亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

        2016-02-15 11:28:16SHUYu
        關(guān)鍵詞:交換子積分算子安徽師范大學(xué)

        SHU Yu

        (Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

        Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

        SHU Yu

        (Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

        In this paper, we prove the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces.

        Marcinkiewicz integrals; commutator; Schr?dinger operator; variable exponent; Morrey spaces

        Classification code:O174.3 Document code: A Paper No:1001-2443(2016)06-0535-07

        0 Introduction

        In this paper, we consider the Schr?dinger differential operator onRn(n≥3).

        L=-△+V(x)

        AnonnegativelocallyLqintegrablefunctionV(x)onRnis said to belong toBq(q>1)ifthereexistsaconstantC>0suchthatthereverseH?lderinequality

        holdsforeveryballinRn, see [1].

        The commutator of Marcinkiewicz integral operatorμbisdefinedby

        Stein[2]firstintroducedtheoperatorμandprovedthatμisoftype(p,p)(1

        It is well known that function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with non-standard growth conditions and so on, we mention e.g. ([8, 9]). A great deal of work has been done to extend the theory of maximal, potential, singular and Marcinkiewicz integrals operators on the classical spaces to the variable exponent case, see([10]-[15]). It will be an interesting problem whether we can establish the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces. The main purpose of this paper is to answer the above problem.

        To meet the requirements in the following sections, here, the basic elements of the theory of the Lebesgue spaces with variable exponent are briefly presented.

        Letp(·):Rn→[1,∞) be a measurable function. The variable exponent Lebesgue spaceLp(·)(Rn) is defined by

        Lp(·)(Rn)isaBanachspacewiththenormdefinedby

        Wedenote

        LetP(Rn)bethesetofmeasurablefunctionp(·)onRnwith value in [1,∞) such that 1

        andonedefines

        B(Rn)isthesetofp(·)∈P(Rn)satisfyingtheconditionthatMisboundedonLp(·)(Rn).

        Forx∈Rn,thefunctionmV(x)isdefinedby

        Forbrevity,inthispaper,Calwaysmeansapositiveconstantindependentofthemainparametersandmaychangefromoneoccurrencetoanother.B(x,r)={y∈Rn:|x-y|

        1 Results and Some Lemmas

        Definition 1.1[12]For anyp(·)∈B(Rn),letkp(·)denotethesupremumofthoseq>1suchthatp(·)/q∈B(Rn).Letep(·)betheconjugateofkp′(·).

        Definition 1.2[12]Letp(·)∈L∞(Rn)and10suchthatforanyx∈Rnandr>0,ufulfills

        (1)

        WedenotetheclassofMorreyweightfunctionsbyWp(·).

        NextwedefinetheMorreyspaceswithvariableexponentrelatedtothenonnegativepotentialV.

        Nowitisinthispositiontostateourresults.

        Theorem 1.1 SupposeV∈Bqwithq>1andp(x)∈B(Rn),then

        Theorem 1.2 SupposeV∈Bqwithq>1,b∈BMO,-∞<α<∞andp(x)∈B(Rn).If

        (2)

        then

        Remark 1 We can easily show thatufulfills(2)impliesu∈Wp(·),see[16].

        Inordertoproveourresult,weneedsomeconclusionsasfollows.

        Lemma 1.1[18]Letp(·)∈P(Rn):Thenthefollowingconditionsareequivalent:

        (1)p(·)∈B(Rn).

        (2)p′(·)∈B(Rn).

        (3) (p(·)/q∈B(Rn)forsome1

        (4) (p(·)/q)′∈B(Rn)forsome1

        Lemma1.1ensuresthatkp(·)iswell-definedandsatisfies1

        Lemma 1.2[19]Ifp(·)∈P(Rn),thenforallf∈Lp(·)(Rn)andallg∈Lp′(·)(Rn)wehave

        ∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

        whererp:=1+1/p--1/p+.

        Lemma 1.3[10]Ifp(·)∈B(Rn),thenthereexistsC>0suchthatforallballsBinRn,

        C-1|B|≤‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤C|B|.

        Lemma 1.4[12]Letp(x)∈B(Rn).Forany10suchthatforanyx0∈Rnandr>0,wehave

        Lemma 1.6[21]LetΩ∈Lipγ(Sn-1),b(x)∈BMOandp(·)∈B(Rn),wehave

        ‖μbf‖Lp(·)(Rn)≤C‖f‖Lp(·)(Rn).

        Lemma 1.7[1]For everyN>0thereexistsaconstantCsuchthat

        and

        Lemma 1.8[1]SupposeV∈Bqwithq≥n/2.ThenthereexistpositiveconstantsCandk0suchthat

        Lemma 1.9[22]Letkbeapositiveinteger.Thenwehavethatforallb∈BMO(Rn) and alli,j∈Zwithi>j,

        2 Proof of Theorems

        Proof of Theorem 1.1 Fixx∈Rnand letr=ρ(x).Usingthesameideain[5]and[4],wehave

        ForA1,byLemma1.7,wehave

        Obviously,

        ForA3,byLemma1.7,wehave

        ItremainstoestimateA4.FromLemma1.7,takeN=1,weobtain

        Thus,usingLemma1.5andLemma1.6,wearrivethefollowinginequality

        andhencetheproofofTheorem1.1iscomplete.

        wheref0=fχB(z,2r),fi=fχB(z,2i+1r)B(z,2ir)fori≥1.Hence,wehave

        ByTheorem1.1,weobtain

        Becauseinequality(1)andLemma1.4implythatu(x,r)≥Cu(x,2r).Therefore,weobtain

        Furthermore,foranyi≥1,x∈B(z,r)andy∈B(z,2i+1r)B(z,2ir),wenotethat|x-y|≥|y-z|-|x-z|>C2ir.ByLemma1.7andMinkowski'sinequality,wehave

        UsingLemma1.8,wederivetheestimate

        (3)

        ApplyingLemma1.2andinequality(3),wegetthat

        Subsequently,takingthenorm‖·‖Lp(·)(Rn)andusingLemma1.9,wehave

        ×‖b‖BMO‖fχB(z,2i+1r)‖Lp(·)(Rn)‖χB(z,r)‖Lp(·)(Rn)‖χB(z,2i+1r)‖Lp′(·)(Rn).

        ApplyingLemma1.3withB=B(z,2i+1),wehave

        TakingN=(-[α]+1)(k0+1),weobtain

        Asufulfills(2)andα<0,weobtain

        andhencetheproofofTheorem1.2iscomplete.

        [1] SHEN Z. Lp estimates for Schr?dinger operators with certain potentials[J]. Ann Inst Fourier(Grenoble), 1995,45(2):513-546.

        [2] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of the American Mathematical Society, 1958,88:430-466.

        [4] GAO W, TANG L. Boundedness for marcinkiewicz integrals associated with Schr?dinger operators[J]. Proceedings-Mathematical Sciences Indian Acad Sci, 2014,124(2):193-203.

        [5] CHEN D, ZOU D. The boundedness of Marcinkiewicz integral associated with Schr?dinger operator and its commutator[J]. Journal of Function Spaces, Article ID402713, 10pages, 2014.

        [6] TANG L, DONG J. Boundedness for some Schr?dinger type operators on Morrey spaces related to certain nonnegative potentials[J]. J Math Anal Appl, 2009,355(1):101-109.

        [7] CHEN D, JIN F. The Boundedness of Marcinkiewicz integrals associated with Schr?dinger operator on Mmorrey spaces[J]. J Fun Spaces, Article ID901267, 11pages, 2014.

        [8] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006,66(4):1383-1406.

        [10] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operatorson variableLpspaces[J]. Annales Academiae Scientiarum Fennicae Math., 2006,31(1):239-264.

        [11] NEKVINDA A. Hardy-Littlewood maximal operator onLp(x)(Rn) [J]. Math Inequal Appl, 2004,7:255-265.

        [12] HO K-P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013,16:363-373.

        [13] XUAN Z, SHU L. Boundedness for commutators of Calderón-Zygmund operator on Morrey spaces with variable exponent[J]. Anal Theory Appl, 2013,29(2):128-134.

        [14] ALMEIDA A, HASANOV J, SAMKO S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008,15:195-208.

        [15] KOKILASHVILI V, MESKHI A. Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J]. Armenian Math J, 2008,1:18-28.

        [16] BONGIOANNI B, HARBOURE E, SALINAS O. Class of weights related to Schr?dinger operators[J]. J Math Anal Appl, 2011,373:563-579.

        [17] TANG L. Weighted norm inequalities for commutators of Littlewood-Paley functionsrelated to Schr?dinger operators[J]. Archive der Mathematik, 2014,102:215-236.

        [18] DIENING L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bulletin des Sciences Mathématiques, 2005,129(8):657-700.

        [20] ZHANG P, WU J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J]. Czechoslovak Mathematical Journal, 2014,64(139):183C197.

        [21] WANG H, FU Z, LIU Z. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Scientia(Ser A), 2012,32(6):1092-1101.

        [22] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010,59(2):199-213.

        2016-03-10

        SupportedbyNSFC(11201003)andEducationCommitteeofAnhuiProvince(KJ2016A253;SKSM201602).

        SHU Yu(1985-), male, born in Wuhu, Anhui Province, Lecture, M.S.D.

        束宇.變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewica積分算子交換子[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(6):535-541.

        變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子

        束 宇

        (安徽商貿(mào)職業(yè)技術(shù)學(xué)院 經(jīng)濟(jì)貿(mào)易系,安徽 蕪湖 241002)

        在本文中,我們主要證明了變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子的有界性.

        Marcinkiewicz積分;交換子;Schr?dinger算子;變指數(shù);Morrey空間

        10.14182/J.cnki.1001-2443.2016.06.006

        猜你喜歡
        交換子積分算子安徽師范大學(xué)
        齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
        Ap(φ)權(quán),擬微分算子及其交換子
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會科學(xué)版)第47卷總目次
        一類振蕩積分算子在Wiener共合空間上的有界性
        Hemingway’s Marriage in Cat in the Rain
        平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
        變指標(biāo)Morrey空間上的Marcinkiewicz積分及交換子的有界性
        與Schr?dinger算子相關(guān)的交換子的L~p-有界性
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
        精品少妇爆乳无码aⅴ区| 亚洲中文字幕无码不卡电影| 亚洲人午夜射精精品日韩 | 抽搐一进一出试看60秒体验区| 精品91精品91精品国产片| 风流少妇一区二区三区91| 99久久免费视频色老| 国产亚洲午夜高清国产拍精品| 国产精品久久1024| 色佬易精品视频免费在线观看| 伊人情人色综合网站| 婷婷五月综合丁香在线| 日韩最新在线不卡av| 麻豆视频黄片在线免费观看| 久久久噜噜噜久久中文福利| 中文人妻av久久人妻18| 乱人伦视频69| 国产精品高清免费在线| 国产又黄又硬又粗| 精品国产v无码大片在线观看| 天堂av无码大芭蕉伊人av孕妇黑人 | 麻豆三级视频网站在线观看 | 国产一国产一级新婚之夜| 国产精品国产三级厂七| 国产精品会所一区二区三区| 国产黄在线观看免费观看不卡| 国产a级精精彩大片免费看| 日韩一区二区中文字幕| 久久久久99精品成人片欧美| 精品人妻少妇一区二区三区不卡| 亚洲欧美日韩中文v在线| 成人自拍偷拍视频在线观看| 成人亚洲一区二区三区在线| 欧美日韩亚洲精品瑜伽裤| 熟女人妻一区二区在线观看 | 国产一区二区杨幂在线观看性色| 色多多性虎精品无码av| 77777亚洲午夜久久多人| 日本高清一区二区在线观看| 午夜久久久久久禁播电影| 亚洲精品无码不卡av|