族中是動物脂肪分解代謝中起重要作用的轉(zhuǎn)錄因子。
SREBP是1993年從體外培養(yǎng)人的hela細(xì)胞核抽提純化出來,是固醇類和脂肪酸合成中的重要轉(zhuǎn)錄調(diào)節(jié)因子。SREBP有SREBP1a、SREBP1c和SREBP2共3種亞型,它們在哺乳動物脂類合成作用不同,SREBP2是膽固醇生物合成的調(diào)節(jié)因子,SREBP1c主要參與脂肪酸合成,SREBP1a一定程度的參與膽固醇和脂肪酸合成[18-20]。SREBP1c是重要的脂肪形成轉(zhuǎn)錄因子,能直接調(diào)控脂類代謝相關(guān)主要基因的表達(dá)。此外,在成脂分化中SREBP1c有助于PPARγ的表達(dá)和內(nèi)源性PPARγ配體的產(chǎn)生[21-23]。Graugnard等[23]提出,SREBP1c基因的表達(dá)能被營養(yǎng)調(diào)控。大多數(shù)非反芻動物的SREBP1c轉(zhuǎn)錄調(diào)控對胰島素敏感,在碳水化合物過多的情況下會刺激脂肪組織中的脂肪酸合成和TG的沉積[22]。SREBP1c可能與脂肪生成的機(jī)制有關(guān)。尤其是SREBP1c異構(gòu)體主要參與脂肪生成和脂肪酸同化酶的調(diào)節(jié)。有研究指出,脂類飽和度調(diào)控SREBP1c蛋白的轉(zhuǎn)錄和活化[24]。因此,SREBP1c也是反映動物脂肪分解代謝和脂類飽和度的重要指標(biāo)之一。因此,本綜述主要闡述SIRT1如何通過SREBP1c來調(diào)節(jié)脂類代謝及其穩(wěn)態(tài)。
1.2SIRT1對PPARγ的調(diào)節(jié)
人和哺乳動物的脂肪組織分為白色脂肪組織(white adipose tissue,WAT)和棕色脂肪組織(brown adipose tissue,BAT)。其中,WAT是一種重要的調(diào)節(jié)體內(nèi)代謝平衡的組織,也是哺乳動物機(jī)體的主要脂肪儲存庫。然而,WAT的關(guān)鍵作用是可以作為內(nèi)分泌組織,通過分泌激素和細(xì)胞因子,如瘦素、脂聯(lián)素、腫瘤壞死因子α等,影響胰島素敏感性和炎癥。因此,對體內(nèi)代謝平衡有重大的影響[25]。BAT是哺乳動物體內(nèi)非顫栗產(chǎn)熱的主要來源,對維持動物體溫和能量平衡起重要作用。研究表明,CCAAT-增強(qiáng)子結(jié)合蛋白(CCAAT-enhancer binding protein,C/EBP)α在成纖維細(xì)胞中可促進(jìn)成脂分化,在C/EBPα缺失的大鼠成纖維細(xì)胞中PPARγ能啟動成脂分化,但是在沒有PPARγ的情況下,C/EBPα不能啟動成脂分化[26]。因此,PPARγ是參與成脂分化的重要轉(zhuǎn)錄因子。在WAT中PPARγ可促進(jìn)脂肪細(xì)胞分化和脂類合成代謝[25]。在WAT體內(nèi)平衡中發(fā)現(xiàn),SIRT1是PPARγ的抑制劑[2]。Moynihan等[27]研究表明,在脂肪組織中SIRT1與核受體共抑制因子相互作用,負(fù)調(diào)控白色脂肪細(xì)胞中的PPARγ,使脂肪結(jié)合蛋白表達(dá)減少,抑制脂肪細(xì)胞分化,降低脂肪沉積,促進(jìn)脂肪動員。因此,SIRTl在動物脂肪沉積和肌肉發(fā)育中的關(guān)鍵調(diào)控作用與其對PPARγ的調(diào)節(jié)作用有關(guān)。研究發(fā)現(xiàn),SIRT1通過脫乙酰作用能抑制PPARγ在脂肪生成目的基因中的轉(zhuǎn)錄活性[28]。小鼠脂肪組織中敲除SIRT1能促進(jìn)機(jī)體體重的增重效果,是由于提高了機(jī)體的脂肪量,比起脂肪組織未敲除SIRT1的小鼠,脂肪細(xì)胞也較大[29]。這些研究結(jié)果提示小鼠脂肪細(xì)胞敲除SIRT1有抑制胰島素的趨勢。然而,脂肪組織的SIRT1水平下降導(dǎo)致了人類和嚙齒動物的肥胖[30-31]。這可能是通過凋亡蛋白酶依賴機(jī)制,肥胖導(dǎo)致SIRT1裂解從而使SIRT1降解,降低了SIRT1活性。研究也證實,SIRT1在WAT的褐變中起作用,WAT中SIRT1超表達(dá)導(dǎo)致WAT特異性基因下調(diào)和BAT特異性基因上調(diào),而SIRT1的缺乏有相反效果[30]。這可能與SIRT1-依賴脫乙?;饔脤PARγ的調(diào)控作用有關(guān),而PPARγ是通過促進(jìn)轉(zhuǎn)錄輔助調(diào)節(jié)因子PRDM16促使了BAT的生成[32]。此外,有關(guān)人類脂肪組織中SIRT1的過表達(dá)可提高體內(nèi)能量平衡,進(jìn)一步證實了SIRT1對脂肪組織的內(nèi)穩(wěn)態(tài)平衡起關(guān)鍵作用[33]。
然而,決定BAT生理功能的因素有解偶聯(lián)蛋白1(uncoupling protein 1,UCP1)和PPARγ的輔助激活因子(peroxisome proliferator-activated receptor gamma coactivator-1 alpha,PGC-1α)。PGC-1α是誘導(dǎo)棕色脂肪細(xì)胞UCP1表達(dá)的重要激活劑。St-Pierre等[34]研究得出,在寒冷、有氧運動和禁食條件下,交感神經(jīng)興奮誘導(dǎo)大鼠BAT內(nèi)PGC-1α的表達(dá),提高UCP1的表達(dá)量,從而增加大鼠機(jī)體能量消耗。Louet等[35]在培養(yǎng)的小鼠原代肝細(xì)胞中迅速轉(zhuǎn)染PGC-1a,可使肉毒堿棕櫚?;D(zhuǎn)移酶1(CPT1)(脂肪酸β氧化的限速酶)的基因表達(dá)上調(diào),肝臟脂肪酸的β氧化激活。Boutant等[36]研究表明,在BAT中SIRT1的超表達(dá)提高了能量消耗。綜合這些研究結(jié)果可以總結(jié)出:SIRT1通過脫乙酰作用抑制WAT中PPARγ的轉(zhuǎn)錄活性,從而抑制成脂分化,而在BAT中SIRT1使PGC-1α活性提高,從而提高了脂肪氧化,因此,激活SIRT1能阻止脂肪細(xì)胞的脂肪過度積累,具有促進(jìn)脂肪消耗和提高產(chǎn)熱的功能。
1.3SIRT1對SREBP1c的調(diào)節(jié)
SREBP1c轉(zhuǎn)錄因子通過促進(jìn)脂肪生成和膽固醇生成基因的表達(dá)促進(jìn)脂肪的儲存。通過SIRT1,SREBP1c脫乙酰作用呈現(xiàn)蛋白質(zhì)泛素調(diào)節(jié)下降解[32]。因此,SIRT1的激活引起SREBP1c蛋白水平下降,導(dǎo)致SREBP1c在脂肪生成基因的啟動子減少和其表達(dá)水平降低[37-38]。當(dāng)大鼠肝細(xì)胞中可激活SIRT1的能量代謝相關(guān)的代謝物降低時,引起SREBP1發(fā)生脫乙酰作用。相對應(yīng)地,通過藥物激活SIRT1,減少了SREBP1c的乙?;饔?,同時,SREBP1c的目的基因如3-羥基-3甲基戊二酸單酰輔酶A還原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)和脂肪合成酶(fatty acid synthase,F(xiàn)AS)的表達(dá)量減少,由此說明SIRT1對SREBP介導(dǎo)的脂肪生成通路具有拮抗作用[39],SIRT1通過對SREBP1c的負(fù)調(diào)節(jié)作用抑制脂肪生成基因的表達(dá)[39-41]。轉(zhuǎn)基因小鼠模型的研究指出,SIRT1在體內(nèi)具有平衡膽固醇的作用。小鼠肝臟敲除SIRT1后降低了肝臟中參與膽固醇逆向運輸基因的表達(dá)[37],說明肝臟中SIRT1的過度表達(dá)可降低血液膽固醇水平。已經(jīng)證實SIRT1調(diào)節(jié)體內(nèi)膽固醇代謝并調(diào)控膽汁酸受體(farnesoid X receptor,F(xiàn)XR)和肝X受體(liver X receptor,LXR)、LXRα和LXRβ[42-43],此外,SIRT1對FXR的Lys157和Lys217位點進(jìn)行脫乙酰作用[43];下調(diào)肝臟中的SIRT1會提高FXR的乙酰化作用,從而抑制FXR與視黃醇類X受體α異二聚體化[44]。因此,SIRT1在肝臟中的缺失可抑制FXR的相關(guān)轉(zhuǎn)錄程序,導(dǎo)致膽結(jié)石的形成[45]。通過增加SREBP1c活性,LXR是有效的脂質(zhì)合成代謝誘導(dǎo)物[46]。然而,SIRT1能使SREBP1c脫去乙酰基產(chǎn)生蛋白酶體降解[38]。因此,SIRT1的過度表達(dá)可提高膽固醇代謝和防止肝脂肪變性,而肝臟敲除SIRT1促進(jìn)了脂質(zhì)在肝臟堆積。綜上所述,SIRT1通過對SREBP1c的負(fù)調(diào)節(jié)作用,可抑制其下游脂肪代謝基因的表達(dá)從而抑制脂肪生成;通過促進(jìn)LXR活性,有利于體內(nèi)膽固醇的平衡,同時可防止因SREBP1c的脫乙酰作用造成的對脂質(zhì)合成代謝的不利影響。
2SIRT1對脂類代謝相關(guān)的信號通路的調(diào)節(jié)
2.1SIRT1-腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)通路
2.1.1SIRT1-AMPK通路與脂類合成代謝
SIRT1是能量代謝的重要調(diào)節(jié)因子,并參與應(yīng)激反應(yīng)、細(xì)胞生存、線粒體生物合成和細(xì)胞能量代謝以及細(xì)胞氧化還原狀態(tài)等多種細(xì)胞調(diào)節(jié)過程[44-45]。然而,SIRT1被多酚類物質(zhì)如白藜蘆醇激活,Hou等[47]對人類脂肪細(xì)胞的研究顯示,白藜蘆醇激活SIRT1,刺激肝激酶B1(LKB1)和AMPK的磷酸化,從而增加了ACC的磷酸化,抑制了ACC的活性,減少丙二酰輔酶A的產(chǎn)生,進(jìn)一步促進(jìn)了脂肪酸氧化和抑制了脂肪酸合成,導(dǎo)致肝細(xì)胞脂質(zhì)減少。此外,AMPK被多酚類物質(zhì)激活,抑制葡萄糖誘導(dǎo)的FAS表達(dá)量,這有助于減少TG含量,抑制脂肪酸合成。此外,AMPK在能量平衡的調(diào)節(jié)代謝中起重要作用并參與SIRT1的激活[48-49]。SIRT1和AMPK被認(rèn)為是燃燒敏感分子,能調(diào)節(jié)脂類代謝。AMPK被磷酸化激活引起AMP和ATP的比例增加或引起細(xì)胞應(yīng)激,隨后ACC磷酸化[50-51],這抑制了ACC的羧化作用,從而減少了丙二酰輔酶A和脂肪酸的生物合成。這些結(jié)果提示,SIRT1通過磷酸化AMPK,抑制ACC和FAS的活性,減少脂肪的沉積和脂肪酸合成。
2.1.2SIRT1-AMPK通路與脂類分解代謝
脂類代謝包括合成代謝和分解代謝,在動物機(jī)體內(nèi)二者處于穩(wěn)態(tài)平衡。脂類分解是復(fù)雜的過程。TG水解成甘油和游離脂肪酸是通過一系列脂解酶參與完成的。脂解速率與細(xì)胞中脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL)活性成正比,Lass等[52]報道ATGL是脂解限速酶,使TG水解成甘油和游離脂肪酸。ATGL和激素敏感酯酶(hormone-sensitive lipase,HSL)都是參與分解細(xì)胞內(nèi)TG的重要酶。ATGL能夠啟動脂類分解,HSL隨后作用于甘油二酯,兩者合作參與WAT的有效分解。已經(jīng)報道ATGL是SIRT1的下游基因。叉頭框O1(forkhead box O1,F(xiàn)oxO1)是個轉(zhuǎn)錄因子,可被脫磷酸作用/脫乙酰作用調(diào)節(jié),導(dǎo)致其核轉(zhuǎn)位而誘導(dǎo)脂解限速酶如ATGL的轉(zhuǎn)錄[53-54]。SIRT1對脂類代謝的作用是建立在FoxO1調(diào)節(jié)ATGL的表達(dá)的基礎(chǔ)上[55-57]。在培養(yǎng)的3T3-L1小鼠脂肪細(xì)胞中,敲除SIRT1可降低TG的水解作用,這是由于FoxO1的乙?;土姿峄教岣?,導(dǎo)致ATGL表達(dá)減少所致[56]。Picard等[2]研究報道,大鼠3T3-L1穩(wěn)定成纖維細(xì)胞的SIRT1過度表達(dá)時,細(xì)胞內(nèi)脂肪含量降低,而SIRT1的下調(diào)引起TG的增加。研究發(fā)現(xiàn),人類肝癌細(xì)胞(HepG2)中莫納可林K通過SIRT1-AMPK通路的激活,使FoxO1脫磷酸和核轉(zhuǎn)運作用,造成細(xì)胞內(nèi)的脂肪含量降低[58]??梢?,SIRT1-AMPK通路的激活通過對轉(zhuǎn)錄因子FoxO1的脫磷酸作用/脫乙?;饔脕碚{(diào)節(jié)下游基因ATGL的轉(zhuǎn)錄,進(jìn)而對動物脂類分解代謝起重要調(diào)節(jié)作用。
2.1.3SIRT1-AMPK通路與膽固醇合成代謝
SIRT1不僅影響脂肪酸合成和脂類分解,也影響類固醇生成。3-羥基-3甲基戊二酸單酰輔酶A(3-hydroxy-3-methylglutaryl coenzyme A,HMG-CoA)合成酶催化1分子乙酰輔酶A和乙酰乙酰輔酶A縮合成HMG-CoA,然而,HMG-CoA是合成膽固醇和酮體的共同中間產(chǎn)物,它在肝線粒體中裂解成酮體,但在細(xì)胞液中,由HMGR催化,還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)供氫還原轉(zhuǎn)變?yōu)榧琢u戊酸,經(jīng)過一系列酶的催化下進(jìn)一步合成膽固醇。HMGR是膽固醇生物合成的限速酶。據(jù)Henin等[59]報道,AMPK被5-氨基-4-甲酰胺咪唑核糖核苷酸激活,通過激活A(yù)CC和HMGR抑制脂肪酸和膽固醇的生物合成。Bordone等[37]研究表明,轉(zhuǎn)基因小鼠的SIRT1過度表達(dá)使血液和WAT的總膽固醇含量顯著降低。Endo等[60]研究得出,莫納可林K的化學(xué)結(jié)構(gòu)與HMGR類似,是一個強(qiáng)有力的HMGR的競爭性抑制劑。通過對人類肝癌細(xì)胞的研究發(fā)現(xiàn),HMGR的競爭性抑制劑莫納可林K的降脂效果是通過SIRT1-AMPK通路的激活,使FoxO1脫磷酸和核轉(zhuǎn)運作用,造成細(xì)胞內(nèi)的脂肪含量降低[58]??梢姡琒IRT1通過AMPK信號通路調(diào)節(jié)脂類合成與分解代謝相關(guān)的基因表達(dá),降低脂肪的沉積,但是具體確切的機(jī)制有待于進(jìn)一步研究。
2.2SIRT1-哺乳動物雷帕霉素靶蛋白(mTOR)通路
2.2.1mTOR通路與脂類代謝
激素是影響脂類代謝的重要因素,其中胰島素起關(guān)鍵作用。胰島素與細(xì)胞表面上的胰島素受體結(jié)合加強(qiáng)細(xì)胞膜上蛋白激酶B(Akt)的磷酸化[61]。Horton等[62]研究表明,胰島素介導(dǎo)Akt對脂質(zhì)合成作用的調(diào)控是通過大鼠肝細(xì)胞SREBPs轉(zhuǎn)錄因子來實現(xiàn)的。胰島素處理或者持續(xù)的激活A(yù)kt能迅速的誘導(dǎo)U2OS(人骨肉瘤細(xì)胞)細(xì)胞核內(nèi)SREBP1的積聚以及脂肪合成基因的表達(dá)[63]。此外,TSC1-TSC2復(fù)合物是mTORC1上游因子的主要抑制劑,持續(xù)激活A(yù)kt或TSC1和TSC2的任何一個缺失都會激活mTORC1信號,引起SREBP1和SREBP2靶基因的總體表達(dá)量上調(diào),促進(jìn)脂肪合成[64-65]。Düvel等[64]研究指出,mTORC1信號通路促進(jìn)成熟形式的SREBP1在大鼠脂肪細(xì)胞核內(nèi)的積累,并誘導(dǎo)SREBP1的自身表達(dá)和參與固醇和脂肪酸生物合成基因的表達(dá);在探索其分子調(diào)控機(jī)制中發(fā)現(xiàn),在TSC2缺乏的細(xì)胞中mTORC1的下游核糖體S6激酶1(ribosome protein subunit 6 kinase 1,S6K1)促進(jìn)了SREBP1的激活及SREBP1和SREBP2靶基因表達(dá)量,因此mTOR通過SREBP轉(zhuǎn)錄因子調(diào)控脂肪合成。通過藥理學(xué)和遺傳學(xué)的脂肪形成研究中發(fā)現(xiàn),多能干細(xì)胞向成熟脂細(xì)胞分化被mTOR信號通路調(diào)控。C/EBPβ和C/EBPδ是前體脂肪細(xì)胞克隆增生的主要驅(qū)動器,對前體脂肪細(xì)胞成熟至關(guān)重要。雷帕霉素處理前體脂肪細(xì)胞是降低C/EBPβ表達(dá)量從而抑制前體脂肪細(xì)胞的克隆增生,這一過程受到mTOR通路中S6K1的調(diào)控[66]。PPARγ和C/EBPα是調(diào)控前體脂肪細(xì)胞終末分化的主要轉(zhuǎn)錄因子[67]。mTOR信號通路能提高PPARγ的轉(zhuǎn)錄和蛋白質(zhì)水平及轉(zhuǎn)錄活性,但是機(jī)制尚不清楚[68-71]。體外培養(yǎng)大鼠3T3-L1細(xì)胞的研究提示,前體脂肪細(xì)胞終末分化不受mTORC1信號下游S6K1的調(diào)控,而受真核翻譯起始因子4E結(jié)合蛋白(4EBP)的調(diào)控[72-73]。然而,研究表明極度活躍的mTORC1信號通過對胰島素信號的負(fù)反饋效應(yīng)抑制PPARγ活性[74]。因此,mTOR信號通路也調(diào)控脂肪細(xì)胞的成脂分化過程。
Chakrabarti等[75]在大鼠3T3-L1脂肪細(xì)胞中發(fā)現(xiàn),抑制mTORC1通路的活性可增加ATGL的轉(zhuǎn)錄,促進(jìn)脂肪分解,抑制脂肪合成,這與雷帕霉素引起的脂解作用增強(qiáng)相似。HSL在PKA的Ser563位點的磷酸化與HSL的脂解活性增加有關(guān)。HSL的磷酸化抑制與mTORC1的激活和減少脂肪酸的釋放有關(guān)[76]。然而,mTORC1信號通路通過抑制ATGL轉(zhuǎn)錄如何負(fù)向調(diào)控HSL在PKA點上的磷酸化尚未清楚,具體機(jī)制有待于進(jìn)一步研究。與抑制mTORC1相同,細(xì)胞內(nèi)敲除特異性基因會導(dǎo)致HSL在Ser563點上的磷酸化[77]。除脂肪細(xì)胞脂解作用外,mTORC1能控制細(xì)胞外脂肪酶LPL。LPL是血漿內(nèi)存在的水溶性脂肪酶,不僅存在內(nèi)皮細(xì)胞表面,主要存在于肌肉和脂肪組織中。LPL水解TG促進(jìn)循環(huán)中極低密度脂蛋白轉(zhuǎn)變?yōu)橹忻芏戎鞍缀偷兔芏戎鞍祝龠M(jìn)組織脂蛋白的吸收[78]。研究得出小鼠脂肪組織中4EBP1/2的雙敲除引起脂解作用的降低[73],S6K1敲除后呈現(xiàn)出脂解速率提高的趨勢[79]。然而,敲除大鼠的脂肪特異性基因,減少肥胖,但并不表現(xiàn)出顯著的提高脂解作用[69]。可見,脂肪組織或脂肪細(xì)胞中抑制mTORC1通路會上調(diào)ATGL的轉(zhuǎn)錄,或敲除特異性基因?qū)е翲SL的磷酸化,從而促進(jìn)脂類分解作用,減少脂肪的沉積。
2.2.2SIRT1-mTOR通路與脂類代謝
Ras蛋白腦組織同源類似物(ras homolog enriched in brain,Rhe)是能夠直接作用于mTOR的上游調(diào)節(jié)物的一個具有小GTPase活性的蛋白,在哺乳動物細(xì)胞中其發(fā)揮作用的機(jī)理與GTP活性是密切相關(guān)的。Hay等[80]通過哺乳動物細(xì)胞證實,Rheb在狀態(tài)為Rheb-GTP時才具有活性,能夠直接與mTOR結(jié)合對mTOR進(jìn)行正向調(diào)節(jié),而且mTOR上游TSC1-TSC2復(fù)合物可調(diào)節(jié)其活性[81]。Ghosh等[82]通過鼠和人的試驗證實,SIRT1作用于TSC1-TSC2復(fù)合物中的TSC2,TSC2是一種GTPase激活蛋白,是mTOR信號的負(fù)調(diào)節(jié)物,它作用于Rheb-GTP使其變?yōu)?Rheb-GDP而失活。因此,SIRT1可能通過負(fù)調(diào)控mTOR信號通路,進(jìn)而對脂肪代謝進(jìn)行調(diào)控。趙濤濤等[83]通過用白藜蘆醇和煙酰胺處理小鼠的研究結(jié)果表明,激活SIRT1可有效地抑制mTORC1信號通路活性,抑制SIRT1則激活mTORC1信號通路。因此,SIRT1通過作用于mTORC1的上游TSC2負(fù)調(diào)控mTORC1信號通路從而減少脂肪合成,加快脂肪分解,減少脂肪沉積量,但其確切的調(diào)控機(jī)制有待于進(jìn)一步研究。
3小結(jié)
綜上所述,SIRT1通過脫乙酰作用能抑制轉(zhuǎn)錄因子PPARγ和SREBP1c,引起其下游的脂肪生成基因的表達(dá)量下調(diào),從而抑制脂肪細(xì)胞分化,降低脂肪沉積,促進(jìn)脂肪動員。SIRT1通過調(diào)節(jié)脂類代謝相關(guān)的信號通路SIRT1-AMPK和SIRT1-mTOR減少脂肪合成,加快脂肪分解,降低脂肪的沉積量。然而,目前關(guān)于SIRT1對脂類代謝的調(diào)控多數(shù)以人和大鼠等哺乳動物為研究對象,而在豬、禽及反芻動物領(lǐng)域的研究很少,因此,今后應(yīng)深入開展SIRT1對豬、禽和反芻動物脂類代謝的調(diào)節(jié)機(jī)制的研究,為通過飼糧對動物的脂類代謝和肉品質(zhì)進(jìn)行調(diào)控提供理論基礎(chǔ)。
參考文獻(xiàn):
[1]王曉凱,張志成,孫天勝.SIRT1的生理作用及調(diào)控機(jī)制的研究進(jìn)展[J].中華臨床醫(yī)師雜志,2011,5(24):7315-7318.
[2]PICARD F,KURTEV M,CHUNG N,et al.Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ[J].Nature,2004,429(6993):771-776.
[3]MANNEN H.Identification and utilization of genes associated with beef qualities[J].Animal Science Journal,2011,82(1):1-7.
[4]TANIGUCHI M,GUAN L L,ZHANG B,et al.Gene expression patterns of bovine perimuscular pre-adipocytes during adipogenesis[J].Biochemical and Biophysical Research Communications,2008,366(2):346-351.
[5]FERNYHOUGH M E,HELTERLINE D I,VIERCK J L,et al.Dedifferentiation of mature adipocytes to form adipofibroblasts:more than just a possibility[J].Adipocytes,2005,1(1):17-24.
[6]WANG Y H,BYRNE K A,REVERTER A,et al.Transcriptional profiling of skeletal muscle tissue from two breeds of cattle[J].Mammalian Genome,2005,16(3):201-210.
[7]LEHNERT S A,REVERTER A,BYRNE K A,et al.Gene expression studies of developing bovinelongissimusmuscle from two different beef cattle breeds[J].BMC Developmental Biology,2007,7(1):95.
[8]ZHANG Q K,LEE H G,HAN J A,et al.Differentially expressed proteins during fat accumulation in bovine skeletal muscle[J].Meat Science,2010,86(3):814-820.
[9]LEE S H,GONDRO C,VAN DER WERF J,et al.Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle)[J].BMC Genomics,2010,11(1):623.
[10]ANGHEL S I,WAHLI W.Fat poetry:a kingdom for PPARγ[J].Cell Research,2007,17(6):486-511.
[11]CHRISTODOULIDES C,VIDAL-PUIG A.PPARs and adipocyte function[J].Molecular and Cellular Endocrinology,2010,318(1/2):61-68.
[12]WHITE U A,STEPHENS J M.Transcriptional factors that promote formation of white adipose tissue[J].Molecular and Cellular Endocrinology,2010,318(1/2):10-14.
[13]SIERSB?K R,NIELSEN R,MANDRUP S.PPARγ in adipocyte differentiation and metabolism-novel insights from genome-wide studies[J].FEBS Letters,2010,584(15):3242-3249.
[14]TONTONOZ P,SPIEGELMAN B M.Fat and beyond:the diverse biology of PPARγ[J].Annual Review of Biochemistry,2008,77(1):289-312.
[15]SHARMA A M,STAELS B.Review:peroxisome proliferator-activated receptor γ and adipose tissue-understanding obesity-related changes in regulation of lipid and glucose metabolism[J].Journal of Clinical Endocrinology and Metabolism,2007,92(2):386-395.
[16]FARMER S R.Regulation of PPARγ activity during adipogenesis[J].International Journal of Obesity,2005,29:S13-S16.
[17]KERSTEN S,DESVERGNE B,WAHLI W.Roles of PPARs in health and disease[J].Nature,2000,405(6785):421-424.
[18]SHIMANO H.Sterol regulatory element-binding proteins (SREBPs):transcriptional regulators of lipid synthetic genes[J].Progress in Lipid Research,2001,40(6):439-452.
[19]EBERLé D,HEGARTY B,BOSSARD P,et al.SREBP transcription factors:master regulators of lipid homeostasis[J].Biochimie,2004,86(11):839-848.
[20]BERNARD L,LEROUX C,CHILLIARD Y.Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland[J].Advances in Experimental Medicine and Biology,2008,606:67-108.
[21]KIM J B,SPIEGELMAN B M.ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism[J].Genes & Development,1996,10(9):1096-1107.
[22]KIM J B,WRIGHT H M,WRIGHT M,et al.ADD1/SREBP1 activates PPARγ through the production of endogenous ligand[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(8):4333-4337.
[23]GRAUGNARD D E,BERGER L L,FAULKNER D B,et al.High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle[J].British Journal of Nutrition,2010,103(7):953-963.
[24]LEFTEROVA M I,LAZAR M A.New developments in adipogenesis[J].Trends in Endocrinology & Metabolism,2009,20(3):107-114.
[25]PICARD F,GUARENIE L.Molecular links between aging and adipose tissue[J].International Journal of Obesity,2005,29(Suppl.1):S36-S39.
[26]FREYTAG S O,PAIELLI D L,GILBERT J D.Ectopic expression of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells[J].Genes & Development,1994,8(14):1654-1663.
[27]MOYNIHAN K A,IMAI S I.Sirt1 as a key regulator orchestrating the response to caloric restriction[J].Drug Discovery Today,2006,3(l):11-17.
[28]QIANG L,WANG L H,KON N,et al.Brown remodeling of white adipose tissue by Sirt1-dependent deacetylation of PPARγ[J].Cell,2012,150(3):620-632.
[29]CHALKIADAKI A,GUARENTE L.High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction[J].Cell Metabolism,2012,16(2):180-188.
[30]COSTA C D S,HAMMES T O,ROHDEN F,et al.SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis[J].Obesity Surgery,2010,20(5):633-639.
[31]GILLUM M P,KOTAS M E,ERION D M,et al.SIRT1 regulates adipose tissue inflammation[J].Diabetes,2010,60(12):3235-3245.
[32]SEALE P,KAJIMURA S,YANG W L,et al.Transcriptional control of brown fat determination by PRDM16[J].Cell Metabolism,2007,6(1):38-54.
[33]XU C,BAI B,FAN P C,et al.Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice[J].American Journal of Translation Research,2013,5(4):412-426.
[34]ST-PIERRE J,LIN J D,KRAUSS S,et al.Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells[J].Journal of Biological Chemistry,2003,278(29):26597-26603.
[35]LOUET J F,HAYHURST G,GONZALEZ F J,et al.The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB)[J].Journal of Biological Chemistry,2002,277(41):37991-38000.
[36]BOUTANT M,JOFFRAUD M,KULKARNI S S,et al.SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function[J].Molecular Metabolism,2015,4(2):118-131.
[37]BORDONE L,COHEN D,ROBINSON A,et al.SIRT1 transgenic mice show phenotypes resembling calorie restriction[J].Aging Cell,2007,6(6):759-767.
[38]LI X L,ZANG S W,BLANDER G,et al.SIRT1 deacetylates and positively regulates the nuclear receptor LXR[J].Molecular Cell,2007,28(1):91-106.
[39]PONUGOTI B,KIM D H,XIAO Z,et al.SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism[J].Journal of Biological Chemistry,2010,285(44):33959-33970.
[40]RODGERS J T,PUIGSERVER P.Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin1[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(31):12861-12866.
[41]WALKER A K,YANG F J,JIANG K R,et al.Conserved role of SIRT1 or thologs in fasting-dependent in hibition of the lipid/cholesterol regulator or SREBP[J].Genes & Development,2010,24(13):1403-1417.
[42]KEMPER J K,XIAO Z,PONUGOTI B,et al.FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states[J].Cell Metabolism,2009,10(5):392-404.
[43]PURUSHOTHAM A,XU Q,LU J,et al.Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice[J].Molecular and Cellular Biology,2012,32(7):1226-1236.
[44]KALAANY N Y,MANGELSDORF D J.LXRS and FXR:the yin and yang of cholesterol and fat metabolism[J].Annual Review of Physiology,2006,68(1):159-191.
[45]GUARENTE L.Sirtuins,aging,and medicine[J].The New England Journal of Medicine,2011,364(23):2235-2244.
[46]KITADA M,KUME S,TAKEDA-WATANABE A,et al.Sirtuins and renal diseases:relationship with aging and diabetic nephropathy[J].Clinical Science,2013,124(3):153-164.
[47]HOU X Y,XU S Q,MAITLAND-TOOLAN K A,et al.SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase[J].Journal of Biological Chemistry,2008,283(29):20015-20026.
[48]STEINBERG G R,KEMP B E.AMPK in health and disease[J].Physiological Reviews,2009,89(3):1025-1078.
[50]CARLING D,ZAMMIT V A,HARDIE D G.A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J].FEBS Letters,1987,223(2):217-222.
[51]HARDIE D G,CARLING D,CARLSON M.The AMP-activated/SNF1 protein kinase subfamily:metabolic sensors of the eukaryotic cell[J].Annual Review of Biochemistry,1998,67(1):821-855.
[52]LASS A,ZIMMERMANN R,OBERER M,et al.Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores[J].Progress in Lipid Research,2011,50(1):14-27.
[53]CHAKRABARTI P,KANDROR K V.FoxO1 controls insulindependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes[J].Journal of Biological Chemistry,2009,284 (20):13296-13300.
[54]CHENG Z Y,WHITE M F.Targeting Forkhead box O1 from the concept to metabolic diseases:lessons from mouse models[J].Antioxidants & Redox Signaling,2011,14(4):649-661.
[55]LOMB D J,LAURENT G,HAIGIS M C.Sirtuins regulate key aspects of lipid metabolism[J].Biochimica et Biophysica Acta:Proteins and Proteomics,2010,1804(8):1652-1657.
[56]CHAKRABARTI P,ENGLISH T,KARKI S,et al.SIRT1 controls lipolysis in adipocytes via FoxO1-mediated expression of ATGL[J].Journal of Lipid Research,2011,52(9):1693-1701.
[57]CHEN W L,KANG C H,WANG S G,et al.α-lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase[J].Diabetologia,2012,55(6):1824-1835.
[58]HUANG C H,SHIN S M,WU M T,et al.Monacolin K affects lipid metabolism through SIRT1/AMPK pathway in HepG2 cells[J].Archives of Pharmacal Research,2013,36(12):1541-1551.
[59]HENIN N,VINCENT M F,GRUBER H E,et al.Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase[J].FASEB Journal,1995,9(7):541-546.
[60]ENDO A,HASUMI K.Biochemical aspect of HMG CoA reductase inhibitors[J].Advances in Enzyme Regulation,1989,28:53-64.
[61]MANNING B D,CANTLEY L C.AKT/PKB signaling:navigating downstream[J].Cell,2007,129(7):1261-1274.
[62]HORTON J D,GOLDSTEIN J L,BROWN M S.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J].Journal of Clinical Investigation,2002,109(9):1125-1131.
[63]PORSTMANN T,GRIFFITHS B,CHUNG Y L,et al.PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP[J].Oncogene,2005,24(43):6465-6481.
[64]DüVEL K,YECIES J L,MENON S,et al.Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J].Molecular Cell,2010,39(2):171-183.
[65]PORSTMANN T,SANTOS C R,GRIFFITHS B,et al.SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth[J].Cell Metabolism,2008,8(3):224-236.
[66]YEH W C,BIERER B E,MCKNIGHT S L.Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92(24):11086-11090.
[67]ROSEN E D,HSU C H,WANG X,et al.C/EBPα induces adipogenesis through PPARγ:a unified pathway[J].Genes & Development,2002,16(1):22-26.
[68]ZHANG H H,HUANG J X,DüVEL K,et al.Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway[J].PLoS One,2009,4(7):e6189.
[69]POLAK P,CYBULSKI N,FEIGE J N,et al.Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration[J].Cell Metabolism,2008,8(5):399-410.
[70]KIM J E,CHEN J.Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis[J].Diabetes,2004,53(11):2748-2756.
[71]YU W H,CHEN Z G,ZHANG J L,et al.Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells[J].Molecular and Cellular Biochemstry,2008,310(1/2):11-18.
[73]LE BACQUER O,PETROULAKIS E,PAGLIALUNGA S,et al.Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2[J].Journal of Clinical Investigation,2007,117(2):387-396.
[74]LAPLANTE M,HORVAT S,FESTUCCIA W T,et al.DEPTOR cell-autonomously promotes adipogenesis,and its expression is associated with obesity[J].Cell Metabolism,2012,16(2):202-212.
[75]CHAKRABARTI P,ENGLISH T,SHI J,et al.Mammalian target of rapamycin complex 1 suppresses lipolysis stimulates lipogenesis and promotes fat storage[J].Diabetes,2010,59(4):775-781.
[76]SOLIMAN G A,ACOSTA-JAQUEZ H A,FINGAR D C.mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes[J].Lipids,2010,45(12):1089-1100.
[77]KUMAR A,LAWRENCE J C,Jr.,JUNG D Y,et al.Fat cell-specific ablation ofrictorin mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism[J].Diabetes,2010,59(6):1397-1406.
[78]WANG H,ECKEL R H.Lipoprotein lipase:from gene to obesity[J].American Journal of Physiology:Endocrinology and Metabolism,2009,297(2):E271-E288.
[79]UM S H,FRIGERIO F,WATANABE M,et al.Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity[J].Nature,2004,431(7005):200-205.
[80]HAY N,SONENBERG N.Upstream and downstream of mTOR[J].Genes & Development,2004,18(16):1926-1945.
[81]WULLSCHLEGER S,LOEWITH R,HALL M N.TOR signaling in growth and metabolism[J].Cell,2006,124(3):471-484.
[82]GHOSH H S,MCBURNEY M,ROBBINS P D.SIRT1 negatively regulates the mammalian target of rapamycin[J].PLoS One,2010,5(2):e9199.
[83]趙濤濤,趙霞,景旭斌,等.雷帕霉素靶蛋白(mTOR)信號通路參與沉默信息調(diào)節(jié)因子1(Sirt1)抑制小鼠脂肪沉積[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2012,20(4):404-410.
(責(zé)任編輯武海龍)
Regulation of Silent Information Regulator 1 on Lipid Metabolism
WU TiemeiYAN Sumei*Gerelmaa
(College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)
Abstract:Silent information regulator 1 (SIRT1) can inhibit the transcription activity of lipogenic-related genes peroxisome proliferator-activated receptors gamma (PPARγ) and sterol regulatory element binding factor 1 c (SREBP1c) through the deacetylation, resulting in inhibiting anabolism of lipid and promoting catabolism. In addition, SIRT1 reduces lipid anabolism, accelerates lipolysis and reduces fat deposition, which may be associated with regulating the SIRT1-adenosine 5′-monophosphate-activated protein kinase (AMPK) and SIRT1-mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the regulation of SIRT1 on animal lipid metabolism via related transcription factors and signaling pathways, which provides the basis for the further investigation of animal lipid metabolism and improving meat quality.[Chinese Journal of Animal Nutrition, 2016, 28(5):1285-1293]
Key words:silent information regulator 1; lipid metabolism; transcription factors; signaling pathway
doi:10.3969/j.issn.1006-267x.2016.05.001
收稿日期:2015-11-17
基金項目:國家公益性行業(yè)(農(nóng)業(yè))科研專項經(jīng)費(201003061)
作者簡介:吳鐵梅(1988—),女,內(nèi)蒙古通遼人,博士,從事動物營養(yǎng)與飼料領(lǐng)域研究。E-mail: wuyuyan0820@126.com *通信作者:閆素梅,教授,博士生導(dǎo)師,E-mail: yansmimau@163.com
中圖分類號:S811.2
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-267X(2016)05-1285-09
*Corresponding author, professor, E-mail: yansmimau@163.com