亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        非色散非線性Schr?dinger方程的暗孤子解

        2016-01-31 03:39:31丁國華方建印

        丁國華, 蘇 婷,方建印,王 輝

        (1.河南工程學(xué)院 圖書館,河南 鄭州 451191; 2.河南工程學(xué)院 理學(xué)院,河南 鄭州 451191)

        ?

        非色散非線性Schr?dinger方程的暗孤子解

        丁國華1, 蘇婷2,方建印2,王輝2

        (1.河南工程學(xué)院 圖書館,河南 鄭州 451191; 2.河南工程學(xué)院 理學(xué)院,河南 鄭州 451191)

        摘要:非色散非線性Schr?dinger方程和它的Lax對被顯示給出.借助于譜問題之間的規(guī)范變換,孤子解的達布變換得以構(gòu)造,作為應(yīng)用給了出非色散非線性Schr?dinger方程的顯示解.

        關(guān)鍵詞:達布變換;暗孤子解;非線性Schr?dinger方程

        對孤子方程求顯示解是物理學(xué)和數(shù)學(xué)領(lǐng)域都很感興趣的話題.近年來已經(jīng)有許多求解的方法,如反散射方法[1-2]、雙線性(Hirota)方法[3]、達布變換法[4-6]、代數(shù)幾何方法[7]、穿衣方法[8]等,這些方法各有特點,其中達布變換方法是從平凡解出發(fā)得到孤子方程的精確解.本研究利用達布變換方法求非色散非線性Schr?dinger方程的單孤子解和二孤子解.

        iqt+qxx-2|q|2q=0

        (1)

        許多學(xué)者對方程(1)都有深入的研究,Andrew在文獻[9]中借助Crum Transformation給出了方程(1)的有理解.Ruiyu等在文獻[10]中給出了方程(1)的顯示解.

        1非色散非線性Schr?dinger方程的達布變換給出方程(1)保譜問題

        φx=Uφ, U=iλσ3+Q,

        (2)

        (3)

        由相容條件Ut-Vx+[U,V]=0可以得到非色散非線性Schr?dinger方程(1).

        首先,引入譜問題(2)和(3)的規(guī)范變換

        (4)

        其中,T由以下兩式?jīng)Q定:

        (5)

        (6)

        更進一步,式(2)和式(3)轉(zhuǎn)化為

        (7)

        (8)

        設(shè)φ(λj)=(φ1(λj),φ2(λj))T和ψ(λj)=(ψ1(λj),ψ2(ψj))T是式(2)和式(3)的兩個基本解.由式(4)可知存在常數(shù)rj滿足

        (Aφ1(λj)+Bφ2(λj))-rj(Aψ1(λj)+Bψ2(λj))=0,(Cφ1(λj)+Dφ2(λj))-rj(Cψ1(λj)+Dψ2(λj))=0.

        (9)

        式(9)也可以寫成線性系統(tǒng)

        A+σjB=0,C+σjD=0,

        (10)

        其中,

        (11)

        從式(9)可知,detT(λ)是λ的2N-1次多項式,且detT(λj)=α2[A(λj)D(λj)-B(λj)C(λj)].另一方面,由式(10)可知

        A(λj)=-σjB(λj),C(λj)=-σjD(λj),

        (12)

        (13)

        這表明λj(1≤j≤2N-1)是detT的根.

        下列變換

        (14)

        2多孤子解

        利用前面的達布變換可以得到孤子方程(1)的一系列的精確解.取平凡解q=0,代入Lax對(2)和(3)中,得到其基本解.選取兩個基本解為

        由等式(11)可知,

        (15)

        利用線性系統(tǒng)(10)和條件(14),借助克萊姆法則求解,得到

        (16)

        (17)

        由式(15)可知,只需取λj(j=1,2,3)不同的值,即可以得到非色散非線性Schr?dinger方程的解.

        參考文獻:

        [1]ABLOWITZMJ,SEGURH.SolitonsandtheInverseScatteringTransform[M].Philadelphia:SIAM,1981.

        [2]NEWELLAC.SolitonsinMathematicsandPhysics[M].Philadelphia:SIAM,1985.

        [3]HIROTAR.DirectMethodsinSoliotnTheory[M].Berlin:Springer-Verlag,2004.

        [4]MATVEEVVB,SALLEMA.DarbouxTransformationandSolitons[M].Berlin:Springer-Verlag,1991.

        [5]GENGXG,TAMHW.DarbouxtransformationandsolutionsforgeneralizednonlinearSchr?dingerequations[J].JouralofMathematicalPhysics,1999(40):3948-3955.

        [6]FANEG.Darbouxtransformationandsoliton-likesolutionfortheGerdjikov-Ivanovequation[J].JournalofPhysicsA:MathematicalandGeneral,2000(33):6925-6933.

        [7]GENGXG,CAOCW.DarbouxtransformationandsolitonsolutionsforgeneralizednonlinearSchr?dingerequations[J].JapaneseJournalofAppliedPhysics,1999(68):289-299.

        [8]DAIHH,JEFFREYA.Theinversescatteringtransformsforcertaintypesofvariable-coefficientKdvequations[J].PhysicsLettersA,1989(139):369-372.

        [9]ANDREWNW.Scale-space:anewapproachtomulti-scaledescription[J].JournalofPhysicsA:MathematicalandGeneral,1997(30):7473-7483.

        [10]RUIYUH.AnewapproachtoexactsolitonsolutionsandsolitoninteractionforthenonlinearSchr?dingerequationwithvariable-coefficient[J].OpticsCommunications,2004(236):79-86.

        The dark soliton solution of the nondispersive nonlinear Schr?dinger equation

        DING Guohua1, SU Ting2,F(xiàn)ANG Jianyin2,WANG Hui2

        (1.Library,HenanInstituteofEngineering,Zhengzhou451191,China;

        2.CollegeofSciences,HenanInstituteofEngineering,Zhengzhou451191,China)

        Abstract:The nondispersive nonlinear Schr?dinger equation and its Lax pair are given explicitly. With the help of gauge transformation between spectrum problems, the Darboux transformation of soliton solution is constructed. As an application, the explicit solutions of the nondispersive nonlinear Schr?dinger equation are derived.

        Key words:Darboux transformation;dark soliton solution;nonlinear Schr?dinger equation

        作者簡介:丁國華(1977-),男,河南周口人,助教,主要從事孤立子與可積系統(tǒng)研究.

        基金項目:國家自然科學(xué)基金項目(11301149);河南省基礎(chǔ)前沿項目(132300410310,102300410212)

        收稿日期:2015-08-03

        中圖分類號:O322

        文獻標志碼:A

        文章編號:1674-330X(2015)04-0077-04

        日韩无码无播放器视频| 国内嫩模自拍偷拍视频| 国产情侣一区二区三区| 免费大黄网站| 风流少妇又紧又爽又丰满| 在线看亚洲十八禁网站| 偷拍视频十八岁一区二区三区| 精品国产亚洲级一区二区| av天堂午夜精品一区| 欧美亚洲国产片在线播放| 色窝窝无码一区二区三区2022| 亚洲中文字幕亚洲中文| 制服丝袜一区二区三区| 精品国产sm捆绑最大网免费站| 亚洲最新版无码AV| 亚洲福利网站在线一区不卡| 日产乱码一二三区别免费l| 67194熟妇在线永久免费观看| 伊人亚洲综合网色AV另类| 91久久大香伊蕉在人线国产| 欧美激情一区二区三区成人| 欧美成a人片在线观看久| 一区二区三区国产美女在线播放| 久久91精品国产一区二区| av狠狠色丁香婷婷综合久久 | 亚洲av无码国产精品色软件下戴| 人妻丰满熟妇av无码区hd| 亚洲无av高清一区不卡| 在线无码中文字幕一区| 亚洲va中文字幕无码久久不卡| 国产亚洲日本人在线观看| 国产激情在线观看免费视频| 国产白嫩护士被弄高潮| 欧美深夜福利网站在线观看| 日韩精品一区二区三区视频| 国产猛烈高潮尖叫视频免费| 88国产精品视频一区二区三区| 岛国视频在线无码| 日本亚洲视频一区二区三区| 西西人体444www大胆无码视频| 99热这里只有精品国产66|