亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        外源γ-氨基丁酸對鹽堿脅迫下甜瓜種子萌發(fā)的影響

        2016-01-25 03:02:15趙寧徐志然曲斌胡曉輝西北農(nóng)林科技大學園藝學院陜西楊凌712100
        關鍵詞:種子萌發(fā)氨基丁酸甜瓜

        趙寧,徐志然,曲斌,胡曉輝(西北農(nóng)林科技大學園藝學院,陜西楊凌712100)

        外源γ-氨基丁酸對鹽堿脅迫下甜瓜種子萌發(fā)的影響

        趙寧,徐志然,曲斌,胡曉輝
        (西北農(nóng)林科技大學園藝學院,陜西楊凌712100)

        摘要以鹽堿敏感甜瓜(Cucumis melo L.)“一品天下208”種子為材料,研究摩爾濃度50 mmol/L在鹽堿脅迫條件下(NaCl、Na2SO4、Na HCO3和Na2CO3按摩爾比1∶9∶9∶1),不同外源γ-氨基丁酸(γ-aminobutyric acid,GABA)摩爾濃度0、5、10、50 mmol/L浸種處理對甜瓜種子發(fā)芽指標及胚根內(nèi)抗氧化酶活性和GABA代謝的影響.結果表明:鹽堿脅迫顯著抑制了甜瓜種子的萌發(fā)與胚根和胚芽的生長;不同摩爾濃度GABA浸種處理部分緩解了鹽堿脅迫對甜瓜種子萌發(fā)的抑制作用.5 mmol/L GABA浸種處理能顯著增加胚根內(nèi)超氧化物歧化酶(superoxide dismutase,SOD)活性;10 mmol/L GABA浸種處理能顯著提高可溶性蛋白質(zhì)含量及內(nèi)源GABA含量和谷氨酸脫羧酶(glutamate decarboxylase,GAD)活性;50 mmol/L GABA浸種處理能顯著提高種子的發(fā)芽率、發(fā)芽勢、活力指數(shù)、總鮮質(zhì)量、胚根和胚芽長,并且能提高過氧化物酶(peroxidase,POD)、過氧化氫酶(catalase,CAT)和GABA轉氨酶(GABA transaminase,GABA-T)活性,且顯著降低丙二醛(malondialdehyde,MDA)含量.不同摩爾濃度GABA浸種處理效果有差別,但總體而言50 mmol/L GABA浸種有利于緩解鹽堿脅迫對甜瓜種子萌發(fā)的抑制作用,提高甜瓜種子耐鹽堿能力.

        關鍵詞鹽堿脅迫;γ-氨基丁酸;甜瓜;種子萌發(fā)

        浙江大學學報(農(nóng)業(yè)與生命科學版) 42(1):40~46,2016

        Journal of Zhejiang University(Agric.&Life Sci.)

        http://www.journals.zju.edu.cn/agr

        E-mail:zdxbnsb@zju.edu.cn

        第一作者聯(lián)系方式:趙寧(http://orcid.org/0000-0003-4375-4163),E-mail:ningzhaoforever@163.com

        URL:http://www.cnki.net/kcms/detail/33.1247.S.20160119.1926.002.html

        Effect of exogenousγ-aminobutyric acid onseeds germination of melon under salinity-alkalinity stress.Journal of Zhejiang University(Agric.&Life Sci.),2016,42(1):40-46

        ZHAO Ning,XU Zhiran,QU Bin,HU Xiaohui(College of Horticulture,Northwest A&F University,Yangling 712100,Shaanxi,China)

        Summary Due to the salinity-alkalinity stresses in agricultural environment,the production,quality and economic benefit of crops are seriously restricted.Salinity-alkalinity stresses not only decreased crop yields and affected crop quality,but also severely restricted sustainable and efficient crop production development.Therefore,it is of great significance to increase the crop resistance to salinity-alkalinity stresses for high-efficient and high-yield agriculture.γ-aminobutyric acid(GABA)is a non-protein amino acid,commonly exist in plant and animal tissues,which can indirectly affect plant growth and development under stress.However,there are few studies about the effect of exogenous GABA on seed germination under salinity-alkalinity stress.Thus,the experiment was carried out to screen the optimal concentration of GABA to improve the salt resistance of melon seeds.

        Salt-sensitive variety of melon(Cucumis melo L.)seeds(cv“Yipintianxia 208”),which is sensitive to salinityalkalinity stresses,was chosen as experiment material.The effects of different concentrations(0,5,10,and 50mmol/L)of exogenous GABA on germination index,radicle antioxidant enzyme activities,and GABA metabolism of melon seeds under 50 mmol/L salinity-alkalinity stress conditions(NaCl∶Na2SO4∶Na HCO3∶Na2CO3as molar volume ratio 1∶9∶9∶1) were studied.There were five treatments in this experiment(i) CK:purified water presoaking and pre-germination;(ii)T1:purified water presoaking and pre-germination under 50 mmol/L salinityalkalinity stress;(iii)T2:5 mmol/L GABA presoaking and pre-germination under 50 mmol/L salinity-alkalinity stress;(iv)T3:10 mmol/L GABA presoaking and pre-germination under 50 mmol/L salinity-alkalinity stress;(v)T4:50 mmol/L GABA presoaking and pre-germination under 50 mmol/L salinity-alkalinity stress.

        The results showed that salinity-alkalinity stresses significantly inhibited seeds germination and the growth of radicles and embryos of melon.Soaking seeds in different concentrations of GABA partly decreased the stress-induced inhibition on seeds germination of melon.Compared with the melon seeds in the treatment of salinity-alkalinity stress without GABA,a presoaking concentration of 5 mmol/L GABA improved superoxide dismutase(SOD)activity,and presoaking with 10 mmol/L GABA improved soluble protein content,endogenous GABA content and glutamate decarboxylase(GAD)activity in the radicles;presoaking with 50 mmol/L GABA improved seed germination rates,germination potential,vigor index,fresh mass,lengths of radicles and embryos,and peroxidase(POD),catalase(CAT)and GABA transaminase(GABA-T) activities and decreased malondialdehyde(MDA)content.

        It was concluded that 50 mmol/L GABA presoaking significantly alleviate the inhibition of melon seeds under salinity-alkalinity stress,and improved the salt tolerance of melon seeds.

        Key words salinity-alkalinity stress;γ-aminobutyric;melon;seed germination

        甜瓜(Cucumis melo L.)是設施栽培的重要果蔬作物,因發(fā)育周期短、供給時間長、高產(chǎn)優(yōu)質(zhì)等特點,是我國農(nóng)業(yè)栽培的重要作物之一,也是西北地區(qū)主要栽培作物之一,中國甜瓜產(chǎn)量約占世界總產(chǎn)量的50%[1].我國的鹽漬土總面積約3.6×107hm2,主要分布在西北、華北及東北等地區(qū),嚴重影響著作物的產(chǎn)量、品質(zhì)和效益.土壤鹽堿脅迫嚴重抑制、延遲甚至阻礙了大多數(shù)植物種子的萌發(fā)[2].因此,如何利用好大面積的次生鹽漬化土壤繼續(xù)維持和發(fā)展果蔬生產(chǎn),已經(jīng)成為研究人員亟待解決的問題.

        γ-氨基丁酸(γ-aminobutyric acid,GABA)作為自由態(tài)的四碳非蛋白質(zhì)氨基酸,普遍存在于動植物組織中,是一種主要的胞內(nèi)信號分子[3].在動物體內(nèi),GABA是一種重要的抑制性神經(jīng)傳導物質(zhì),是最普通的腦內(nèi)抑制性遞質(zhì)[4].在高等植物體內(nèi),當植物遭到生物與非生物脅迫時,通常會在生理和生化等不同水平作出響應,產(chǎn)生多種逆境耐受機制,以便在脅迫條件下得以生存[5].研究表明,外源GABA可以通過提高抗氧化酶活性,降低活性氧水平及膜脂過氧化程度,維持較高的光合系統(tǒng)Ⅱ活性,促進幼苗的生長及生物量積累,緩解NaCl脅迫對番茄種子的傷害[6];外源GABA能通過調(diào)節(jié)活性氧代謝,緩解低氧脅迫對甜瓜種子萌發(fā)造成的傷害[7].然而,關于不同摩爾濃度GABA對鹽堿脅迫下甜瓜種子萌發(fā)影響的研究尚鮮有報道.因此,本試驗以對鹽堿敏感的甜瓜(Cucumis melo L)品種“一品天下208”為試材[8],研究不同摩爾濃度GABA溶液浸種對鹽堿脅迫下甜瓜種子萌發(fā)能力和內(nèi)部生理指標的影響,旨在篩選出能緩解鹽堿脅迫對甜瓜種子萌發(fā)抑制作用的最適GABA濃度.

        1 材料與方法

        1.1試驗材料

        以鹽堿敏感品種“一品天下208”[8]種子為試驗材料.

        1.2試驗方法

        試驗于西北農(nóng)林科技大學園藝學院試驗室內(nèi)進行,共設5個處理:1)蒸餾水浸種催芽(對照,CK);2)蒸餾水浸種+50 mmol/L鹽堿脅迫[c(NaCl)∶c(Na2SO4)∶c(NaHCO3)∶c(Na2CO3)=1∶9∶9∶1](處理1,T1);3)5 mmol/L GABA浸種+50 mmol/L鹽堿脅迫(處理2,T2);4)10 mmol/L GABA浸種+ 50 mmol/L鹽堿脅迫(處理3,T3);5)50 mmol/L GABA浸種+50 mmol/L鹽堿脅迫(處理4,T4).選取大小一致,顆粒飽滿的甜瓜種子經(jīng)溫湯浸種后,置于含有不同摩爾濃度GABA溶液的燒杯中,并于28℃的人工氣候箱內(nèi)黑暗浸種6 h,然后將種子置于直徑9 cm鋪有3層濾紙的培養(yǎng)皿中,分別滴加相應摩爾濃度GABA溶液(對照和鹽堿脅迫處理滴加蒸餾水)浸濕濾紙,每個培養(yǎng)皿內(nèi)放入20粒種子,在黑暗條件下28℃人工氣候箱催芽,每個處理3次重復.培養(yǎng)期間每天補充適量的去離子水或相應摩爾濃度GABA水溶液,以保證水分與GABA濃度恒定.以開始露出胚根作為發(fā)芽標準.每天記錄發(fā)芽種子數(shù),在催芽第5天收集胚根和胚芽,進行相關指標的測定.

        1.3測定項目與方法

        1.3.1萌發(fā)指標的測定

        活力指數(shù)(vigor index,VI)=S×∑(Gt/Dt),式中:S為新苗總鮮質(zhì)量,g;Gt為總供試種子在t時間之內(nèi)萌發(fā)的數(shù)量;Dt為種子萌發(fā)所對應的時間.

        胚芽和胚根長度的測定:利用掃描儀(Epson Experssion 1680)獲取芽苗影像,然后使用Image J軟件分析胚芽和胚根長度.

        1.3.2生理指標的測定

        超氧化物歧化酶(superoxide dismutase,SOD)活性測定參考GIANNOPOLITIS等[9]的方法,以抑制氮藍四唑(nitrobluetetrazolium,NBT)光化還原的50%作為一個酶活性單位;過氧化物酶(peroxidase,POD)活性測定參考曾韶西等[10]方法;過氧化氫酶(catalase,CAT)活性測定參考DANIELS等[11]方法;丙二醛含量測定參照HEATH等[12]的方法;可溶性蛋白質(zhì)含量測定選用考馬斯亮藍G-250染色法參照BRADFORD等[13]方法;GABA含量測定參照ZHANG 等[14]的方法;谷氨酸脫羧酶(glutamate decarboxylase,GAD)活性參照沈黎明等[15]和JOHNSON等[16]的方法測定;GABA轉氨酶(GABA transaminase,GABAT)活性參照ANSARI等[17]的方法.

        1.4數(shù)據(jù)分析

        用統(tǒng)計分析軟件SAS 8.1進行試驗數(shù)據(jù)處理和分析.采用單因素方差(One-way ANOVA)分析及Duncan多重比較(Duncan’s multiple range test)進行差異顯著性分析(α=0.05).

        2 結果與分析

        2.1對發(fā)芽率、發(fā)芽勢和活力指數(shù)的影響

        由圖1可以看出,鹽堿脅迫處理顯著降低了甜瓜種子的發(fā)芽率和發(fā)芽勢,外源GABA浸種處理對甜瓜種子的發(fā)芽率和發(fā)芽勢無顯著影響,但50 mmol/L GABA浸種處理的種子發(fā)芽率和發(fā)芽勢均高于單純鹽堿脅迫處理.與對照相比,單純鹽堿脅迫顯著降低了甜瓜種子的活力指數(shù);而5 mmol/L 和50 mmol/L GABA浸種處理可以增加鹽堿脅迫下甜瓜種子的活力指數(shù),分別比單純鹽堿脅迫增加了26.18%和26.60%.

        2.2對種子胚根和胚芽長及鮮質(zhì)量影響

        由表1可以看出,與對照相比,單純鹽堿脅迫處理顯著降低了甜瓜芽苗總鮮質(zhì)量和抑制了胚根和胚芽生長.不同摩爾濃度GABA浸種處理減緩了鹽堿脅迫對上述指標的抑制作用,其中50 mmol/L GABA浸種處理的總鮮質(zhì)量、胚根和胚芽生長效果最好,分別比單純鹽堿脅迫處理增加了40.87%、54.63% 和28.72%.

        2.3GABA對鹽堿脅迫下甜瓜芽苗胚根內(nèi)丙二醛質(zhì)量摩爾濃度的影響

        由圖2可以看出,單純鹽堿脅迫處理顯著增加了甜瓜胚根內(nèi)MDA質(zhì)量摩爾濃度,比對照增加了36.44%.在鹽堿脅迫下,甜瓜胚根內(nèi)MDA含量表現(xiàn)出隨GABA浸種濃度的增加呈逐漸降低的變化趨勢,當摩爾濃度為50 mmol/L GABA時,甜瓜胚根內(nèi)MDA含量最低.

        2.4GABA對鹽堿脅迫下甜瓜芽苗胚根內(nèi)可溶性蛋白質(zhì)含量的影響

        由圖3可以看出,單純鹽堿脅迫處理增加了甜瓜芽苗胚根內(nèi)可溶性蛋白質(zhì)含量;外源GABA浸種處理后胚根內(nèi)可溶性蛋白質(zhì)含量隨著GABA摩爾濃度的增加表現(xiàn)出先升高后降低的變化趨勢,在GABA摩爾濃度為10 mmol/L時胚根內(nèi)可溶性蛋白質(zhì)含量最高.

        2.5GABA對鹽堿脅迫下甜瓜芽苗胚根內(nèi)抗氧化酶活性的影響

        由圖4可知,鹽堿脅迫處理顯著增加了甜瓜芽苗胚根內(nèi)SOD和POD活性,降低了CAT活性;外源GABA浸種處理的甜瓜胚根內(nèi)SOD活性表現(xiàn)出先升高后降低的變化趨勢,在GABA摩爾濃度為5 mmol/L時活性最大;CAT活性隨著GABA摩爾濃度的升高呈現(xiàn)出逐漸升高的變化趨勢,在GABA摩爾濃度為50 mmol/L時活性最大.鹽堿脅迫下,胚根內(nèi)POD活性表現(xiàn)出隨GABA摩爾濃度的增加逐漸升高的變化趨勢,在GABA摩爾濃度為50 mmol/L時胚根內(nèi)POD活性達到最大.

        2.6外源GABA對鹽堿脅迫下甜瓜芽苗胚根內(nèi)源GABA含量的影響

        由圖5可以看出,在鹽堿脅迫條件下甜瓜芽苗胚根內(nèi)GABA含量與對照相比顯著增加了15.07%.不同外源GABA浸種處理后,胚根內(nèi)GABA含量表現(xiàn)出隨外源GABA摩爾濃度的增加而先升高后降低的變化趨勢,10 mmol/L GABA處理的胚根內(nèi)GABA含量比單純鹽堿脅迫增加了41.06%.

        2.7GABA對鹽堿脅迫下甜瓜芽苗胚根內(nèi)GAD和GABA-T活性的影響

        由圖6可以看出,鹽堿脅迫處理顯著降低了甜瓜芽苗胚根內(nèi)GAD活性,僅為對照的27.52%.在鹽堿脅迫下,不同摩爾濃度的外源GABA浸種處理后,胚根內(nèi)GAD活性表現(xiàn)出隨GABA摩爾濃度的增加先升高后降低的變化趨勢,10 mmol/L GABA浸種處理的胚根內(nèi)GAD活性最高.鹽堿脅迫處理顯著降低了甜瓜芽苗胚根內(nèi)GABA-T活性,比對照降低了39.68%;在鹽堿脅迫條件下采用不同濃度的外源GABA浸種后,胚根內(nèi)GABA-T活性隨著GABA摩爾濃度的升高表現(xiàn)出逐漸升高的變化趨勢,在GABA摩爾濃度為50 mmol/L時胚根內(nèi)GABA-T活性最高.

        3 討論與結論

        鹽堿脅迫,降低了植物光合作用,抑制了植物正常生長發(fā)育[8,18].羅黃穎等[6]發(fā)現(xiàn)外源GABA能顯著緩解高鹽脅迫下番茄種子的萌發(fā).本試驗結果中鹽堿脅迫顯著降低了甜瓜種子的發(fā)芽率、發(fā)芽勢、活力指數(shù)、總鮮質(zhì)量,并且抑制了胚根和胚芽生長,外源GABA浸種緩解了鹽堿脅迫對甜瓜芽苗總鮮質(zhì)量、胚根和胚芽生長的抑制作用,50 mmol/L外源GABA浸種的效果最佳.逆境脅迫下植物易發(fā)生膜脂過氧化使體內(nèi)自由基代謝失衡,MDA含量升高損壞細胞結構和功能[19].本試驗在單純鹽堿脅迫下胚根內(nèi)MDA含量顯著增加,50 mmol/L的GABA浸種能明顯降低胚根內(nèi)MDA含量.

        抗氧化酶是植物體內(nèi)活性氧清除系統(tǒng),主要維持活性氧代謝平衡,保證膜結構功能完整.研究顯示,植物受非生物脅迫時,SOD迅速催化細胞中多余的轉化成H2O2和O2[20 21],POD和CAT則負責清除過多的H2O2.周翔等[22]研究表明,外源GABA能提高逆境脅迫下玉米體內(nèi)的抗氧化酶活性[23].逆境脅迫也能誘導植物體內(nèi)GABA迅速積累[24],提高植物體抗氧化酶活性緩解膜脂過氧化對植物體的傷害.本試驗結果,鹽堿脅迫顯著增加了胚根內(nèi)SOD和POD活性,降低了CAT活性,這與賀巖等[25]和高永生等[26]研究結果不同,這可能與植物種類和測量部位不同相關.在鹽堿脅迫下外源GABA浸種后,胚根內(nèi)SOD、POD、CAT活性均發(fā)生顯著變化,在GABA摩爾濃度分別為5 mmol/L、50 mmol/L和50 mmol/L時胚根內(nèi)SOD、CAT和POD活性最高,這與羅黃穎等[6]研究的適當施加外源GABA能增加植物體內(nèi)抗氧化酶的活性一致.

        在高等植物體內(nèi),GABA在傳遞信號,調(diào)節(jié)p H 值,應答脅迫反應和參與碳氮代謝等方面,扮演重要的角色[27].本試驗中,鹽堿脅迫下胚根內(nèi)GABA含量顯著升高,與逆境脅迫可以誘發(fā)植物體內(nèi)GABA的快速積累一致[28].而胚根內(nèi)GAD活性在單純鹽堿脅迫下顯著降低,與鹽堿脅迫下GAD活性被激活以提高植物的抗性[29]不同,這可能與植物所處的p H環(huán)境以及Ca2+/Ca M有關.10 mmol/L GABA浸種時GABA含量和GAD活性顯著升高,50 mmol/L GABA浸種時GABA-T活性最高,加快了GABA向琥珀酸半醛降解參與三羧酸循環(huán)的速度,提高甜瓜種子的耐鹽堿能力.

        以上所述,鹽堿脅迫顯著抑制了甜瓜種子的萌發(fā)、胚根和胚芽的生長;不同摩爾濃度GABA浸種部分緩解了鹽堿脅迫對甜瓜種子的抑制作用.50 mmol/L的GABA浸種能提高種子的發(fā)芽率、發(fā)芽勢、活力指數(shù)、總鮮質(zhì)量,并增加胚根和胚芽長度,還能提高POD、CAT和GABA-T活性,降低MDA含量,顯著緩解了鹽堿脅迫對甜瓜種子萌發(fā)期的傷害.

        參考文獻(References):

        [1]宋海斌,崔喜波,馬鴻艷,等.基于SSR標記的甜瓜品種(系) DNA指紋圖譜庫的構建.中國農(nóng)業(yè)科學,2012,45(13):2676-2689.SONG H B,CUI X B,MA H Y,et al.Construction of DNA fingerprint database based on SSR marker for varieties(lines)of Cucumis melo L.Scientia Agricultura Sinica,2012,45(13):2676-2689.(in Chinese with English abstract)

        [2]朱義,何池全,杜瑋,等.鹽堿脅迫下外源鈣對高羊茅種子萌發(fā)和幼苗離子分布的影響.農(nóng)業(yè)工程學報,2007,23(11):133-137.ZHU Y,HE C Q,DU W,et al.Effect of exogenous calcium on tall fescue seed germination and seedling ion distribution under salinity-alkalinity stress.Transactions of the CSAE,2007,23 (11):133-137.(in Chinese with English abstract)

        [3]BOUCHE N,FAIT A,BOUCHEZ D,et al.Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants.Proceedings of the National Academy of Sciences of the United States of America,2003,100(11):6843-6848.

        [4]BILLINTON A,IGE A O,BOLAM JP,et al.Advances in the molecular understanding of GABA receptors.Trends in Neurosciences,2001,24(5):277-282.

        [5]YAMAGUCHI-SHINOZAKI K,SHINOZAKI K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annual Review of Plant Biology,2006,57:781-803.

        [6]羅黃穎,高洪波,夏慶平,等.γ-氨基丁酸對鹽脅迫下番茄活性氧代謝及葉綠素熒光參數(shù)的影響.中國農(nóng)業(yè)科學,2011,44 (4):753-761.LUO H Y,GAO H B,XIA Q P,et al.Effect ofγaminobutyric acid on tomato oxygen metabolism and chlorophyll fluorescence parameters under under salt stress.Scientia Agricultura Sinica,2011,44(4):753-761.(in Chinese with English abstract)

        [7]李敬蕊,夏慶平,高洪波,等.γ-氨基丁酸浸種對低氧脅迫下甜瓜種子萌發(fā)及芽苗生長和活性氧代謝的影響.河北農(nóng)業(yè)大學學報,2013,36(1):28-31.LI J R,XIA Q P,GAO H B,et al.Effect ofγ-aminobutyric acid seed soaking on melon seed germination,seedling growth and activate oxygen metabolism under low-oxygen stress.Journal of Agricultural University of Hebei,2013,36(1):28-31.(in Chinese with English abstract)

        [8]趙九洲,胡立盼,徐志然,等.甜瓜幼苗耐鹽堿性及緩解鹽堿脅迫γ-氨基丁酸濃度的篩選.北方園藝,2014(9):1-7.ZHAO J Z,HU L P,XU Z R,et al.Melon seeding resistance to salinity-alkalinity and alleviate the screening of salinity-alkalinity stress γ-aminobutyric acid concentration.Northern Horticulture,2014(9):1-7.(in Chinese with English abstract)

        [9]GIANNOPOLITIS C N,RIES S K.Superoxide dismutases Ⅱ:purification and quantitative relationship with watersoluble protein in seedlings.Plant Physioloy,1977,59(2):315-318.

        [10]曾韶西,王以柔,劉鴻先.不同脅迫預處理提高水稻幼苗抗寒性期間膜保護系統(tǒng)的變化比較.植物學報,1997,39(4):308-314.ZENG S X,WANG Y R,LIU H X.Different stress pretreatment of raising rice seedling cold hardiness membrane protective system during the period of change.Acta Botanica Sinica,1997,39(4):308-314.(in Chinese with English abstract)

        [11]DANIEL S G R,ATMAR V J,KUEHN G D.Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase tobacco.Biochemistry,1981,20:2525-2532.

        [12]HEATH R L,PACKER L.Photoperoxidation in isolated chloroplastsⅠ:kinetics and stoichiometry of fatty acid Peroxidation.Archives Biochemistry and Biophysics,1968,125(1):189-198.

        [13]BRADFORD M M.A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,1976,72(1/2):248-254.[14]ZHANG G,BOWN A W.The rapid determination ofγaminobutyric acid.Phytochemistry,1997,44(6):1007-1009.

        [15]沈黎明,霍長河,穆小明,等.測定林生山薰豆體內(nèi)谷氨酸脫氫酶活性的薄膜層析熒光分析法.植物生理學通訊,1996,32 (2):135-137.SHEN L M,HUO C H,MU X M,et al.Determination of alpine mountain embalm bean glutamate dehydrogenase activity in the body of membrane chromatography fluorescence analysis.Plant Physiology Communications,1996,32(2):135-137.(in Chinese with English abstract)

        [16]JOHNSON B S,SINGH N K,CHENY J H,et al.Purification and characterization of glutamate decarboxylase from cowpea.Phytochemistry,1997,46(1):39-44.

        [17]ANSARI M I,LEE R H,CHEN S C G.A novel senescenceassociated gene encoding γ-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence.Physiologia Plantarum,2005,123:1-8.

        [18]李曉宇.鹽堿脅迫及外源植物激素對小麥和羊草生長發(fā)育的影響.長春:東北師范大學,2010.LI X Y.Effects of salt and alkali stresses,and exogenous plant hormones on growth and development of wheat and Leymus chinensis.Changchun:Northeast Normal University,2010.(in Chinese with English abstract)

        [19]劉宛,胡文玉,謝甫綈,等.NaCl脅迫及外源自由基對離體小麥也葉片O2-和膜脂過氧化的影響.植物生理學通訊,1995,31(1):26-29.LIU W,HU W Y,XIE F T,et al.NaCl stress and exogenous free radicals in vitro wheat leaf O2-and the influence of membrane lipid peroxidation.Plant Physiology Communications,1995,31(1):26-29.(in Chinese with English abstract)

        [20]MELONI D A,OLIVA M A,MARTINEZ C A,et al.Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress.Environmental and Experimental Botany,2003,49:69-76.

        [21]VAIDYANATHAN H,SIVAKUMAR P,CHAKRABARTY R,et al.Scavenging of reactive oxygen spacies in NaClstressed rice(Oryza sativa L.):differential response in salttolerant and sensitive varieties.Plant Science,2003,165:1411-1418.

        [22]周翔,吳曉嵐,李云,等.鹽脅迫條件下玉米幼苗ABA和GABA的積累及其相互關系.應用與環(huán)境生物學報,2005,11 (4):412-415.ZHOU X,WU X L,LI Y,et al.Salt stress of maize seedlings under the condition of ABA and GABA accumulation and their mutual relations.Chinese Journal of Applied&Environmental Biology,2005,11(4):412-415.(in Chinese with English abstract)

        [23]田小磊,吳曉嵐,李云,等.鹽脅迫條件下γ-氨基丁酸對玉米幼苗SOD、POD及CAT活性的影響.實驗生物學報,2005,38 (1):75-79.TIAN X L,WU X L,LI Y,et al.Effects ofγ-aminobutyric acid on corn seedling of SOD,POD and CAT activity under salt stress.Acta Biologiae Experimentalis Sinica,2005,38 (1):75-79.(in Chinese with English abstract)

        [24]ALAN W B,MACGREGOR K B,BARRY J S.γaminobutyrate:defense against invertebrate pests.Trends Plant Science,2006,11(9):424-427.

        [25]賀巖,李志崗,李新鵬,等.鹽脅迫條件下兩種基因型小麥生長及保護酶活性的反應.山西農(nóng)業(yè)大學學報,2005(1):42-44.HE Y,LI Z G,LI X P,et al.The condition of two kinds of genotype wheat growth and the activity of protective enzyme reaction under salt stress.Journal of Shanxi Agricultural University,2005(1):42-44.(in Chinese with English abstract)

        [26]高永生,陳集雙.鹽脅迫下鑭對小麥幼苗葉片抗氧化系統(tǒng)活性的影響.中國稀土學報,2005,23(4):490-495.GAO Y S,CHEN J S.Effect of Lanthanum on wheat seedling leaf antioxidant activity under salt stress.Journal of the Chinese Rare Earths Society,2005,23(4):490-495.(in Chinese with English abstract)

        [27]FAIT A,YELLIN A,FROMM H.GABA shunt deficiencies and accumulation of reactive oxygen intermediates:insight from Arabidopsis mutants.Febs Letters,2005,579:41-420.[28]RENAULT H,ROUSSEL V,AMRANI A,et al.The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance.BMC Plant Biology,2010,10(1):20.

        [29]楊澤偉,王龍海,朱莉,等.γ-氨基丁酸代謝旁路在植物響應逆境脅迫中的作用機制研究.生物技術進展,2014,4(2):77-84.YANG Z W,WANG L H,ZHU L,et al.γ-aminobutyric acid metabolic pathways in plant adversity stress response mechanism research.Current Biotechnology,2014,4(2):77-84.(in Chinese with English abstract)

        收稿日期(Received):2015-06-08;接受日期(Accepted):2015-08-01;網(wǎng)絡出版日期(Published online):2016-01-19

        *通信作者(

        Corresponding author):胡曉輝(http://orcid.org/0000-0003-1298-9250),E-mail:hxh1977@163.com

        基金項目:國家“十二五”科技支撐計劃項目(2011BAD29B01).

        DOI:10.3785/j.issn.1008-9209.2015.06.081

        中圖分類號S 652

        文獻標志碼A

        猜你喜歡
        種子萌發(fā)氨基丁酸甜瓜
        甜瓜的重量
        氨基丁酸對畜禽應激影響的研究進展
        真空處理對發(fā)芽稻谷中γ-氨基丁酸含量的影響
        薄皮甜瓜新品種墾甜1號的選育
        中國蔬菜(2016年8期)2017-01-15 14:23:41
        鹽堿脅迫對知母種子萌發(fā)的影響
        鎘、銅離子脅迫對檸條種子萌發(fā)特性的影響
        重金屬鉻對植物種子萌發(fā)影響的研究進展
        葡萄籽對小麥種子萌發(fā)及幼苗生長發(fā)育的影響
        7.0 T MR γ-氨基丁酸化學交換飽和轉移成像的新技術研究
        磁共振成像(2015年5期)2015-12-23 08:52:54
        我喜歡吃甜瓜
        高清少妇一区二区三区| 久久久精品欧美一区二区免费| 在线精品国产一区二区| 亚洲欧洲日产国码无码av野外| 国产女人精品一区二区三区 | 亚洲成熟丰满熟妇高潮XXXXX | 偷拍综合在线视频二区日韩| 正在播放强揉爆乳女教师| 久久免费看少妇高潮v片特黄| 欧美精品一本久久男人的天堂| 中文字幕亚洲入口久久| 成人在线免费电影| 在线观看av永久免费| 无码制服丝袜中文字幕| 日本免费一区二区在线看片| 国产精品久线在线观看| 国产AV无码专区亚洲AⅤ| 能看的网站中文字幕不卡av| 中文字幕女优av在线| 国产精品欧美福利久久| 国产成人亚洲综合无码精品| 女同另类一区二区三区| 亚洲中字幕日产av片在线| 无码a∨高潮抽搐流白浆| 日韩国产有码在线观看视频| 久久91精品国产一区二区| 亚洲欧美中文字幕5发布| 欧美人与动人物牲交免费观看| 看全色黄大黄大色免费久久| 所有视频在线观看免费| 国产乱人视频在线播放| 日韩av二区三区一区| 亚洲熟女熟妇另类中文| 中文字幕乱码熟妇五十中出| 在线免费毛片| 亚洲自偷自拍另类第一页| 人成午夜大片免费视频77777| 国产精品卡一卡二卡三| 亚洲国产日韩精品综合| 亚洲一区二区三区特色视频| 人妻经典中文字幕av|