亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

        2016-02-15 11:28:16SHUYu
        關(guān)鍵詞:交換子積分算子安徽師范大學(xué)

        SHU Yu

        (Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

        Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

        SHU Yu

        (Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

        In this paper, we prove the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces.

        Marcinkiewicz integrals; commutator; Schr?dinger operator; variable exponent; Morrey spaces

        Classification code:O174.3 Document code: A Paper No:1001-2443(2016)06-0535-07

        0 Introduction

        In this paper, we consider the Schr?dinger differential operator onRn(n≥3).

        L=-△+V(x)

        AnonnegativelocallyLqintegrablefunctionV(x)onRnis said to belong toBq(q>1)ifthereexistsaconstantC>0suchthatthereverseH?lderinequality

        holdsforeveryballinRn, see [1].

        The commutator of Marcinkiewicz integral operatorμbisdefinedby

        Stein[2]firstintroducedtheoperatorμandprovedthatμisoftype(p,p)(1

        It is well known that function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with non-standard growth conditions and so on, we mention e.g. ([8, 9]). A great deal of work has been done to extend the theory of maximal, potential, singular and Marcinkiewicz integrals operators on the classical spaces to the variable exponent case, see([10]-[15]). It will be an interesting problem whether we can establish the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces. The main purpose of this paper is to answer the above problem.

        To meet the requirements in the following sections, here, the basic elements of the theory of the Lebesgue spaces with variable exponent are briefly presented.

        Letp(·):Rn→[1,∞) be a measurable function. The variable exponent Lebesgue spaceLp(·)(Rn) is defined by

        Lp(·)(Rn)isaBanachspacewiththenormdefinedby

        Wedenote

        LetP(Rn)bethesetofmeasurablefunctionp(·)onRnwith value in [1,∞) such that 1

        andonedefines

        B(Rn)isthesetofp(·)∈P(Rn)satisfyingtheconditionthatMisboundedonLp(·)(Rn).

        Forx∈Rn,thefunctionmV(x)isdefinedby

        Forbrevity,inthispaper,Calwaysmeansapositiveconstantindependentofthemainparametersandmaychangefromoneoccurrencetoanother.B(x,r)={y∈Rn:|x-y|

        1 Results and Some Lemmas

        Definition 1.1[12]For anyp(·)∈B(Rn),letkp(·)denotethesupremumofthoseq>1suchthatp(·)/q∈B(Rn).Letep(·)betheconjugateofkp′(·).

        Definition 1.2[12]Letp(·)∈L∞(Rn)and10suchthatforanyx∈Rnandr>0,ufulfills

        (1)

        WedenotetheclassofMorreyweightfunctionsbyWp(·).

        NextwedefinetheMorreyspaceswithvariableexponentrelatedtothenonnegativepotentialV.

        Nowitisinthispositiontostateourresults.

        Theorem 1.1 SupposeV∈Bqwithq>1andp(x)∈B(Rn),then

        Theorem 1.2 SupposeV∈Bqwithq>1,b∈BMO,-∞<α<∞andp(x)∈B(Rn).If

        (2)

        then

        Remark 1 We can easily show thatufulfills(2)impliesu∈Wp(·),see[16].

        Inordertoproveourresult,weneedsomeconclusionsasfollows.

        Lemma 1.1[18]Letp(·)∈P(Rn):Thenthefollowingconditionsareequivalent:

        (1)p(·)∈B(Rn).

        (2)p′(·)∈B(Rn).

        (3) (p(·)/q∈B(Rn)forsome1

        (4) (p(·)/q)′∈B(Rn)forsome1

        Lemma1.1ensuresthatkp(·)iswell-definedandsatisfies1

        Lemma 1.2[19]Ifp(·)∈P(Rn),thenforallf∈Lp(·)(Rn)andallg∈Lp′(·)(Rn)wehave

        ∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

        whererp:=1+1/p--1/p+.

        Lemma 1.3[10]Ifp(·)∈B(Rn),thenthereexistsC>0suchthatforallballsBinRn,

        C-1|B|≤‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤C|B|.

        Lemma 1.4[12]Letp(x)∈B(Rn).Forany10suchthatforanyx0∈Rnandr>0,wehave

        Lemma 1.6[21]LetΩ∈Lipγ(Sn-1),b(x)∈BMOandp(·)∈B(Rn),wehave

        ‖μbf‖Lp(·)(Rn)≤C‖f‖Lp(·)(Rn).

        Lemma 1.7[1]For everyN>0thereexistsaconstantCsuchthat

        and

        Lemma 1.8[1]SupposeV∈Bqwithq≥n/2.ThenthereexistpositiveconstantsCandk0suchthat

        Lemma 1.9[22]Letkbeapositiveinteger.Thenwehavethatforallb∈BMO(Rn) and alli,j∈Zwithi>j,

        2 Proof of Theorems

        Proof of Theorem 1.1 Fixx∈Rnand letr=ρ(x).Usingthesameideain[5]and[4],wehave

        ForA1,byLemma1.7,wehave

        Obviously,

        ForA3,byLemma1.7,wehave

        ItremainstoestimateA4.FromLemma1.7,takeN=1,weobtain

        Thus,usingLemma1.5andLemma1.6,wearrivethefollowinginequality

        andhencetheproofofTheorem1.1iscomplete.

        wheref0=fχB(z,2r),fi=fχB(z,2i+1r)B(z,2ir)fori≥1.Hence,wehave

        ByTheorem1.1,weobtain

        Becauseinequality(1)andLemma1.4implythatu(x,r)≥Cu(x,2r).Therefore,weobtain

        Furthermore,foranyi≥1,x∈B(z,r)andy∈B(z,2i+1r)B(z,2ir),wenotethat|x-y|≥|y-z|-|x-z|>C2ir.ByLemma1.7andMinkowski'sinequality,wehave

        UsingLemma1.8,wederivetheestimate

        (3)

        ApplyingLemma1.2andinequality(3),wegetthat

        Subsequently,takingthenorm‖·‖Lp(·)(Rn)andusingLemma1.9,wehave

        ×‖b‖BMO‖fχB(z,2i+1r)‖Lp(·)(Rn)‖χB(z,r)‖Lp(·)(Rn)‖χB(z,2i+1r)‖Lp′(·)(Rn).

        ApplyingLemma1.3withB=B(z,2i+1),wehave

        TakingN=(-[α]+1)(k0+1),weobtain

        Asufulfills(2)andα<0,weobtain

        andhencetheproofofTheorem1.2iscomplete.

        [1] SHEN Z. Lp estimates for Schr?dinger operators with certain potentials[J]. Ann Inst Fourier(Grenoble), 1995,45(2):513-546.

        [2] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of the American Mathematical Society, 1958,88:430-466.

        [4] GAO W, TANG L. Boundedness for marcinkiewicz integrals associated with Schr?dinger operators[J]. Proceedings-Mathematical Sciences Indian Acad Sci, 2014,124(2):193-203.

        [5] CHEN D, ZOU D. The boundedness of Marcinkiewicz integral associated with Schr?dinger operator and its commutator[J]. Journal of Function Spaces, Article ID402713, 10pages, 2014.

        [6] TANG L, DONG J. Boundedness for some Schr?dinger type operators on Morrey spaces related to certain nonnegative potentials[J]. J Math Anal Appl, 2009,355(1):101-109.

        [7] CHEN D, JIN F. The Boundedness of Marcinkiewicz integrals associated with Schr?dinger operator on Mmorrey spaces[J]. J Fun Spaces, Article ID901267, 11pages, 2014.

        [8] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006,66(4):1383-1406.

        [10] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operatorson variableLpspaces[J]. Annales Academiae Scientiarum Fennicae Math., 2006,31(1):239-264.

        [11] NEKVINDA A. Hardy-Littlewood maximal operator onLp(x)(Rn) [J]. Math Inequal Appl, 2004,7:255-265.

        [12] HO K-P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013,16:363-373.

        [13] XUAN Z, SHU L. Boundedness for commutators of Calderón-Zygmund operator on Morrey spaces with variable exponent[J]. Anal Theory Appl, 2013,29(2):128-134.

        [14] ALMEIDA A, HASANOV J, SAMKO S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008,15:195-208.

        [15] KOKILASHVILI V, MESKHI A. Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J]. Armenian Math J, 2008,1:18-28.

        [16] BONGIOANNI B, HARBOURE E, SALINAS O. Class of weights related to Schr?dinger operators[J]. J Math Anal Appl, 2011,373:563-579.

        [17] TANG L. Weighted norm inequalities for commutators of Littlewood-Paley functionsrelated to Schr?dinger operators[J]. Archive der Mathematik, 2014,102:215-236.

        [18] DIENING L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bulletin des Sciences Mathématiques, 2005,129(8):657-700.

        [20] ZHANG P, WU J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J]. Czechoslovak Mathematical Journal, 2014,64(139):183C197.

        [21] WANG H, FU Z, LIU Z. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Scientia(Ser A), 2012,32(6):1092-1101.

        [22] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010,59(2):199-213.

        2016-03-10

        SupportedbyNSFC(11201003)andEducationCommitteeofAnhuiProvince(KJ2016A253;SKSM201602).

        SHU Yu(1985-), male, born in Wuhu, Anhui Province, Lecture, M.S.D.

        束宇.變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewica積分算子交換子[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(6):535-541.

        變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子

        束 宇

        (安徽商貿(mào)職業(yè)技術(shù)學(xué)院 經(jīng)濟(jì)貿(mào)易系,安徽 蕪湖 241002)

        在本文中,我們主要證明了變指數(shù)空間上與Schr?dinger算子相關(guān)的Marcinkiewicz積分算子交換子的有界性.

        Marcinkiewicz積分;交換子;Schr?dinger算子;變指數(shù);Morrey空間

        10.14182/J.cnki.1001-2443.2016.06.006

        猜你喜歡
        交換子積分算子安徽師范大學(xué)
        齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
        Ap(φ)權(quán),擬微分算子及其交換子
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會科學(xué)版)第47卷總目次
        一類振蕩積分算子在Wiener共合空間上的有界性
        Hemingway’s Marriage in Cat in the Rain
        平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
        變指標(biāo)Morrey空間上的Marcinkiewicz積分及交換子的有界性
        與Schr?dinger算子相關(guān)的交換子的L~p-有界性
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
        色婷婷综合久久久久中文| 亚洲毛片免费观看视频| 97色伦图片97综合影院| 欧美亚洲色综久久精品国产| h国产视频| 蜜臀av中文人妻系列| 亚洲综合在不卡在线国产另类| 成 人片 黄 色 大 片| 最新国产乱人伦偷精品免费网站| 日韩精品网| 日韩三级一区二区三区四区| 精品无码av无码专区| 桃花色综合影院| 国产日本在线视频| 亚洲天堂av高清在线| 久久精品国产99久久无毒不卡| 18禁无遮挡羞羞污污污污网站| 亚洲国产福利成人一区二区| 国产在线视频网友自拍| av免费网址在线观看| 亚洲的天堂av无码| 国产日产亚洲系列av| 成人大片免费视频播放一级| 中文字幕乱码一区av久久不卡| 国产精美视频| 国产白浆流出一区二区| 国产欧美高清在线观看| 丁香花在线影院观看在线播放| 国产精品久久国产精品99 | 中文字幕日韩精品美一区二区三区| 一区视频免费观看播放| 成人乱码一区二区三区av| 亚洲国产精品久久久久久久| 加勒比熟女精品一区二区av| 国产青青草在线观看视频| 久久亚洲色www成人欧美| 丝袜欧美视频首页在线| 看国产亚洲美女黄色一级片| 永久免费人禽av在线观看| 中文字幕喷水一区二区| 精品国产一品二品三品|