郭黎利 高飛 孫志國(guó)
(哈爾濱工程大學(xué) 信息與通信工程學(xué)院, 黑龍江 哈爾濱 150001)
?
基于局部軟決策的分布式檢測(cè)算法*
郭黎利高飛?孫志國(guó)
(哈爾濱工程大學(xué) 信息與通信工程學(xué)院, 黑龍江 哈爾濱 150001)
摘要:為在保證一定檢測(cè)性能的前提下有效地降低所需傳輸?shù)臄?shù)據(jù)量,文中提出了一種基于局部軟決策的分布式檢測(cè)算法,推導(dǎo)并構(gòu)造了基于局部軟決策分布式檢測(cè)的優(yōu)化問(wèn)題,求解得到使系統(tǒng)檢測(cè)性能達(dá)到最優(yōu)的局部軟決策方案;將文中方案與均勻量化方案、未量化方案進(jìn)行對(duì)比,分析了在理想/非理想信道條件下檢測(cè)性能的優(yōu)劣.實(shí)驗(yàn)結(jié)果表明:文中提出的算法性能優(yōu)于基于均勻量化的分布式檢測(cè)算法;當(dāng)量化深度為3時(shí),系統(tǒng)的檢測(cè)性能十分接近未量化方案的檢測(cè)性能.
關(guān)鍵詞:無(wú)線傳感器網(wǎng)絡(luò);分布式檢測(cè);軟決策;廣義似然比檢驗(yàn)
在無(wú)線傳感器網(wǎng)絡(luò)(WSN)的分布式檢測(cè)(DD)[1- 4]中,由于傳輸網(wǎng)絡(luò)對(duì)發(fā)送功率和傳輸帶寬的限制[5],各傳感器節(jié)點(diǎn)需將感知到的原始信息量化后才傳送至融合中心(FC);FC再根據(jù)某種融合準(zhǔn)則對(duì)待檢測(cè)信號(hào)做出全局判決.從傳感器節(jié)點(diǎn)輸出的判決結(jié)果來(lái)看,DD系統(tǒng)可以分為硬判決融合系統(tǒng)和軟判決融合系統(tǒng).硬判決[6-7]是向FC傳輸一位二進(jìn)制數(shù)作為判決結(jié)果,而軟決策[8- 9]是每個(gè)傳感器向FC傳輸關(guān)于觀測(cè)數(shù)據(jù)的多位量化度量.
學(xué)術(shù)界對(duì)受限的分布式檢測(cè)領(lǐng)域已進(jìn)行大量的研究.Yang等[10]提出了一種固定量化閾值的硬判決分布式檢測(cè)方案,極大地減少傳輸數(shù)據(jù)量,但系統(tǒng)檢測(cè)性能大幅下降.Fang等[11]利用廣義似然比(GLRT)檢驗(yàn)作為融合準(zhǔn)則,提出了1-bit最優(yōu)量化方法,在保證一定檢測(cè)性能的前提下降低了所需傳輸?shù)男畔⒘?所得結(jié)果與1-bit均勻量化器一致.Ciuonzo等[12]提出了1-bit Rao檢測(cè)方法,其運(yùn)算效率比1-bit的GLRT檢測(cè)方法高,但原始信息損失過(guò)多,性能上與未量化方案相比損失較大.近年來(lái),基于軟決策的分布式檢測(cè)已有相關(guān)研究.Niu等[13]研究了基于軟決策GLRT融合準(zhǔn)則的目標(biāo)檢測(cè)與定位,其系統(tǒng)性能比基于直觀的計(jì)數(shù)融合準(zhǔn)則高,但未考慮量化閾值的選取以及差錯(cuò)信道的影響.Aziz[14]在每個(gè)傳感器節(jié)點(diǎn)處引入了多比特量化器,有效地提高了系統(tǒng)性能,但其假設(shè)傳感器節(jié)點(diǎn)對(duì)觀測(cè)信息做均勻量化處理,故不是最優(yōu)的量化方案.
根據(jù)上述分析,為了提高分布式檢測(cè)系統(tǒng)的性能,文中在傳感器節(jié)點(diǎn)處采用文獻(xiàn)[8,14]中的多比特量化器結(jié)構(gòu),將文獻(xiàn)[11]中系統(tǒng)漸進(jìn)性能的思想作為量化閾值優(yōu)化的準(zhǔn)則,提出了一種基于局部軟決策的最優(yōu)分布式檢測(cè)算法,重點(diǎn)對(duì)優(yōu)化問(wèn)題的構(gòu)造及局部最優(yōu)量化閾值的選取進(jìn)行研究,最后通過(guò)仿真實(shí)驗(yàn)驗(yàn)證文中算法的有效性.
1系統(tǒng)模型
相較于傳統(tǒng)的集中式檢測(cè)結(jié)構(gòu),文中采用經(jīng)典的分布式檢測(cè)并行結(jié)構(gòu),如圖1所示.假設(shè)地理上分散的N個(gè)傳感器節(jié)點(diǎn)和一個(gè)FC通過(guò)協(xié)同的方式來(lái)檢測(cè)一個(gè)目標(biāo)參數(shù)是否存在.由于網(wǎng)絡(luò)中存在帶寬以及功率的限制,每個(gè)傳感器節(jié)點(diǎn)需要先對(duì)觀測(cè)到的數(shù)據(jù)進(jìn)行一定的預(yù)處理(例如量化)來(lái)降低所需傳輸?shù)臄?shù)據(jù)量.假設(shè)第n個(gè)傳感器節(jié)點(diǎn)處的q比特量化器表示為Qn,q(q∈Z+).每個(gè)傳感器節(jié)點(diǎn)將壓縮后的量化信息發(fā)送至FC,最后由FC根據(jù)接收到的數(shù)據(jù)做出全局判決.
每個(gè)傳感器節(jié)點(diǎn)在有噪聲污染的環(huán)境下對(duì)未知參數(shù)θ進(jìn)行觀測(cè),可以建模為一個(gè)經(jīng)典二元假設(shè)檢驗(yàn)問(wèn)題[15]:
(1)
圖1 基于軟決策的分布式檢測(cè)系統(tǒng)框圖Fig.1 Block diagram of distributed detection system based on soft decision
圖2 傳感器觀測(cè)空間劃分Fig.2 Division of the observation space at a sensor
第n個(gè)傳感器節(jié)點(diǎn)處的q比特量化器輸出數(shù)據(jù)dn可以表示為
dn=Qn,q(xn)=bn,i
(2)
(3)
假設(shè)各傳感器節(jié)點(diǎn)與FC之間的差錯(cuò)信道相互獨(dú)立,則每個(gè)信道模型可構(gòu)造為一個(gè)基于二元對(duì)稱信道(BSC)的多元差錯(cuò)信道,其中錯(cuò)誤轉(zhuǎn)移概率為Pe,正確接收0或1的概率為1-Pe.q比特信息中每比特可獨(dú)立地通過(guò)差錯(cuò)信道傳輸.根據(jù)BSC概率轉(zhuǎn)移的特點(diǎn),當(dāng)差錯(cuò)信道輸入為dn=bn,j(1≤j≤2q)時(shí),q比特多元差錯(cuò)信道輸出如圖3所示.
圖3 第n個(gè)傳感器節(jié)點(diǎn)與融合中心之間的差錯(cuò)信道Fig.3 Distortion channel between the nth sensor node and FC
由于差錯(cuò)信道的影響,FC處的接收信號(hào)yn可能是二進(jìn)制碼字集中的任意一個(gè).因此,q比特信息bn,j通過(guò)差錯(cuò)信道突變?yōu)閎n,i的條件概率可表示為
(4)
式中,Dn,i,j為q比特信息bn,j和bn,i之間的漢明距離,其定義為
(5)
I(·)為指示函數(shù),
(6)
漢明距離Dn,i,j表示傳輸碼字bn,i與接收碼字bn,j之間錯(cuò)誤接收的比特?cái)?shù).在備選假設(shè)H1下,通過(guò)差錯(cuò)信道后到達(dá)FC處的接收信息yn的概率質(zhì)量函數(shù)(PMF)為
(7)
FC根據(jù)接收到的局部判決,采用GLRT[16]融合準(zhǔn)則并利用未知參數(shù)的最大似然估計(jì)(MLE)來(lái)代替未知參數(shù).在零假設(shè)H0下,沒(méi)有未知參數(shù).若滿足如下條件:
(8)
(9)
(10)
2分布式檢測(cè)優(yōu)化問(wèn)題
根據(jù)GLRT在漸進(jìn)(N→)情況下的理論[17]可知,修正的GLRT檢測(cè)統(tǒng)計(jì)量2lnTq(Y)近似地服從
(11)
(12)
式中:θ0=0和θ1=θ分別表示零假設(shè)H0和備擇假設(shè)H1下的待檢測(cè)信號(hào);FI(·)表示費(fèi)舍爾信息(FI),通過(guò)對(duì)Y的似然函數(shù)求二階導(dǎo)數(shù)得到,即
(13)
(14)
pωn(·)表示噪聲ωn的概率密度函數(shù)(PDF).
(15)
其中,
(16)
(17)
3實(shí)驗(yàn)結(jié)果與分析
式(15)是一個(gè)非線性、非凸函數(shù)的優(yōu)化問(wèn)題.傳統(tǒng)的優(yōu)化方法(梯度搜索法等)由于自身的特點(diǎn)可能會(huì)在不解析點(diǎn)停止搜索或者在搜索過(guò)程中容易陷入局部最優(yōu)解而無(wú)法取得全局最優(yōu)解.為此,文中運(yùn)用粒子群優(yōu)化算法(PSOA)對(duì)式(15)進(jìn)行求解.粒子群優(yōu)化算法具有全局優(yōu)化能力和隱含并行性優(yōu)點(diǎn),故適用于大規(guī)模復(fù)雜優(yōu)化問(wèn)題的求解.具體算法這里不再贅述.
選取未量化方案[10]和均勻量化方案[13]與文中提出的檢測(cè)算法進(jìn)行性能對(duì)比.未量化方案由于無(wú)信息損失,故將其作為檢測(cè)性能的上限.均勻量化結(jié)構(gòu)即ADC動(dòng)態(tài)輸入范圍被等間隔地劃分為2q份(仿真中取q=1,2,3).對(duì)均勻量化而言,待檢測(cè)信號(hào)θ未知,動(dòng)態(tài)范圍很難確定.然而,接收信號(hào)幅度歸一化后落在置信區(qū)間[-5,5]內(nèi)的置信水平近似為100%.因此,為了便于討論分析,在仿真中信號(hào)動(dòng)態(tài)范圍選擇為[-5,5].相應(yīng)地,2-bit和3-bit均勻量化的閾值分別為{-2.5,0,2.5},{-3.75,-2.5,-1.25,0,1.25,2.5,3.75}.
根據(jù)式(11)所示的GLRT檢測(cè)器的漸進(jìn)統(tǒng)計(jì)性能,可得到虛警概率為
(18)
檢測(cè)概率為
(19)
表1不同量化方案下的最優(yōu)局部軟決策閾值
Table 1 The optimal local soft decision thresholds with different quantization schemes
圖4 不同Pe下文中算法的性能與未量化方案的對(duì)比Fig.4 Performance comparison between the proposed algorithm with different Pe and the unquantized scheme
基于局部軟決策的GLRT分布式檢測(cè)算法在傳感器數(shù)量N=30時(shí)的接收器操作特征曲線(ROC)如圖5所示.每條曲線分別在恒定的虛警概率下(0到1之間每隔0.1取一點(diǎn))通過(guò)105次獨(dú)立的蒙特卡羅實(shí)驗(yàn)獲得.圖5表明,文中提出的分布式檢測(cè)算法的性能優(yōu)于基于均勻量化的檢測(cè)算法.當(dāng)量化深度q增大時(shí),檢測(cè)性能會(huì)獲得較大的增益.在理想信道下,當(dāng)量化深度為3時(shí),量化所帶來(lái)的性能損失可以忽略.
4結(jié)論
為提高分布式檢測(cè)系統(tǒng)的性能,文中提出了一種基于局部軟決策的分布式檢測(cè)算法,對(duì)系統(tǒng)進(jìn)行了理論推導(dǎo)和計(jì)算機(jī)仿真研究,給出了理想信道和差錯(cuò)信道下局部軟決策的最佳方案.實(shí)驗(yàn)結(jié)果表明:文中提出的算法性能優(yōu)于均勻量化方案;在理想信道下,當(dāng)量化深度達(dá)到3時(shí),系統(tǒng)的檢測(cè)性能十分接近未量化方案的檢測(cè)性能.雖然提高量化深度會(huì)增加局部傳感器節(jié)點(diǎn)的復(fù)雜度,但在微電子飛速發(fā)展的今天,增加的復(fù)雜度是可以接受的.
圖5 幾種方案的ROC曲線(N=30)Fig.5 ROC curves of different schemes(N=30)
參考文獻(xiàn):
[1]TSITSIKLIS J N,POOR H V,THOMAS J B.Decentrali-zed detection [J].Advances in Statistical Signal Proce-ssing,2003,2:297-344.
[2]沈曉靜.多傳感器分布式檢測(cè)和融合估計(jì) [J].中國(guó)科學(xué),2014,44(2):105-116.
SHEN Xiao-jing.Multi-sensor distributed detection and estimation fusion [J].Science China,2014,44(2):105-116.
[3]YING L,HAO C.Distributed detection performance under dependent observations and non-ideal channels [J].IEEE Sensors Journal,2015,15(2):715-722.
[4]何有,王國(guó)宏,彭應(yīng)寧,等.多傳感器信息融合及應(yīng)用[M].北京:電子工業(yè)出版社,2000.
[5]胥布工,劉貴云.基于無(wú)線傳感器網(wǎng)絡(luò)的魯棒分布式估計(jì) [J].華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(10):198-202.
XU Bu-gong,LIU Gui-yun.Robust distributed estimation in wireless sensor network [J].Journal of South China University of Technology(Natural Science Edition),2012,40(10):198-202.
[6]相明,王立琦,張亞明,等.傳感器觀測(cè)相關(guān)條件下的最優(yōu)分布式檢測(cè)融合算法 [J].西安交通大學(xué)學(xué)報(bào),2008,42(12):1441-1449.
XIANG Ming,WANG Li-qi,ZHANG Ya-ming,et al.Optimum distributed detection fusion algorithm for correlated sensor observations [J].Journal of Xi’an Jiaotong University,2008,42(12):1441-1449.
[7]VEMPATY A,RAY P,VARSHNEY P K.False discovery rate based distributed detection in the presence of Byzantines [J].IEEE Transactions on Aerospace and Electro-nic Systems,2014,50(3):1826-1840.
[8]夏雙志,周萬(wàn)幸.分布式檢測(cè)系統(tǒng)的一種軟決策融合算法 [J].傳感技術(shù)學(xué)報(bào),2008,21(7):1164-1168.
XIA Shuang-zhi,ZHOU Wan-xing.Soft decision fusion algorithm for distributed detection system [J].Chinese Journal of Sensor and Actuators,2008,21(7):1164-1168.
[9]TARIGHATI A,JALDEN J.Bayesian design of Tandem networks for distributed detection with multi-bit sensor decisions [J].IEEE Transactions on Signal Processing,2015,63(7):1821-1831.
[10]YANG X,NIUR.Channel-aware tracking in multi-hop wireless sensor networks with quantized measurements [J].IEEE Transactions on Aerospace and Electronic Systems,2013,49(4):2353-2368.
[11]FANG J,LIU Y M,LI H B,et al.One-bit quantizer design for multi-sensor GLRT fusion [J].IEEE Signal Processing Letters,2013,20(3):257-260.
[12]CIUONZO D,PAPA G,ROMANO G,et al.One bit decentralized detection with a Rao test for multi-sensor fusion [J].IEEE Signal Processing Letters,2013,20(9):861-864.
[13]NIU R,VARSHNEY P K.Joint detection and localization in sensor networks based on local decisions [C]∥ Proceedings of the Thirty-Ninth Annual Asilomar Confe-rence on Signals,Systems,and Computers.Pacific Grove:IEEE,2006:525-529.
[14]AZIZ A M.A simple and efficient suboptimal multilevel quantization approach in geographically distributed sensor systems [J].Signal Processing,2008,88(7):1698-1714.
[15]KAY S,QUAN D.On the performance of independent processing of independent data sets for distributed detection [J].IEEE Transactions on Signal Processing,2013,20(6):619-622.
[16]KAY S M.Fundamentals of statistical signal processing:detection theory [M].Upper Saddle River:Prentice Hall,
1998.
[17]RIBEIRO A,GIANNAKIS G B.Bandwidth-constrained distributed estimation for wireless sensor networks-part I:Gaussian case [J].IEEE Transactions on Signal Processing,2006,54(3):1131-1143.
A Distributed Detection Algorithm Based on Local Soft Decision
GUOLi-liGAOFeiSUNZhi-guo
(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China)
Abstract:In order to reduce the size of transmitted data on the premise of retaining a certain detection perfor-mance, a distributed detection algorithm is proposed on the basis of local soft decision. Then, an optimization problem on the basis of the distributed detection with local soft decision is derived and formulated, and a local soft decision scheme for achieving the optimum detection performance is obtained by utilizing the routine method to solve the optimization problem. Finally, the detection performance of the proposed algorithm is verified by a simulation and is compared with that of the algorithm with uniform quantization or without quantization in the ideal/imperfect channels. Numerical results demonstrate that, in terms of detection performance, the proposed algorithm outperforms the algorithm with uniform quantization, and is very close to the algorithm without quantization when a 3-bit quantization is conducted.
Key words:wireless sensor networks; distributed detection; soft decision; generalized likelihood ratio test
doi:10.3969/j.issn.1000-565X.2016.01.003
中圖分類號(hào):TN911.23
作者簡(jiǎn)介:郭黎利(1955-),男,教授,博士生導(dǎo)師,主要從事通信信號(hào)處理技術(shù)研究.E-mail:guolili@hrbeu.edu.cn?通信作者: 高飛(1983-),男,博士生,主要從事無(wú)線傳感器網(wǎng)絡(luò)技術(shù)研究.E-mail:gaofei85@hrbeu.edu.cn
*基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61271263,61101141)
收稿日期:2015-04-17
文章編號(hào):1000-565X(2016)01- 0016- 06 1000-565X(2016)01- 0022- 08
Foundation items: Supported by the National Natural Science Foundation of China(61271263,61101141)