譚建波,楊 帥,李祎超
(1.河北科技大學(xué)材料科學(xué)與工程學(xué)院,河北石家莊 050018;2.河北省材料近凈成形技術(shù)重點(diǎn)實(shí)驗(yàn)室,河北石家莊 050018)
?
工藝參數(shù)對半固態(tài)流變鑄-鍛6061合金成形性的影響
譚建波1,2,楊帥1,李祎超1
(1.河北科技大學(xué)材料科學(xué)與工程學(xué)院,河北石家莊050018;2.河北省材料近凈成形技術(shù)重點(diǎn)實(shí)驗(yàn)室,河北石家莊 050018)
摘要:采用分析軟件測定6061合金冷卻曲線,用手工攪拌法制備半固態(tài)6061合金,制備不同溫度下的水淬試樣,測試了不同溫度下的初生固相率。利用H1F100型伺服驅(qū)動壓力機(jī)及杯型實(shí)驗(yàn)?zāi)>?,進(jìn)行半固態(tài)6061合金流變鑄-鍛成形,研究了合金溫度、成形壓力、上型溫度、保持時間等工藝參數(shù)對半固態(tài)6061合金成形性的影響。結(jié)果表明:在一套模具內(nèi)實(shí)現(xiàn)鑄造和鍛造是可行的,合金溫度以及上型溫度越高,制件的成形性越好。本實(shí)驗(yàn)條件下,當(dāng)半固態(tài)合金溫度為642~645 ℃、上型預(yù)熱溫度為200~300 ℃時,隨著保持時間的增加,半固態(tài)6061合金鑄-鍛成形試樣容易產(chǎn)生冷隔等鑄造缺陷。
關(guān)鍵詞:金屬材料;流變鑄-鍛;6061合金;工藝參數(shù);成形性
E-mail:tanjian1998@163.com
譚建波,楊帥,李祎超.工藝參數(shù)對半固態(tài)流變鑄-鍛6061合金成形性的影響[J].河北科技大學(xué)學(xué)報(bào),2016,37(1):65-69.
隨著交通運(yùn)輸業(yè)、武器裝備業(yè)面向現(xiàn)代化、高速化方向的發(fā)展,以及世界各國對環(huán)境保護(hù)的重視程度越來越高,裝備或產(chǎn)品的輕量化要求日趨強(qiáng)烈,尤其是對輕量化程度要求高的航天器、飛機(jī)、汽車、高速列車、坦克、火炮以及機(jī)械設(shè)備等重要受力部件和結(jié)構(gòu)件,近幾年來大量使用鋁合金鍛件和模鍛件以代替原來的鋼結(jié)構(gòu)件[1],如飛機(jī)的一些結(jié)構(gòu)件、汽車(特別是重型汽車和大中型客車)輪轂和底座大梁、坦克的負(fù)重輪及炮臺機(jī)架等。而傳統(tǒng)的模鍛技術(shù)、鑄鍛一體化技術(shù)以及液態(tài)鑄鍛雙控成形技術(shù)已不能完全滿足這些鋁合金關(guān)鍵零部件的制造需求和使用性能[2-3]。
半固態(tài)成形技術(shù)吸收了鑄造和鍛造的優(yōu)點(diǎn),被譽(yù)為“21世紀(jì)新的加工技術(shù)”[4-7]。但研究發(fā)現(xiàn),許多合金在半固態(tài)鑄造或鍛造過程中出現(xiàn)了液相偏析,有學(xué)者使用建模和定量分析研究了半固態(tài)成形過程中的典型偏析現(xiàn)象[8-20],但至今沒有找到有效的解決辦法。本文采用半固態(tài)流變鑄-鍛成形,在一套模具內(nèi)完成半固態(tài)鑄造成形和半固態(tài)鍛造成形,研究工藝參數(shù)對半固態(tài)流變鑄-鍛成形性的影響,探索半固態(tài)流變鑄-鍛的成形規(guī)律,旨在為以后進(jìn)一步解決液相偏析現(xiàn)象提供參考。
1實(shí)驗(yàn)材料和方法
實(shí)驗(yàn)所用材料為棒材6061合金,主要成分為0.4%~0.8%(質(zhì)量分?jǐn)?shù),下同)Si,0.15%~0.4%Cu,0.8%~1.2%Mg,余量為Al。實(shí)際測得合金的液相線為652 ℃,固相線為565 ℃,6061合金冷卻曲線如圖1所示。
圖1 6061合金冷卻曲線Fig.1 Cooling curve of 6061 alloy
將6061合金棒材上切割一定尺寸的坯料,放入金屬容器中,采用高頻設(shè)備進(jìn)行加熱熔化至一定溫度后,用捆有熱電偶的細(xì)鐵棍對金屬液進(jìn)行攪拌,在648,645,642,635 ℃時取出材料進(jìn)行水淬,觀察合金組織,如圖2所示。經(jīng)過分析,不同溫度下的初生固相率如下:a)648 ℃,26%;b)645 ℃,38%;c)642 ℃,41%;d)635 ℃,55%。
圖2 不同溫度下的半固態(tài)合金組織Fig.2 Structures of semi-solid alloy under different temperatures
將6061合金棒材切割后放入實(shí)驗(yàn)?zāi)>叩南滦椭?如圖3所示,下型外徑為40 mm、內(nèi)徑為32 mm、高60 mm,上型下部Φ22 mm,上部Φ32 mm),采用高頻加熱裝置將切割的材料加熱到720 ℃左右冷卻,冷卻過程中用捆有熱電偶的鋼棒進(jìn)行攪拌,到設(shè)定溫度后,放入成形設(shè)備中進(jìn)行成形。成形設(shè)備為伺服驅(qū)動壓力機(jī)H1F100,成形試樣為杯型,如圖4所示。半固態(tài)鑄-鍛成形時,上型向下移動,其移動軌跡如圖5所示,即上型向下移動到預(yù)設(shè)位置后,上型保持位置不變,此階段成形壓力較小,成形壓力充滿型腔即可,此階段為半固態(tài)流變鑄造階段。保持一定時間后,半固態(tài)合金溫度降低,固相分?jǐn)?shù)增加,然后上型繼續(xù)向下移動,即在高壓下進(jìn)行凝固、塑性變形,此階段為半固態(tài)鍛造階段。半固態(tài)鑄造階段,上型下行速度為30 mm/s,下型預(yù)熱溫度為350 ℃,其他半固態(tài)流變鑄-鍛成形參數(shù)見表1。
圖3 實(shí)驗(yàn)?zāi)>逨ig.3 Experimental mold
圖4 試樣斷面Fig.4 Sample section
圖5 上型移動軌跡Fig.5 Example of a mechanical servo press motion
編號合金溫度/℃最大壓力/MPa上型預(yù)熱溫度/℃保持時間/s164010525026451052503640105250464010520005640105300066401054000764213250864210525096431053002106431053004
2結(jié)果與分析
圖6為溫度對6061合金成形性的影響。圖6中編號1試樣成形合金溫度為640 ℃,試樣中間部位出現(xiàn)了澆不足缺陷。編號2試樣成形合金溫度為645 ℃,試樣基本完好,說明在上型溫度為室溫時,成形合金溫度對試樣的成形性影響較大。這是因?yàn)樵谄渌麉?shù)相同的情況下,合金溫度的高低決定成形合金中的初生固相率的多少,初生固相率和溫度之間的函數(shù)關(guān)系如式(1)[21]所示。
圖6 合金溫度對6061合金成形性的影響Fig.6 Effects of alloy temperature on formability of 6061 alloy
(1)
式中:fs為固相率;T為合金溫度,K;Tl為合金的液相線溫度,K;Tm為純?nèi)軇┑娜埸c(diǎn)溫度,K; k0為溶質(zhì)平衡分配系數(shù);α為無量綱的溶質(zhì)擴(kuò)散因子。合金溫度越高,初生固相率越少,越接近于液態(tài)成形。因此,溫度高有利于試樣成形。
圖7為成形合金溫度640 ℃,上型溫度分別為室溫和200,300,400 ℃時成形的試樣。試樣編號分別為3,4,5,6。由圖7可以看出:編號3試樣頂部未充滿,試樣中間存在澆不足和冷隔缺陷;編號4試樣基本充滿,但頂部存在冷隔現(xiàn)象;編號5和編號6試樣輪廓清晰、完好。這說明上型預(yù)熱溫度對試樣的成形性有較大影響。上型溫度越高,合金冷卻越慢,越有利于半固態(tài)合金的充型。但上型溫度過高,制件冷卻速度會過慢,容易產(chǎn)生晶粒粗大,造成制件性能下降。
圖7 上型溫度對6061合金成形性的影響Fig.7 Effects of upper die temperature on formability of 6061 alloy
圖8為成形壓力對6061合金成形性的影響。編號7試樣成形壓力較小,試樣未充滿,內(nèi)部缺陷較多。隨著壓力的增大,試樣基本充滿,但由于上型溫度為室溫,成形合金溫度為642 ℃,故試樣上部也有鑄造缺陷。
圖8 成形壓力對6061合金成形性的影響Fig.8 Effects of forming pressure on formability of 6061 alloy
圖9為保持時間對6061合金成形性的影響。圖9 a)為保持時間為2 s時成形的試樣,圖9 b)為保持時間為4 s時成形的試樣。從外觀上看,2個試樣都已充滿,但切開試樣,觀察內(nèi)表面,發(fā)現(xiàn)2個試樣都有缺陷,存在冷隔現(xiàn)象。
圖9 保持時間對6061合金成形性的影響Fig.9 Effects of holding time on formability of 6061 alloy
編號9、編號10和編號5試樣相比,成形時上型溫度和比壓相同,分別為300 ℃和105 MPa,且編號5試樣成形合金溫度較低(640 ℃),但編號5試樣無論從外觀、還是內(nèi)表面,都沒有缺陷。說明保持時間對合金的成形性影響較大。保持時間越長,合金的成形性就越差,這與一般實(shí)驗(yàn)規(guī)律相符。這是因?yàn)殡S著保持時間的增加,半固態(tài)合金在模具內(nèi)的時間越長,由于這時試件還沒有完全成型,合金冷卻、凝固收縮得不到補(bǔ)縮時,就容易產(chǎn)生縮松、縮孔等缺陷;保持時間越長,試件也容易產(chǎn)生澆不足等缺陷。
3結(jié)論
1) 在一套模具內(nèi)實(shí)現(xiàn)鑄造和鍛造是可行的。
2) 合金溫度以及上型溫度越高,制件的成形性越好。
3) 本實(shí)驗(yàn)條件下,當(dāng)半固態(tài)合金溫度為642~645 ℃,上型預(yù)熱溫度為200~300 ℃時,隨著保持時間的增加,半固態(tài)6061合金鑄-鍛成形試樣越容易產(chǎn)生冷隔等鑄造缺陷。
參考文獻(xiàn)/References:
[1]劉靜安. 鋁合金鍛壓生產(chǎn)現(xiàn)狀及鍛件的應(yīng)用前景分析[J]. 輕合金加工技術(shù), 2005,33(6):1-5.
LIU Jingan. Application foreground of forgings and states of aluminium alloy forging production[J]. Light Alloy Fabrication Technology, 2005,33(6):1-5.
[2]張長春, 孔維一, 胡凌云. 鑄鍛聯(lián)合工藝生產(chǎn)農(nóng)機(jī)復(fù)雜鍛件的應(yīng)用研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 1996,27(2):128-132.
ZHANG Changchun, KONG Weiyi, HU Lingyun. The research on the produced complex forging of agricultural machinery with cast- forging technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 1996,27(2):128-132.
[3]李遠(yuǎn)發(fā), 蘇平線. 液態(tài)壓鑄鍛造雙控成形技術(shù)研究[J]. 特種鑄造及有色合金, 2006,26(9):568-571.
LI Yuanfa, SU Pingxian. Double-control formation technology of liquid-squee-zing-forging[J]. Special Casting & Nonferrous Alloys, 2006,26(9):568-571.
[4]張俊杰. 半固態(tài)鋁合金流變壓鑄充型及凝固過程數(shù)值模擬[D]. 石家莊: 河北科技大學(xué),2012.
ZHANG Junjie. The Numerical Simulation of Rheodiecasting Process of Filling and Solidification of Semisolid Aluminum Alloy[D].Shijiazhuang: Hebei University of Science and Technology, 2012.
[5]ZHOU Bing, KANG Yonglin, ZHU Guoming,et al. Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation[J]. Transactions of Nonferrous Metals Society of China, 2014,24(4) :1109-1116.
[6]譚建波, 劉冉, 郝躍光. 充型速度對半固態(tài)AlSi9Mg組織及性能的影響[J]. 河北科技大學(xué)學(xué)報(bào), 2011,32(2):173-176.
TAN Jianbo, LIU Ran, HAO Yueguang. Influence of filling velocity on semi-solid microstructures and properties of AlSi9Mg alloy[J]. Journal of Hebei University of Science and Technology, 2011,32(2):173-176.
[7]譚建波, 李增民, 李立新, 等. 澆注長度對流變壓鑄AlSi9Mg組織及性能的影響[J]. 河北科技大學(xué)學(xué)報(bào), 2010,31(6):568-571.
TAN Jianbo, LI Zengmin, LI Lixin, et al. Influence of pouring length on rheo-die casting microstructures and properties of AlSi9Mg[J]. Journal of Hebei University of Science and Technology, 2010,31(6):568-571.
[8]NOLL T,FRIEDRICH B,HUFSCHMIDT M.Evaluation and modelling of chemical segregation effects for thixoforming processing[J].Adv Eng Mater,2003,5(3):156-160.
[9]KANG C G,JUNGIALS H K.A study on solutions for avoiding liquid segregation phenomena in thixoforming process:Constitutive modelling and finite element method simulations for die design[J].Metall Mater Trans B,2001,32(1):119-127.
[10]HUFSCHMIDT M,MODIGELL M,PETERA J.Modelling and simulation of forming processes of metallic suspensions under non-isothermal conditions[J].Journal of Non Newtonian Fluid Mechanics,2006,134(1/2/3):16-26.
[11]SEO P K,KIM D U,KANG C G.The effect of the gate shape on the microstructural characteristic of the grain size of Al-Si alloy in the semi-solid die casting process[J].Mater Sci Eng A,2007, 445/446:20-30.
[12]M?LLER H, CURLE U A, MASUKU E P. Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201[J].Transactions of Nonferrous Metals Society of China,2010,20(3):847-851.
[13]GOVENDER G, M?LLER H. Evaluation of surface chemical segregation of semi-solid metal cast aluminium alloy A356[J].Solid State Phenomena,2008,141/142/143:433-438.
[14]LIU D, ATKINSON H V, KAPRANOS P, et al. Effect of heat treatment on structure and properties of thixoformed wrought alloy[C]//Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites.Tokyo:[s.n.],2002:435-437.
[15]KANG C G, LEE S M.The effect of forging pressure on liquid segregation during direct rheoforging process of wrought aluminium alloys fabricated by electromagnetic stirring[J].Journal of Engineering Manufacture,2008,222(12):1673-1684.
[16]VIEIRA E A, FERRANTE M. Prediction of rheological behaviour and segregation susceptibility of semi-solid aluminium-silicon alloys by a simple back extrusion test[J].Acta Mater,2005, 53(20):5379-5386.
[17]YOSHIDA C, MORITAKA M, SHINYA S, et al. Semisolid forging of aluminum alloys[C]//Proceedings of the 2nd International Conference on Semi-Solid Processing of Alloys and Composites.New York:[s.n.],1992:274-280.
[18]LOUE W R, SUERY M, QUERBES J L. Microstructure and rheology of partially remelted A1Si-alloys[C]//Proceedings of the 2nd International Conference on Semi Solid Processing of Alloys and Composites.New York:[s.n.],1992:534-549.
[19]CHO W G, KANG C G.Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys[J].J Mater Process Technol,2000,105(3): 269-277.
[20]譚建波,王子超,王東旭.杯形件半固態(tài)模鍛充型過程模擬及實(shí)驗(yàn)驗(yàn)證[J].河北科技大學(xué)學(xué)報(bào),2015,36(3):313-318.
TAN Jianbo,WANG Zichao,WANG Dongxu.Scmulation and experimental verification of the filling process of semi-solid die forging for cup shell[J].Journal of Hebei University of Science and Technology,2015,36(3):313-318.
[21]胡漢起.金屬凝固原理[M].北京:機(jī)械工業(yè)出版社,2000.
TAN Jianbo,YANG Shuai,LI Yichao.Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy[J].Journal of Hebei University of Science and Technology,2016,37(1):65-69.
Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy
TAN Jianbo1,2, YANG Shuai1, LI Yichao1
(1.School of Material Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 2.Hebei Key Laboratory of Material Near-net Forming Technology, Shijiazhuang, Hebei 050018, China)
Abstract:The 6061 alloy cooling curve is determined by analysis software, and the 6061 semi-solid alloy is prepared by manual paddling process. The primary solid fraction is tested through prepared water quenched samples under different temperature. With H1F100 type servo press and cup type test mold, the forming of the 6061 semi-solid alloy rheological casting-forging is made. The influence of alloy temperature, forming pressure, upper mould temperature and holding time on the formability of 6061 alloy is researched. The results show that within the same set of mold completing casting and forging of the alloy is feasible. Along with the increase of the alloy temperature and the upper mould temperature, the formability of finished products becomes better. Under this experimentation, when the temperature of the semi-solid alloy is amongst 642 ℃ to 645 ℃ and the upper mould preheating temperature is amongst 200 ℃ to 300 ℃, casting defects such as cold insulation will form in the casting-forging sample of semi-solid 6061 alloy with the prolongation of holding time.
Keywords:metal material;rheological casting-forging; 6061 alloy; process parameters; formability
作者簡介:譚建波(1964—),男,河北定州人,教授,博士,主要從事半固態(tài)成形技術(shù)與理論方面的研究。
基金項(xiàng)目:河北省自然科學(xué)基金(E2014208087);河北省引進(jìn)留學(xué)人員資助項(xiàng)目(C201400515)
收稿日期:2014-12-06;修回日期:2015-04-31;責(zé)任編輯:張士瑩
中圖分類號:TG146.4
文獻(xiàn)標(biāo)志碼:A
doi:10.7535/hbkd.2016yx01011
文章編號:1008-1542(2016)01-0065-05