任滔,吳國明,丁國良,鄭永新,高屹峰,宋吉
(1-上海交通大學制冷與低溫工程研究所,上海 200240;2-國際銅業(yè)協(xié)會(中國),上海 200020)
基于房間空調器全年性能系數(shù)的室外機翅片設計
任滔*1,吳國明1,丁國良1,鄭永新2,高屹峰2,宋吉2
(1-上海交通大學制冷與低溫工程研究所,上海 200240;2-國際銅業(yè)協(xié)會(中國),上海 200020)
為了提高房間空調器的全年性能系數(shù)(APF),室外機翅片在結霜工況和非結霜工況下的性能均需要提高,傳統(tǒng)的開縫翅片只適用于非結霜工況的傳熱強化。本文提出一種采用鏤空的強化結構,能同時強化結霜工況下和非結霜工況下翅片的傳熱性能。本文通過單片翅片的排水性實驗驗證鏤空區(qū)域和鏤空方向,并通過CFD優(yōu)化鏤空位置和鏤空長度、寬度和間距。排水實驗表明,豎直方向鏤空結構的排水性最好。本文將新型鏤空翅片與熱泵型空調室外機中使用最廣泛的波紋翅片進行比較。在非結霜工況下,優(yōu)化后的鏤空翅片的換熱量比波紋翅片高7.5%;在結霜工況下,優(yōu)化后的鏤空翅片的換熱量比波紋翅片高3.4%。
空調室外機;鏤空翅片;強化傳熱;結霜
越來越多的國家將全年性能系數(shù)(APF)指標替代額定制冷能效比(EER)指標,作為空調器新的性能評價指標[1-2]。APF指標考核的全年運行工況分為非結霜工況和結霜工況兩大類。提高空調器性能的方法主要有改善分配器性能[3-5]和優(yōu)化換熱器翅片結構兩種[6-9]。由于分配器對每個APF測試工況具有相同的影響,無法使得空調器系統(tǒng)匹配達到APF最優(yōu),故本文主要通過優(yōu)化換熱器翅片結構改善空調器APF性能。
非結霜工況要求室外機翅片表面設計凸起或狹縫等局部復雜的結構,來提高翅片換熱性能[10-11]。凸起和狹縫結構包括橋縫和百葉窗。狹縫結構能夠切斷翅片表面的空氣邊界層,使得邊界層在狹縫后緣的翅片表面重新開始發(fā)展,從而減薄邊界層。
2.4 APF性能比較
熱泵型空調器的APF性能仿真采用了一種結合分布參數(shù)模型和分相參數(shù)模型的穩(wěn)態(tài)系統(tǒng)仿真軟件[16-17]。該軟件不僅能夠計算出換熱器的換熱量、能效等參數(shù),而且能夠計算換熱器局部換熱系數(shù)和壓降。
通過系統(tǒng)仿真軟件可以計算得到3種不同室外機翅片的熱泵型空調器的系統(tǒng)性能,包括波紋翅片、條縫翅片和新型鏤空翅片,如圖8所示。
仿真結果表明,使用新型鏤空翅片的空調器APF比波紋翅片的空調器APF高4%,比條縫翅片的空調器APF高2.1%。仿真結果表明,新型鏤空翅片是最佳的室外機翅片類型。
圖8 不同熱泵型空調器的APF性能
1)在結霜工況和非結霜工況下,新型鏤空翅片的換熱系數(shù)均比波紋翅片高。
2)新型鏤空翅片的換熱量比波紋翅片在結霜和非結霜工況分別高7.5%和3.5%。
3)新型鏤空翅片優(yōu)于傳統(tǒng)的波紋翅片,新型鏤空翅片的空調器的全年性能系數(shù)(APF)比波紋翅片的空調器高4%。
[1] MADONNA F, BAZZOCCHI F. Annual performances of reversible air-to-water heat pumps in small residential buildings[J]. Energy and Buildings, 2013, 65: 299-309.
[2] KANG E C, RIEDERER P, YOO S Y, et al. New approach to evaluate the seasonal performance of building integrated geothermal heat pump system[J]. Renewable Energy, 2013, 54: 51-54.
[3] 翁建霆, 張利敏. 制冷用氟利昂液體分配器性能的實驗研究[J]. 制冷技術, 1997, 17(2): 3-6.
[4] 黃曉清, 吳俊鴻, 楊杰, 等. 家用空調機組蒸發(fā)器優(yōu)化設計[J]. 制冷技術, 2013, 33(2): 66-68.
[5] 高揚, 翁曉敏, 丁國良, 等. 全年能效消耗效率指標下的分配器分配特性分析及結構優(yōu)化設計[J]. 制冷技術, 2015, 35(4): 22-27.
[6] 施駿業(yè), 陳曉寧, 陸冰清, 等. 家用空調室外機波紋型翅片管換熱器空氣側傳熱與壓降性能研究[J]. 制冷技術, 2015, 35(6): 13-17.
[7] 王繼穩(wěn). 翅片式換熱器翅片傳熱與壓降特性實驗研究與分析[D]. 北京: 華北電力大學, 2011.
[8] 王厚華, 方趙嵩, 鄭爽英. 圓孔翅片管式制冷換熱器的節(jié)能性能試驗[J]. 西南交通大學學報, 2009, 44(3): 455-460.
[9] 劉建, 魏文建, 丁國良, 等. 翅片管式換熱器換熱與壓降特性的實驗研究進展——實驗研究[J]. 制冷學報, 2003, 24(3): 25-30.
[10] 田麗亭, 何雅玲, 楚攀, 等. 不同排列方式下三角翼波紋翅片管換熱器的換熱性能比較[J]. 動力工程, 2009, 29(1): 78-83.
[11] WEBB R L, KIM N H. Principle of enhanced heat transfer[M]. 2ndedition. Boca Raton, USA: Taylor Francis, 2005: 673-695.
[12] YE H Y, LEE K S. Performance prediction of a fin-and-tube heat exchanger considering air-flow reduction due to the frost accumulation[J]. International Journal of Heat and Mass Transfer, 2013, 67: 225-233.
[13] PARK J S, KIM D R, LEE K S. Frosting behaviors and thermal performance of louvered fins with unequal louver pitch[J]. International Journal of Heat and Mass Transfer, 2016, 95: 499-505.
[14] 黃東, 劉小玉, 王彥魯. 翅片類型對熱泵空調結霜特性的影響[J]. 制冷學報, 2012, 33(2): 12-17.
[15] LENIC K, TRP A, FRANKOVIC B. Transient two-dimensional model of frost formation on a fin-and-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2009, 52(1): 22-32.
[16] HWANG J, CHO K. Numerical prediction of frost properties and performance of fin-tube heat exchanger with plain fin under frosting[J]. International Journal of Refrigeration, 2014, 46: 59-68.
[17] SUN H R, REN T, DING G L, et al. A general steady state mathematical model for multi-unit air conditioner system based on graph theory[C]. The 24th IIR International Congress of Refrigeration (ICR), Yokohama, Japan, 2015.
Fin Design for Outdoor Unit based on Annual Performance Factor of Room Air Conditioner
REN Tao*1, WU Guo-ming1, DING Guo-liang1, ZHENG Yong-xin2, GAO Yi-feng2, SONG Ji2
(1-Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China; 2-International Copper Association Shanghai Office, Shanghai 200020, China)
To achieve high performance of annual performance factor (APF) of room air conditioner, it requires high heat transfer performance of outdoor unit fin under both frost and non-frost conditions, but traditional slit and louver fins only work well under non-frost conditions. A perforated fin to enhance heat transfer under both frost and non-frost working conditions was presented. In this paper, a drainage experiment for single piece of fin was carried out to figure out the best perforated zone and direction firstly; and then a CFD based optimization was processed to obtain perforated position, perforated length, width and pitch. The drainage experiment shows that the short vertical rectangle perforated multiple-hole has best performance. The designed fin was compared with the wavy fin, which is the most widely used in outdoor unit of heat pump air conditioner. The simulations result shows that the capacity of perforated fin is 7.5% higher than that of wavy fin under non-frosting condition and 3.4% higher than that of wavy fin under frosting condition.
Outdoor unit of air conditioner; Perforated fin; Enhanced heat transfer; Frost
10.3969/j.issn.2095-4468.2016.06.101
*任滔(1985-),男,博士后。研究方向:換熱器仿真和設計。聯(lián)系地址:上海市閔行區(qū)東川路800號機械與動力工程學院C樓263室。郵編:200240。聯(lián)系電話:13764148238。E-mail:Tren@sjtu.edu.cn。