王 亮, 朱康兒, 張 濤, 陳 潔
(暨南大學(xué)附屬第一醫(yī)院 1腫瘤科, 2血液科,廣東 廣州 510632)
?
小鼠異基因造血干細(xì)胞移植后使用G-CSF對aGVHD的影響*
王亮1,朱康兒2△,張濤2,陳潔2
(暨南大學(xué)附屬第一醫(yī)院1腫瘤科,2血液科,廣東 廣州 510632)
[摘要]目的: 探討小鼠異基因造血干細(xì)胞移植(allo-HSCT)后使用粒細(xì)胞集落刺激因子(G-CSF)對急性移植物抗宿主病(aGVHD)的影響及其可能的機(jī)制。方法: 以雄性C57BL/6小鼠(H-2b)為異基因供鼠,雄性BALB/c小鼠(H-2d)為同基因供鼠;以接受8 Gy[60Co]γ射線全身照射(TBI)預(yù)處理雌性BALB/c小鼠為受鼠,并隨機(jī)分為7組:單純TBI組、同基因骨髓+脾細(xì)胞移植(Syn-BMST)組、異基因骨髓移植(allo-BMT)組、異基因骨髓+脾細(xì)胞移植(allo-BMST)組、Syn-BMST后G-CSF給藥(Syn-BMST+G-CSF)組、allo-BMT后G-CSF給藥(allo-BMT+G-CSF)組和allo-BMST后G-CSF給藥(allo-BMST+G-CSF)組,各G-CSF給藥組從移植后第1天(+1 d)開始皮下注射G-CSF 2 μg/d,觀察至+60 d。比較各組生存時間、aGVHD發(fā)生情況和病理改變,流式細(xì)胞術(shù)檢測骨髓p-Kb+細(xì)胞百分率(異基因嵌合率),比較allo-BMST和allo-BMST+G-CSF組+10 d時血清細(xì)胞因子(IL-2、IL-4、IFN-γ和TNF-α)水平、脾總有核細(xì)胞數(shù)(SpTNC)和脾細(xì)胞免疫表型的差異。結(jié)果: 單純TBI組小鼠于照射后9~15 d死于造血衰竭,其余各組+10 d時均100%獲得造血重建,隨機(jī)抽取2只異基因骨髓移植受鼠,+30 d供者細(xì)胞嵌合率分別為99.8%和99.4%,表明清髓性allo-HSCT模型建立成功。Syn-BMST、Syn-BMST+G-CSF、allo-BMT和allo-BMT+G-CSF組小鼠觀察至+60 d均未發(fā)生aGVHD。與allo-BMST組相比,allo-BMST+G-CSF組受鼠出現(xiàn)aGVHD時間早、程度重、病理改變嚴(yán)重、存活時間明顯縮短(P<0.05)、+10 d SpTNC明顯增加(P<0.05)、脾臟NK細(xì)胞顯著擴(kuò)增 (P<0.01)、DC1/DC2比值減低(P<0.05),而2組血清IL-2、IL-4、IFN-γ和TNF-α水平差異無統(tǒng)計(jì)學(xué)意義。結(jié)論: 移植后使用G-CSF對小鼠異基因單純骨髓移植后aGVHD無明顯影響,但能顯著加重allo-BMST后aGVHD的嚴(yán)重程度并縮短受鼠生存時間,該效應(yīng)可能與G-CSF誘導(dǎo)供鼠NK細(xì)胞擴(kuò)增有關(guān),提示臨床allo-HSCT后早期使用G-CSF可能觸發(fā)或加重aGVHD的風(fēng)險。
[關(guān)鍵詞]粒細(xì)胞集落刺激因子; 急性移植物抗宿主??; 小鼠異基因造血干細(xì)胞移植
粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)在異基因造血干細(xì)胞移植(allogeneic hematopoietic stem cell transplantation,allo-HSCT)中廣泛用于供者動員和促進(jìn)移植后髓系造血重建。近年研究發(fā)現(xiàn)G-CSF對移植免疫具有廣泛的調(diào)節(jié)作用[1],如供者G-CSF動員能增強(qiáng)供者T細(xì)胞免疫耐受,使得異基因外周血干細(xì)胞移植(allogeneic peripheral blood stem cell transplantation,allo-PBSCT)受者雖輸入較異基因骨髓移植(allogenic bone marrow transplantation,allo-BMT)多10倍以上T細(xì)胞而急性移植物抗宿主病(acute graft-versus-host disease,aGVHD)的發(fā)生率和嚴(yán)重程度無明顯增加。然而,allo-HSCT后受者使用G-CSF對異基因免疫和移植結(jié)果的影響尚不明確[2],幾項(xiàng)回顧性研究[3-6]的臨床資料顯示,移植后使用G-CSF者Ⅱ~Ⅳ度aGVHD 和/或慢性移植物抗宿主病(chronic graft-versus-host disease,cGVHD)的發(fā)生率顯著增加,提示移植后使用G-CSF可能促進(jìn)異基因免疫反應(yīng)。因此,本研究在小鼠allo-HSCT模型中初步探討移植后持續(xù)G-CSF給藥對aGVHD的影響及其可能機(jī)制。
材料和方法
1實(shí)驗(yàn)動物
雄性C57BL/6小鼠(H-2b, 8~10周齡)為異基因供鼠,雄性BALB/c小鼠(H-2d, 8~10周齡)為同基因供鼠,雌性BALB/c小鼠(H-2d, 8~10周齡)為受鼠,體重18~22 g。實(shí)驗(yàn)動物均為無特定病原體(specific-pathogen free,SPF)級,購自中山大學(xué)實(shí)驗(yàn)動物中心,生產(chǎn)許可證號為SCXK(粵)2009-0011。在無菌、恒溫、恒濕條件下飼養(yǎng)。
2主要試劑
重組人G-CSF為山東齊魯制藥有限公司產(chǎn)品,RPMI-1640培養(yǎng)基為Gibco產(chǎn)品;硫酸慶大霉素注射液為廣州白云山天心制藥股份有限公司產(chǎn)品;紅霉素為北京天佑達(dá)生物工程科技有限公司產(chǎn)品;臺盼藍(lán)和ELISA試劑盒為Sigma產(chǎn)品;抗小鼠FITC-CD3e、APC-CD4、PerCP-Cy5.5-CD8a、PE-NK1.1、PE-CD69、PerCP-Cy5.5-CD25、APC-CD11c、FITC-CD80、PE-CD86和PerCP-eFluor?710-p-Kb單克隆抗體為eBioscience產(chǎn)品。
3主要方法
3.1受鼠準(zhǔn)備和預(yù)處理受鼠移植前7 d(-7 d)接受添加抗生素(紅霉素250 mg/L,慶大霉素32萬 U/L)的滅菌飲水進(jìn)行腸道準(zhǔn)備,并維持至移植后21 d(+21 d)。移植當(dāng)天接受8 Gy [60Co] γ射線單次全身照射(total body irradiation,TBI)預(yù)處理(國產(chǎn)175型[60Co]治療機(jī)由暨南大學(xué)附屬第一醫(yī)院腫瘤放療科提供,劑量率為0.7421 Gy/min,源皮距為100 cm)。照射后立即補(bǔ)充飲水,休息4~6 h后經(jīng)尾靜脈注射終體積為0.2 mL的移植細(xì)胞懸液。
3.2供鼠骨髓細(xì)胞和脾細(xì)胞的制備頸椎脫臼法處死供鼠,在75%乙醇中浸泡5 min,無菌剝離股骨和脛骨,剪去兩端骨骺,自近端向遠(yuǎn)端用RPMI-1640培養(yǎng)液反復(fù)沖洗出骨髓腔,制成骨髓細(xì)胞(bone marrow cells,BMCs)懸液,調(diào)整細(xì)胞濃度至1×1011/L備用。無菌取出脾臟,置于200目不銹鋼篩網(wǎng)中輕輕碾壓,同時滴加RPMI-1640培養(yǎng)液使脾細(xì)胞通過鋼篩網(wǎng)眼,制成脾細(xì)胞(spleen cell,SpC)懸液,調(diào)整細(xì)胞濃度至5×1010/L備用。
3.3研究分組和HSCT將受鼠隨機(jī)分為7組:(1)單純TBI組:TBI后尾靜脈注射0.2 mL的PBS,次日開始皮下注射生理鹽水(NS)0.1 mL/d;(2)同基因骨髓+脾細(xì)胞移植(Syn-BMST)組:TBI后尾靜脈注射BALB/c供鼠1×107BMCs+5×106SpCs,+1 d開始皮下注射NS 0.1 mL/d;(3)異基因骨髓移植(allo-BMT)組:TBI后尾靜脈注射C57BL/6供鼠1×107BMCs,+1 d開始皮下注射NS 0.1 mL/d;(4)異基因骨髓+脾細(xì)胞移植(allo-BMST)組:TBI后尾靜脈注射C57BL/6供鼠1×107BMCs+5×106SpCs,+1 d開始皮下注射NS 0.1 mL/d;(5)Syn-BMST后G-CSF給藥(Syn-BMST+G-CSF)組:Syn-BMST后自+1 d開始皮下注射G-CSF 2 μg/d;(6)allo-BMT后G-CSF給藥(allo-BMT+G-CSF)組:allo-BMT后自+1 d開始皮下注射G-CSF 2 μg/d;(7)異基因骨髓+脾細(xì)胞移植后G-CSF給藥(allo-BMST+G-CSF)組:allo-BMST后自+1 d開始皮下注射G-CSF 2 μg/d。G-CSF每日給藥劑量參考文獻(xiàn)[7],時間自+1 d直至受鼠死亡或+60 d。組(1)、(2)、(5)和(6)每組10只,組(3)12只(其中2只用于異基因嵌合率分析),組(4)和(7)每組22只(其中7只用于檢測分析)。
3.4移植后觀察每日觀察受鼠飲食及活動情況,注意有無倦怠、體重下降、弓背、翹毛、脫毛、皮膚潰瘍、腹瀉或肛門有排泄物等表現(xiàn),觀察終點(diǎn)為+60 d。+10 d每組隨機(jī)抽取2只小鼠計(jì)數(shù)外周血白細(xì)胞(white blood cells,WBC)數(shù),所有瀕死小鼠采血計(jì)數(shù)WBC后處死取材,其存活時間記至處死次日。WBC計(jì)數(shù)方法:斷尾采血10 μL,加入白細(xì)胞稀釋液 190 μL中混勻,改良Neubauer計(jì)數(shù)板充池,靜置1 min后按常規(guī)計(jì)數(shù)。
3.5死亡原因判別(1)aGVHD:出現(xiàn)弓背、脫毛、皮膚潰瘍、腹瀉或肛門有排泄物、倦怠、體重下降等臨床表現(xiàn),WBC≥1×109/L,小腸、皮膚、肝臟組織學(xué)檢查存在aGVHD病理改變;(2)造血衰竭:死亡前WBC<1×109/L;(3)移植相關(guān)死亡:死亡前WBC ≥ 1×109/L,但無aGVHD臨床表現(xiàn)和病理改變。
3.6組織病理學(xué)檢查取瀕死小鼠肝、脾、皮膚和小腸,10%甲醛溶液固定,常規(guī)石蠟切片,蘇木素-伊紅(HE)染色,光學(xué)顯微鏡下觀察。
3.7細(xì)胞因子檢測+10 d從allo-BMST組和allo-BMST+G-CSF組中各隨機(jī)抽取7只小鼠摘除眼球采血,ELISA法測定血清IL-2、IL-4、IFN-γ和TNF-α的水平。
3.8脾總有核細(xì)胞數(shù)(spleen total nucleated cells count,SpTNC)和脾細(xì)胞免疫表型檢測+10 d從allo-BMST組和allo-BMST+G-CSF組摘眼球采血處死的小鼠中各隨機(jī)抽取5只小鼠,完整取出脾臟,制備脾細(xì)胞懸液(定容5 mL)。取20 μL細(xì)胞懸液加入380 μL白細(xì)胞稀釋液中混勻,然后滴加到細(xì)胞計(jì)數(shù)板上,水平靜置1 min后計(jì)數(shù)4個大方格中細(xì)胞數(shù)(N),SpTNC = (N÷4)×10×20×106/mL×5 mL。調(diào)整脾細(xì)胞濃度至5×1010/L,取320 μL細(xì)胞懸液分置于4個2 mL平底離心管中,每管80 μL:管① 加入FITC-CD3e、APC-CD4、PerCP-Cy5.5-CD8a和PE-NK1.1單抗工作液各5 μL;管②加入FITC-CD3e、APC-CD4、PerCP-Cy5.5-CD25和PE-CD69單抗工作液各5 μL;管③加入FITC-CD80、APC-CD11c、PerCP-Cy5.5-CD8a和PE-CD86單抗工作液5 μL;管④加入PerCP-eFluor?710-p-Kb單抗工作液5 μL?;靹?,4 ℃避光孵育30 min;充分裂解紅細(xì)胞后用PBS洗滌2次并重懸至200~500 μL上機(jī)容積;應(yīng)用BD FACSAria型流式細(xì)胞儀分析30 000個活細(xì)胞,測定CD3+、CD4+、CD8+、CD3+NK1.1-(T細(xì)胞)、CD3-NK1.1+(NK細(xì)胞)、CD3+NK1.1+(NKT細(xì)胞)、CD4+CD25+、CD3+CD25+、CD3+CD69+、CD11c+(DC)、CD11c+CD8a-(DC1)、CD11c+CD8a+(DC2)、CD80+、CD86+和p-Kb+細(xì)胞百分率,計(jì)算DC1/ DC2比值。
4統(tǒng)計(jì)學(xué)處理
采用SPSS 13.0統(tǒng)計(jì)學(xué)軟件處理數(shù)據(jù),計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,計(jì)數(shù)資料用百分率表示。時間的比較用 Mann-Whitney 檢驗(yàn),率的比較用 Chi-square 檢驗(yàn);對存活時間繪制Kaplan-Meier生存曲線,用時序檢驗(yàn)(log-rank test)比較組間小鼠存活時間,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
1小鼠異基因造血干細(xì)胞移植模型的建立
單純TBI組小鼠于照射后3 d開始出現(xiàn)厭食、活動減少、體重進(jìn)行性下降,于照射后9~15 d死亡,平均存活時間(12.0±1.9) d,死亡前WBC為 0~0.1×109/L(造血衰竭死亡)。其余各組移植小鼠+10 d時均100%獲得造血重建。+30 d隨機(jī)抽取2只異基因骨髓移植受鼠,流式細(xì)胞術(shù)檢測骨髓p-Kb+細(xì)胞百分率分別為99.8%和99.4%(圖1),表明異基因移植成功。
Figure 1.Analysis of donor mice cell chimerism rate (p-Kb positive cells percentage) at day +30 post-transplantation. A, B: recipient mice of allogeneic hematopoietic stem cell transplantation; C: a normal C57BL/6 mouse; D: a normal BALB/c mouse.
圖1移植后30 d骨髓供鼠細(xì)胞嵌合率(p-Kb+細(xì)胞百分率)分析
2移植后使用G-CSF對生存時間和aGVHD的影響
Syn-BMST、Syn-BMST+G-CSF、allo-BMT和allo-BMT+G-CSF組的小鼠觀察至+60 d均無aGVHD表現(xiàn)。allo-BMT+G-CSF組有1只小鼠+50 d死亡,無典型aGVHD表現(xiàn)和病理改變,死因判別為移植相關(guān)死亡。4組生存時間無顯著差異。allo-BMST組于+22 d開始出現(xiàn)aGVHD表現(xiàn),于+28 d~+42 d死亡;allo-BMST+G-CSF組小鼠于+10 d即開始出現(xiàn)弓背體姿、脫毛、腹瀉、不食不動、體重進(jìn)行性下降等典型aGVHD表現(xiàn),死亡高峰期為+13 d~+25 d,僅1只存活至+37 d。2組存活時間分別為(34.8±4.5)d和(19.8±6.1)d,+30 d存活率分別為80%和6.7%,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖2。
allo-BMST+G-CSF組瀕死小鼠的肝臟、小腸、皮膚和脾組織學(xué)檢查可見典型aGVHD 病理改變:(1)肝臟可見肝細(xì)胞濁腫、變性,肝索排列紊亂,中央靜脈擴(kuò)張,小靜脈周圍及匯管區(qū)可見大量淋巴細(xì)胞浸潤; (2)小腸可見黏膜上皮細(xì)胞變性壞死,絨毛脫落,假膜形成,黏膜和黏膜下層明顯充血、水腫,腺體減少,間質(zhì)出血,伴較多淋巴細(xì)胞浸潤; (3)皮膚角質(zhì)層脫落,基底細(xì)胞空泡變性,真皮層可見淋巴細(xì)胞浸潤; (4)脾臟可見正常結(jié)構(gòu)破壞,白髓消失,間質(zhì)出血,伴巨噬細(xì)胞和淋巴細(xì)胞浸潤。而同期allo-BMST組小鼠的病理改變較之明顯減輕。
Figure 2.Kaplan-Meier of post-transplantation survival difference in Syn-BMST, allo-BMT, allo-BMST, Syn-BMST+G-CSF, allo-BMT+G-CSF and allo-BMST+G-CSF groups.
圖2各組小鼠移植后Kaplan-Meier生存曲線
3移植后使用G-CSF對SpTNC和脾細(xì)胞免疫表型的影響
與allo-BMST組相比,allo-BMST+G-CSF組受鼠+10 d SpTNC明顯增加(P<0.05);脾臟NK細(xì)胞顯著擴(kuò)增(P<0.01),見圖3,嵌合體檢測顯示脾有核細(xì)胞中p-Kb+細(xì)胞>99%,說明擴(kuò)增的NK細(xì)胞為供鼠來源。G-CSF給藥對總DCs數(shù)量無明顯影響,但DC1亞群減少(P<0.01),而DC2亞群增多(P<0.01),DC1/DC2比值明顯減低(P<0.05)。DC表面共刺激分子CD80表達(dá)無明顯變化(P>0.05),CD86表達(dá)降低(P<0.05)。2組CD3+、CD4+、CD8+、CD3+NK1.1+、CD4+CD25+、CD3+CD25+、CD3+CD69+細(xì)胞百分率無明顯差異,見表1。
Figure 3.Continuous administration of G-CSF after allogeneic bone marrow cells plus spleen cells transplantation can increase the spleen NK cells (CD3-NK1.1+) subset at day +10 in a murine model.
圖3小鼠allo-BMST后連續(xù)G-CSF給藥能擴(kuò)增+10 d脾臟NK(CD3-NK1.1+)細(xì)胞
表1小鼠allo-BMST后連續(xù)G-CSF給藥對脾細(xì)胞免疫表型的影響
Table 1.The impact of continuous administration of G-CSF after allogeneic bone marrow cells plus spleen cells transplantation on the immunophenotypes of splenocytes at day +10 in a murine model (%. Mean±SD.n=5)
Subsetofimmunecellsallo-BMSTallo-BMST+G-CSFCD3+23.44±2.5920.38±3.09CD4+5.73±1.264.80±0.93CD8+10.79±2.999.28±1.20CD3+NK1.1-15.26±2.0013.58±1.59CD3-NK1.1+10.12±2.0526.54±2.60**CD3+NK1.1+9.16±3.087.68±2.40CD3+CD69+■32.06±1.7629.60±2.99CD3+CD25+■2.64±0.152.38±0.39CD4+CD25+■0.26±0.090.26±0.09CD11c+3.90±0.704.02±0.44CD11c+CD8a-▲41.80±5.8931.92±2.79*CD11c+CD8a+▲58.20±5.8968.08±2.79*CD11c+CD80+▲40.52±5.8047.38±6.41CD11c+CD86+▲71.68±2.5467.82±0.96*CD11c+CD80+CD86+▲36.98±5.0340.74±4.51
■: precent of CD3+cells (T-cells);▲: precent of CD11c+cells (dendritic cells, DCs).*P<0.05,**P<0.01vsallo-BMST.
4移植后使用G-CSF對血清細(xì)胞因子水平的影響
allo-BMST組和allo-BMST+G-CSF組+10 d血清的IL-2、IL-4、IFN-γ和TNF-α水平在2組間差異均無統(tǒng)計(jì)學(xué)意義,見表2。
討論
G-CSF最早因發(fā)現(xiàn)具有髓系生長刺激作用而得名,在allo-HSCT中廣泛用于供者外周血干細(xì)胞動員和促進(jìn)移植后粒細(xì)胞恢復(fù),近年來發(fā)現(xiàn)G-CSF對免疫系統(tǒng)還具有廣泛調(diào)節(jié)作用[1]。然而,臨床上allo-HSCT后應(yīng)用G-CSF對免疫學(xué)和移植結(jié)果的影響仍不清楚[2],特別是對GVHD和生存時間(OS)的影響存在爭議[3-6]。此外,有臨床研究[8-13]顯示,G-CSF對移植后復(fù)發(fā)白血病有一定治療作用,獲得療效者多伴隨出現(xiàn)GVHD,推測其療效機(jī)制可能與誘導(dǎo)伴隨GVHD的移植物抗白血病(graft-versus-leukemia, GVL)效應(yīng)有關(guān),我們的臨床研究中也有類似發(fā)現(xiàn)。因此,本研究進(jìn)一步應(yīng)用小鼠allo-HSCT模型探討移植后使用G-CSF對GVHD的影響及其可能機(jī)制。
人與小鼠G-CSF具有較高的同源性,兩者73%的氨基酸序列相同,因而人G-CSF可用于小鼠模型的研究。我們在H-2不相合小鼠(C57BL/6→BALB/c)allo-HSCT模型中,受鼠移植1×107BMCs+5×106SpCs后自+1 d開始持續(xù)給予G-CSF 2 μg/d,結(jié)果與allo-BMST對照組相比較,G-CSF給藥組小鼠aGVHD加重,生存時間明顯縮短,而在同基因移植小鼠中未見上述效應(yīng),與Morris等[7]在H-2半相合小鼠(B6→B6D2F1)allo-HSCT模型中的研究結(jié)果相似。同時我們還發(fā)現(xiàn)在異基因單純骨髓細(xì)胞移植(1×107BMCs)后持續(xù)給予G-CSF,未導(dǎo)致aGVHD加重,2組受鼠生存時間無差異,提示aG-CSF須通過輸入的異基因供鼠脾細(xì)胞介導(dǎo)加重aGVHD的效應(yīng)。
表2小鼠allo-BMST后連續(xù)G-CSF給藥對血清IL-2、IL-4、IFN-γ和TNF-α水平的影響
Table 2.The impact of continuous administration of G-CSF after allogeneic bone marrow cells plus spleen cells transplantation on the levels of serum IL-2, IL-4, IFN-γ and TNF-α at day +10 in a murine model (ng/L. Mean±SD.n=7)
GroupIL-2IL-4IFN-γTNF-αallo-BMST82.07±22.6284.21±14.56197.26±22.1510.13±2.94allo-BMST+G-CSF95.01±37.5673.26±11.98215.57±25.7310.71±2.52
由于allo-BMST后G-CSF給藥組+10 d開始即有小鼠陸續(xù)出現(xiàn)aGVHD表現(xiàn),因此我們在后續(xù)實(shí)驗(yàn)時選擇+10 d檢測脾細(xì)胞免疫指標(biāo),結(jié)果發(fā)現(xiàn)G-CSF能增加脾有核細(xì)胞數(shù),嵌合體檢測顯示脾細(xì)胞中p-Kb+細(xì)胞百分率>99%,即完全供者型嵌合體,表明擴(kuò)增細(xì)胞為供者來源。進(jìn)一步應(yīng)用四色流式細(xì)胞術(shù)檢測發(fā)現(xiàn),G-CSF給藥組小鼠脾臟中NK(CD3-NK1.1+)細(xì)胞顯著擴(kuò)增,而T細(xì)胞(CD3+NK1.1-)和NKT細(xì)胞(CD3+NK1.1+)百分率無明顯變化,提示供者NK細(xì)胞擴(kuò)增可能是G-CSF加重aGVHD的一個重要機(jī)制。
NK細(xì)胞是一種重要的固有免疫細(xì)胞,通過抑制性殺傷細(xì)胞免疫球蛋白樣受體(KIR)結(jié)合MHC-Ι類分子識別“自我” ,而通過“丟失自我”機(jī)制殺傷MHC-Ι類分子表達(dá)缺陷或結(jié)構(gòu)異常的細(xì)胞,其殺傷作用無MHC限制性。近年來發(fā)現(xiàn),除供者T淋巴細(xì)胞之外,供者NK細(xì)胞是另一種在GVHD和GVL效應(yīng)中起重要作用的效應(yīng)細(xì)胞。多數(shù)研究肯定了供者NK細(xì)胞異基因反應(yīng)活性介導(dǎo)GVL效應(yīng)的作用,Ruggeri等[14]首先報(bào)道在HLA半相合HSCT中KIR-配體(KIR-L)錯配/不相容能增強(qiáng)GVL效應(yīng),復(fù)發(fā)率顯著降低,同時還減輕GVHD和移植物排斥。然而,在非血緣造血干細(xì)胞移植(UDT)中,KIR-L不相容對GVHD的影響存在相反結(jié)果,Davies等[15]發(fā)現(xiàn)KIR-L(HLA-Bw4和HLA-C位點(diǎn))不相容UDT中GVHD有升高趨勢。Miller等[16]分析2 062例髓系白血病的UDT時發(fā)現(xiàn),受者缺失1個或以上的KIR配體與復(fù)發(fā)率減低和Ⅲ~ΙV度aGVHD增加相關(guān),NK細(xì)胞異基因反應(yīng)活性能同時增強(qiáng)GVL效應(yīng)和GVHD。因此,不同類型移植中其供者NK細(xì)胞對GVHD的影響有所不同。本研究所使用的C57BL/6供鼠和BALB/c受鼠為2種品系不同的近交系小鼠,供鼠KIR與受鼠MHC-Ι類抗原不相容,供鼠NK細(xì)胞可通過“丟失自我”機(jī)制損傷宿主正常細(xì)胞而介導(dǎo)GVHD。
Morris等[7]在小鼠H-2半相合(B6→B6D2F1)allo-HSCT模型中發(fā)現(xiàn),G-CSF主要通過供者NKT細(xì)胞活化和CTL擴(kuò)增等效應(yīng)介導(dǎo)GVHD的加重,與本研究G-CSF誘導(dǎo)供者NK細(xì)胞擴(kuò)增的結(jié)果不同,推測可能與研究使用了不同的移植模型有關(guān),也可能與所用檢測手段差異有關(guān),Morris等[7]的研究應(yīng)用α-GalCer負(fù)載的CD1d四聚體技術(shù)結(jié)合流式細(xì)胞術(shù)檢測NKT細(xì)胞(α-GalCer負(fù)載的CD1d四聚體和CD3雙陽性細(xì)胞),而本研究單以流式細(xì)胞術(shù)檢測CD3+NK1.1+為NKT細(xì)胞指標(biāo),前者能反映NKT細(xì)胞活化的情況,而后者反映的是NKT細(xì)胞量的變化。此外,本研究還發(fā)現(xiàn),G-CSF給藥后樹突狀細(xì)胞(dendritic cells,DCs)數(shù)量無明顯變化,但DC1亞群減少,DC2亞群增多,DC1/DC2比值明顯減低。表明G-CSF促進(jìn)了DCs向DC2方向的極化,這與G-CSF動員供者外周血干細(xì)胞的免疫學(xué)變化相似,但難以直接解釋aGVHD加重的現(xiàn)象,此外,本研究也未發(fā)現(xiàn)G-CSF對+10 d血清的IL-2、IL-4、IFN-γ和TNF-α水平有影響,推測移植后應(yīng)用G-CSF可能作用于與介導(dǎo)aGVHD相關(guān)的多條通路,而不同研究條件下的局部效應(yīng)可能有所差異,但最終的影響結(jié)果乃取決于多條通路的“合力”方向。因此,移植后應(yīng)用G-CSF對免疫系統(tǒng)的影響及其確切機(jī)制還有待進(jìn)一步深入研究。
[參考文獻(xiàn)]
[1]Rutella S, Zavala F, Danese S, et al. Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance [J]. J Immunol, 2005, 175(11): 7085-7091.
[2]Morris ES, MacDonald KP, Hill GR, et al. Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL? [J]. Blood, 2006, 107(9): 3430-3435.
[3]Ringdén O, Labopin M, Gorin NC, et al. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation [J]. J Clin Oncol, 2004, 22(3):416-423.
[4]Remberger M, Naseh N, Aschan J, et al. G-CSF given after haematopoietic stem cell transplantation using HLA-identical sibling donors is associated to a higher incidence of acute GVHD II-IV [J]. Bone Marrow Transplant, 2003, 32(2):217-223.
[5]Khoury HJ, Loberiza Jr FR, Ringden O, et al. Impact of posttransplantation G-CSF on outcomes of allogeneic hematopoietic stem cell transplantation [J]. Blood, 2006, 107(4): 1712-1716.
[6]Ho VT, Mirza NQ, del Junco D, et al. The effect of hematopoietic growth factors on the risk of graft-vs-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis [J]. Bone Marrow Transplant, 2003, 32(8):771-775.
[7]Morris ES, MacDonald KP, Kuns RD, et al. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation[J]. Nat Med, 2009, 15(4):436-441.
[8]Atkinson K, Champlin R, Ritz J, et al. Clinical bone marrow and blood stem cell transplantation [M]. 3rd ed. Cambridge: Cambridge University Press, 2004: 1374-1383.
[9]Giralt S, Escudier S, Kantarjian H, et al. Preliminary results of treatment with filgrastim for relapse of leukemia and myelodysplasia after allogeneic bone marrow transplantation[J]. N Engl J Med, 1993, 329(11):757-761.
[10]Bishop MR, Tarantolo SR, Pavletic ZS, et al. Filgrastim as an alternative to donor leukocyte infusion for relapse after allogeneic stem-cell transplantation [J]. J Clin Oncol, 2000, 18(11):2269-2272.
[11]Carral A, Sanz GF, Sanz MA. Filgrastim for the treatment of leukemia relapse after bone marrow transplantation [J]. Bone Marrow Transplant, 1996, 18(4):817-819.
[12]Law L, Tuscano J, Wun T, et al. Filgrastim treatment of acute myelogenous leukemia (M7) relapse after allogeneic peripheral stem cell transplantation resulting in both graft-versus-leukemia effect with cytogenetic remission and chronic graft-versus-host disease manifesting as polyserositis and subsequent bronchiolitis obliterans with organizing pneumonia[J]. Int J Hematol, 2002, 76(4):360-364.
[13]Howrey RP, Martin PL, Driscoll T, et al. Graft-versus-leukemia-induced complete remission following unrelated umbilical cord blood transplantation for acute leukemia [J]. Bone Marrow Transplantat, 2000, 26(11):1251-1254.
[14]Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants[J]. Science, 2002, 295 (6): 2097-2100.
[15]Davies SM, Ruggieri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants[J]. Blood, 2002, 100(10): 3825-3827.
[16]Miller JS, Cooley S, Parham P, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT [J]. Blood, 2007, 109(11):5058-5061.
(責(zé)任編輯: 陳妙玲, 余小慧)
*[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 81260241)
Effect of granulocyte colony-stimulating-factor on acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation in a murine modelWANG Liang1, ZHU Kang-er2, ZHANG Tao2, CHEN Jie2
(1DepartmentofOncology,2DepartmentofHematology,FirstAffiliatedHospital,JinanUniversity,Guangzhou510632,China.E-mail:tzhuker@jnu.edu.cn)
[ABSTRACT]AIM: To explore the impact of granulocyte colony-stimulating factor (G-CSF) on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a murine model and its possible mechanisms. METHODS: Male C57BL/6 (H-2b) and BALB/c (H-2d) mice were used as the allogeneic and syngeneic donor mice, respectively. Moreover, female BALB/c mice were used as recipient mice. The recipient mice were conditioned by a single dose (8 Gy) of total body irradiation (TBI). The recipient mice were randomly divided into 7 groups: TBI group, Syn-BMST control group, post-Syn-BMST G-CSF administration (Syn-BMST+G-CSF)group, allo-BMT control group, post-allo-BMT G-CSF administration (allo-BMT+G-CSF)group, allo-BMST control group and post-allo-BMST G-CSF administration (allo-BMST+G-CSF) group. The mice in control groups and G-CSF administration groups were subcutaneous injected with 0.1 mL normal saline (NS) and 0.1 mL NS containing 2 μg G-CSF per day from 1st day, respectively. The effect of G-CSF on aGVHD was evaluated by clinical manifestations and pathological changes, as well as survival time of the mice in different groups. The serum levels of IL-2, IL-4, IFN-γ and TNF-α in allo-BMST and allo-BMST+G-CSF groups were detected by ELISA at 10th day. Flow cytometry was used to analyze the immunophenotypes of splenocytes at 10th day. RESULTS: The mice in TBI group were all died for hematologic failure on 9~15 d after TBI. No effect of G-CSF on the survival of the mice underwent Syn-BMST and transplantation of single allogeneic marrow cells was observed. The mean survival days in allo-BMST group and allo-BMST+G-CSF group were (34.8±4.5) d and (19.8±6.1) d’respectively (P<0.01). Moreover, post-transplant administration of G-CSF increased the spleen total nucleated cells count (SpTNC), NK cells subset, and DC1/DC2 ratio in the spleen with over 99% of donor chimerism rate at 10th day. No difference in the levels of serum IL-2, IL-4, IFN-γ and TNF-α between the 2 group at 10th day was found. CONCLUSION: The administration of G-CSF after allo-BMST significantly aggravates mouse aGVHD. The expansion of NK cells stimulated by G-CSF may be involved in the mechanism of generating alloreactivity against host cells. These results imply there may be potential risk of evoking or aggravating acute GVHD if G-CSF is administered in the early stage of clinical allo-HSCT.
[KEY WORDS]Granulocyte colony-stimulating-factor; Acute graft-versus-host disease; Allogeneic hematopoietic stem cell transplantation, Murine
通訊作者△Tel: 0993-2057151; E-mail: 1257067540@qq.com
[收稿日期]2015- 05- 03[修回日期] 2015- 07- 22
[文章編號]1000- 4718(2015)12- 2195- 07
doi:10.3969/j.issn.1000- 4718.2015.12.013
[中圖分類號]R392.4
[文獻(xiàn)標(biāo)志碼]A