賽音烏其日拉,牛廣明
定量磁敏感成像與磁敏感加權(quán)成像在原發(fā)性高血壓患者腦內(nèi)微出血中的診斷應(yīng)用
賽音烏其日拉,牛廣明
腦內(nèi)微出血是腦內(nèi)微小血管病變所導(dǎo)致的腦實(shí)質(zhì)亞臨床損害,主要特征為腦實(shí)質(zhì)內(nèi)微小出血灶,臨床無(wú)明確的癥狀與體征,常出現(xiàn)在腦和神經(jīng)變性疾病如腦淀粉樣血管病、阿爾茨海默病、高血壓,也可在正常老年人群中發(fā)現(xiàn),表示潛在的血管病理改變。作者就定量磁敏感成像和磁敏感加權(quán)成像應(yīng)用于腦內(nèi)微出血中的臨床進(jìn)展作一綜述。
磁共振成像;磁敏感加權(quán)成像;定量磁敏感成像;腦內(nèi)微出血;原發(fā)性高血壓
目前,腦內(nèi)微出血(cerebral microbleeds,CMBs)的臨床意義越來(lái)越引起學(xué)者們的注意,而對(duì)其有效的檢查只能依靠影像學(xué)方法實(shí)現(xiàn)。較早時(shí),學(xué)者們?cè)噲D通過(guò)MRI中的彌散加權(quán)成像(diffusion weighted imaging,DWI)來(lái)顯示CMBs。DWI序列屬功能成像,通過(guò)組織內(nèi)水分子擴(kuò)散運(yùn)動(dòng)顯示病灶,反映的是組織內(nèi)水分子的運(yùn)動(dòng)情況,但CMBs病灶最典型病理變化為在其漫長(zhǎng)而緩慢的形成過(guò)程中,隨時(shí)間變化所含血液內(nèi)的含鐵血黃素在CMBs病灶內(nèi)的沉積,很多學(xué)者已證實(shí)DWI效果不如梯度回波T2?加權(quán)成像以及后來(lái)的磁敏感加權(quán)成像(susceptibility weighted imaging,SWI)[1-3]。梯度回波 T2?加權(quán)成像與SWI是診斷CMBs最主要的檢查方式,利用CMBs內(nèi)含鐵血黃素引起的局部磁場(chǎng)的改變來(lái)顯示病灶。磁感性是物質(zhì)的基本物理特性之一,可由磁化率表示[4]。隨著MRI后處理技術(shù)的不斷發(fā)展,利用人體內(nèi)磁感性物質(zhì)的信息反映疾病狀況的探索得到了長(zhǎng)足的進(jìn)步。SWI優(yōu)勢(shì)在于幅度信號(hào)損耗和相位信息,該方法依靠組織之間的磁化率差異產(chǎn)生的相位變化,提高了圖像的對(duì)比度,揭示關(guān)于組織和靜脈脈管解剖和生理信息。定量磁敏感成像(quantitative susceptibility mapping,QSM)是SWI序列的發(fā)展與延伸,通過(guò)數(shù)值計(jì)算解決了逆源效應(yīng)問(wèn)題,從測(cè)得的磁場(chǎng)分布得到局部組織的磁化率源頭,是反映相位信息的梯度回波序列[5]。
CMBs是腦內(nèi)微小血管病變所導(dǎo)致的腦實(shí)質(zhì)亞臨床損害,主要特征為腦實(shí)質(zhì)內(nèi)微小出血灶,臨床無(wú)明確的癥狀與體征[6]。首次由Scharf等[7]在1994年提出,當(dāng)時(shí)使用出血性腔隙綜合征(haemorrhagic lacunes,HL)這一名稱(chēng),發(fā)現(xiàn)腦出血(intracerebral hemorrhage,ICH)組比非ICH組更高頻率發(fā)生HL,存在HL的患者腦出血的風(fēng)險(xiǎn)較高。CMBs最初的定義為梯度回波序列上直徑2~5 mm的信號(hào)缺失區(qū),周?chē)鸁o(wú)水腫帶,也有學(xué)者認(rèn)為其上限應(yīng)為10 mm[8]。Greenberg等[9]認(rèn)為CMBs常出現(xiàn)在腦和神經(jīng)變性疾病,如腦淀粉樣血管病(cerebral amyloid angiopathy,CAA)、阿爾茨海默病(Alzheimer’s disease,AD);也可在正常老年人群中發(fā)現(xiàn),表示潛在的血管病理改變。CMBs在CAA與AD患者中的發(fā)現(xiàn)率分別為80%和30%。Pettersen等[6]認(rèn)為CAA和AD患者認(rèn)知功能減退的程度與CMBs位置及程度有關(guān),腦梗死患者的發(fā)生率為18%~65%,自發(fā)性ICH中發(fā)生率為47%~80%[10-11],正常老年人群中的發(fā)病率可高達(dá)23.5%[12],這些現(xiàn)象引起對(duì)CMBs的病理意義的關(guān)注。神經(jīng)影像學(xué)領(lǐng)域關(guān)注到CMBs與血管危險(xiǎn)因素(年齡、高血壓)和小血管病變間關(guān)系,如腔隙性梗死和腦白質(zhì)高信號(hào),并已經(jīng)注意到缺血性腦梗死和出血性腦梗死患者的CMBs的高發(fā)生率[13]。上述結(jié)果都強(qiáng)烈支持CMBs可作為小血管病變的額外標(biāo)志[14]。一些組織病理學(xué)研究反映了CMBs相關(guān)的血管異常,老年CMBs與CAA和高血壓導(dǎo)致的血管病變有關(guān)[15-17]。CAA由β淀粉樣肽在皮質(zhì)和軟腦膜動(dòng)脈血管壁上積聚引起,而腦血管長(zhǎng)期在高血壓的影響下,小血管管壁發(fā)生脂質(zhì)成纖維玻璃樣變性,從而影響大多數(shù)深部動(dòng)脈。因CAA與高血壓所影響的血管分布區(qū)域不同,CMBs預(yù)期會(huì)遵循以下分布特點(diǎn):①CAA多位于皮質(zhì)-皮質(zhì)下區(qū);②高血壓則多位于深部白質(zhì)、基底節(jié)、丘腦、腦干、小腦部位[18]。有研究報(bào)道,患有皮質(zhì)-皮質(zhì)下區(qū)CMBs的老年人體內(nèi)載脂蛋白Eε4等位基因高度表達(dá),更容易出現(xiàn)CAA[12]。相比之下,深部CMBs與血管危險(xiǎn)因素腔隙性梗死和腦白質(zhì)信號(hào)增高有關(guān),而與載脂蛋白Eε4等位基因表達(dá)的關(guān)系不大,進(jìn)一步印證了CMBs的空間分布可能存在的某種規(guī)律。Brundel等[19]已通過(guò)病理學(xué)證實(shí)了CMBs周?chē)嬖诮M織損傷。Sch?fer等[20]提出,CMBs的存在可能是華法林相關(guān)原發(fā)性腦內(nèi)出血的一個(gè)獨(dú)立危險(xiǎn)因素。在患者腦內(nèi)有大量CMBs時(shí),傳統(tǒng)觀念中比抗凝劑更加安全的抗血小板劑仍會(huì)提高ICH的風(fēng)險(xiǎn)[21-22],因此對(duì)CMBs患者進(jìn)行合理的、個(gè)體化的抗凝治療非常必要。
雖然CMBs病因可能有多種,但CMBs的出現(xiàn)與高血壓有密切關(guān)系[23-26]。高血壓作為腦血管疾病的危險(xiǎn)因素,可導(dǎo)致微血管壁發(fā)生變性,使微量血液從變形的血管壁滲出,引發(fā)CMBs。有研究指出,發(fā)生在基底節(jié)區(qū)及幕下的CMBs與收縮壓增高有關(guān)[27]。作為CMBs的獨(dú)立危險(xiǎn)因素,高血壓是引起CMBs最重要的危險(xiǎn)因素,并能為高血壓性ICH的預(yù)測(cè)提供可靠信息[28],提示癥狀性ICH的風(fēng)險(xiǎn)增高[29-30],CMBs可用來(lái)預(yù)警患潛在出血傾向的腦血管疾病。已有研究通過(guò)觀察CMBs病灶的數(shù)目、直徑、分布部位對(duì)CMBs病灶進(jìn)行診斷,但目前尚未建立對(duì)CMBs病灶客觀定量測(cè)量的方法[31]。一旦發(fā)生CMBs,就會(huì)誘發(fā)臨近的多處正常小動(dòng)脈管壁的變性,并最終形成更多的CMBs。隨著時(shí)間推移,CMBs數(shù)量會(huì)累積,CMBs的形成以及其數(shù)量可預(yù)測(cè)新CMBs形成的風(fēng)險(xiǎn)[32-33]。CMBs和ICH之間可能存在一個(gè)出血體積轉(zhuǎn)化閾值,當(dāng)CMBs體積達(dá)到這一閾值,就有可能轉(zhuǎn)變?yōu)镮CH[34-36]。
磁化率是指物質(zhì)進(jìn)入外磁場(chǎng)后,該物質(zhì)的磁化強(qiáng)度與外磁場(chǎng)強(qiáng)度的比率,磁化率越大物質(zhì)的磁感性越大,磁化率能夠準(zhǔn)確地反映組織內(nèi)成分[37-38]。出血后,紅細(xì)胞的一小部分可能被小膠質(zhì)細(xì)胞或巨噬細(xì)胞所吞噬,大部分紅細(xì)胞最終裂解,血紅蛋白降解成高鐵血紅蛋白和含鐵血黃素。出血初期,氧合血紅蛋白內(nèi)的鐵輔基與卟啉環(huán)位于一個(gè)平面,此時(shí)氧合血紅蛋白是弱抗磁性的;氧合血紅蛋白丟失2個(gè)氧分子后,卟啉環(huán)位置改變,使得鐵輔基暴露,變成強(qiáng)順磁性脫氧血紅蛋白。臨床上,影像學(xué)方法是唯一能對(duì)CMBs作出診斷的方法。CMBs作為直徑≤10 mm微小病變,其診斷方法要滿(mǎn)足高靈敏度和高空間精度的基本要求。因?qū)F血黃素等血液降解產(chǎn)物內(nèi)順磁性鐵的高度敏感性,T2?加權(quán)梯度回波序列廣泛應(yīng)用于CMBs的診斷[9],這些序列能檢出直徑200 μm的出血灶[15]。在幅度圖上,CMBs顯示為小類(lèi)圓形信號(hào)減低區(qū)域,但幅度圖無(wú)法有效區(qū)分順磁性鐵與其他能改變局部磁場(chǎng)的物質(zhì),如鈣化。而且,去相位效應(yīng)導(dǎo)致幅度圖上的信號(hào)減低范圍大于實(shí)際含鐵沉積物所占區(qū)域,往往造成對(duì)CMBs病灶實(shí)際大小的放大、高估,并妨礙相互比鄰的多發(fā)CMBs病灶的區(qū)分。
SWI被公認(rèn)為目前最成熟的CMBs檢查方法,由Haacke等[39]于1997年發(fā)明。該成像方法將分別采集到的強(qiáng)度數(shù)據(jù)以及相位數(shù)據(jù)相互疊加,經(jīng)后處理計(jì)算得到圖像。該方法優(yōu)勢(shì)在于幅度信號(hào)損耗和相位信息,揭示關(guān)于組織和靜脈脈管解剖和生理信息,依靠由于組織之間的磁化率差異產(chǎn)生的相位變化,提高圖像的對(duì)比度[40]。但不足之處在于:①SWI無(wú)法提供磁化率的定量數(shù)據(jù),而隨著現(xiàn)代醫(yī)學(xué)發(fā)展,只對(duì)組織內(nèi)順磁性物質(zhì)的定性分析已不能滿(mǎn)足臨床醫(yī)學(xué)的發(fā)展。在SWI的基礎(chǔ)上,對(duì)組織的磁化率定量分析已成為工作重點(diǎn)[40-41]。②SWI序列通過(guò)結(jié)合幅度圖與相位信息,放大腦內(nèi)含鐵區(qū)域的組織對(duì)比度[42],但是梯度回波序列里的相位圖和SWI相位分布之間的關(guān)系是非局域性的,其相位同時(shí)依賴(lài)于磁化率的空間分布和相對(duì)于主磁場(chǎng)的方向,此外相位值取決于病變的幾何形狀,以及它在主磁場(chǎng)的相對(duì)位置[20]。③因“開(kāi)花效應(yīng)”[43-44]的存在,可導(dǎo)致SWI幅度圖中CMBs的大小超出實(shí)際大小約300%[45-46]。磁敏感加權(quán)圖像中的相位圖提供了出色的組織對(duì)比度。然而,相位圖受組織幾何形狀以及組織在主磁場(chǎng)相位B0中相對(duì)位置的影響,相位值變化會(huì)超出磁感性的變化范圍[6,20]。
因此,有學(xué)者利用逆傅立葉為基礎(chǔ)的方法分析人腦、人腦切片、狨猴腦切片,發(fā)現(xiàn)用此方法所計(jì)算出來(lái)的平均磁化率值接近真實(shí)的組織磁化率值[47]。另一項(xiàng)研究則顯示,QSM能夠區(qū)分抗磁性物質(zhì)與順磁性物質(zhì)[48-49]。而且,含鐵病變磁化率涉及鐵的濃度,QSM也可以非侵入性定量CMBs等病變內(nèi)的鐵濃度。Barbosa等[50]利用電子順磁共振(一個(gè)能夠準(zhǔn)確量化順磁離子濃度并且提供有關(guān)的順磁中心電子結(jié)構(gòu)信息設(shè)備)對(duì)死亡患者腦組織內(nèi)金屬離子測(cè)量,并與定量磁敏感成像進(jìn)行比較,證實(shí)QSM測(cè)量鐵離子的敏感性,是目前唯一能夠?qū)w內(nèi)金屬含量與磁化率定量的影像學(xué)方法[51-52],可應(yīng)用于診斷腦鐵沉積[53-55]、組織鈣化[56]、腦部微出血[57]等;也可以非創(chuàng)傷性手段測(cè)量,如檢測(cè)白質(zhì)束和皮質(zhì)灰質(zhì)中的髓鞘[58]、缺氧或功能退化血液中的鐵含量、非氯化血紅素鐵沉積[12,59]等。因此,QSM已被建議作為體內(nèi)量化腦中的金屬濃度最敏感的技術(shù),比SWI、相位圖、幅度圖更適合精確地識(shí)別CMBs。
總之,CMBs是腦內(nèi)小血管病變的標(biāo)志,能為臨床提供診斷或預(yù)測(cè)信息。雖然近十年來(lái)對(duì)CMBs病理臨床意義了解加深了許多,但仍有很多問(wèn)題沒(méi)得到充分揭示,新MRI技術(shù)的誕生(如QSM)可能從其內(nèi)部成分與磁化率等新角度揭示CMBs。雖然精確無(wú)創(chuàng)檢測(cè)鐵濃度仍然困難,但QSM至少校正了梯度回波幅度、相位和SWI圖像中的非局部影響,可能成為實(shí)驗(yàn)?zāi)P秃团R床CMBs的一個(gè)重要診斷工具。
[1]黃琰.磁敏感加權(quán)成像及擴(kuò)散加權(quán)成像在高血壓顱內(nèi)微出血中的臨床價(jià)值[J].中國(guó)煤炭工業(yè)醫(yī)學(xué)雜志,2013,16(10):1673-1676.
[2]亓恒新,徐寧,韓曾泰,等.彌散加權(quán)成像B0圖顯示腦微出血灶效果觀察[J].山東醫(yī)藥,2015,55(38):40-41.
[3]Sehgal V,Delproposto Z,Haacke EM,et al.Clinical applications of neuroimaging with susceptibility-weighted imaging[J].J Magn Reson Imaging,2005,22(4):439-450.
[4]Reichenbach JR,Schweser F,Serres B,et al.Quantitative susceptibility mapping:concepts and applications[J].Clin Neuroradiol,2015,25 Suppl 2:225-230.
[5]Liu C,Li W,Tong KA,et al.Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain [J].J Magn Reson Imaging,2015,42(1):23-41.
[6]Pettersen JA,Sathiyamoorthy G,Gao FQ,et al.Microbleed topography,leukoaraiosis,and cognition in probable Alzheimer disease from the Sunnybrook dementia study[J].Arch Neurol,2008,65(6):790-795.
[7]Scharf J,Br?uherr E,F(xiàn)orsting M,et al.Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage[J]. Neuroradiology,1994,36(7):504-508.
[8]Yates PA,Villemagne VL,Ellis KA,et al.Cerebral microbleeds:a review of clinical,genetic,and neuroimaging associations[J].Front Neurol,2014,4:205.
[9]Greenberg SM,Vernooij MW,Cordonnier C,et al.Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[10]Naka H,Nomura E,Wakabayashi S,et al.Frequency of asymptomatic microbleeds on T2?-weighted MR images of patients with recurrent stroke:association with combination of stroke subtypes and leukoaraiosis[J].AJNR Am J Neuroradiol,2004,25(5):714-719.
[11]Lee SH,Bae HJ,Kwon SJ,et al.Cerebral microbleeds are regionally associated with intracerebral hemorrhage[J]. Neurology,2004,62(1):72-76.
[12]Vernooij MW,van der Lugt A,Ikram MA,et al.Prevalence and risk factors of cerebral microbleeds:the Rotterdam scan study[J].Neurology,2008,70(14):1208-1214.
[13]Koennecke HC.Cerebral microbleeds on MRI:prevalence,associations,and potential clinical implications[J].Neurology,2006,66(2):165-171.
[14]Martinez-Ramirez S,Greenberg SM,Viswanathan A.Cerebral microbleeds:overview and implications in cognitive impairment[J].Alzheimers Res Ther,2014,6(3):33.
[15]Tanaka A,Ueno Y,Nakayama Y,et al.Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas[J].Stroke,1999,30(8): 1637-1642.
[16]Fazekas F,Kleinert R,Roob G,et al.Histopathologic analysis of foci of signal loss on gradient-echo T2?-weighted MR images in patients with spontaneous intracerebral hemorrhage:evidence of microangiopathy-related microbleeds[J].AJNR Am J Neuroradiol,1999,20(4):637-642.
[17]Tatsumi S,Shinohara M,Yamamoto T.Direct comparison of histology of microbleeds with postmortem MR images:a case report[J].Cerebrovasc Dis,2008,26(2):142-146.
[18]Greenberg SM,F(xiàn)inklestein SP,Schaefer PW.Petechial hemorrhages accompanying lobar hemorrhage:detection by gradient-echo MRI[J].Neurology,1996,46(6):1751-1754.
[19]Brundel M,Heringa SM,de Bresser J,et al.High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease[J].J Alzheimers Dis,2012,31(2):259-263.
[20]Sch?fer A,Wharton S,Gowland P,et al.Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI[J].Neuroimage,2009,48(1): 126-137.
[21]Soo YO,Yang SR,Lam WW,et al.Risk vs benefit of antithrombotic therapy in ischaemic stroke patients with cerebral microbleeds[J].J Neurol,2008,255(11):1679-1686.
[22]Biffi A,Halpin A,Towfighi A,et al.Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy [J].Neurology,2010,75(8):693-698.
[23]Roob G,Schmidt R,Kapeller P,et al.MRI evidence of past cerebral microbleeds in a healthy elderly population [J].Neurology,1999,52(5):991-994.
[24]Jeerakathil T,Wolf PA,Beiser A,et al.Cerebral microbleeds:prevalence and associations with cardiovascular risk factors in the Framingham study[J].Stroke,2004,35(8): 1831-1835.
[25]Sveinbjornsdottir S,Sigurdsson S,Aspelund T,et al.Cerebral microbleeds in the population based AGES-Reykjavik study:prevalence and location[J].J Neurol Neurosurg Psychiatry,2008,79(9):1002-1006.
[26]Poels MM,Vernooij MW,Ikram MA,et al.Prevalence and risk factors of cerebral microbleeds:an update of the Rotterdam scan study[J].Stroke,2010,41(10 Suppl):S103-S106.
[27]Jia Z,Mohammed W,Qiu Y,et al.Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery:a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors[J].J Stroke Cerebrovasc Dis,2014,23 (1):e5-e11.
[28]Vernooij MW.Cerebral microbleeds:do they really predict macrobleeding?[J].Int J Stroke,2012,7(7):565-566.
[29]Wei TM,Zhou LM,Ji JS,et al.Cerebral microbleeds detected on T2-weighted gradient echo magnetic resonance and its clinical significance[J].Zhonghua Yi Xue Za Zhi,2013,93(37):2979-2981.
[30]劉德國(guó),于臺(tái)飛,王光彬,等.磁敏感加權(quán)成像檢測(cè)腦微出血的臨床價(jià)值研究[J].磁共振成像,2011,2(6):420-425.
[31]Greenberg SM,Vernooij MW,Cordonnier C,et al.Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[32]Gregoire SM,Brown MM,Kallis C,et al.MRI detection of new microbleeds in patients with ischemic stroke:five-year cohort follow-up study[J].Stroke,2010,41(1):184-186.
[33]Poels MM,Ikram MA,van der Lugt A,et al.Incidence of cerebral microbleeds in the general population:the Rotterdam scan study[J].Stroke,2011,42(3):656-661.
[34]楊昂,張雪林,陳燕萍,等.SWI在高血壓患者伴發(fā)腦內(nèi)微出血的診斷應(yīng)用[J].臨床放射學(xué)雜志,2009,28(8): 1055-1059.
[35]陳穎.1.5TMRI-SWI序列對(duì)高血壓性腦微出血的診斷價(jià)值[J].中國(guó)CT和MRI雜志,2013,11(2):7-9.
[36]唐小平.中老年腦微出血與心腦血管危險(xiǎn)因素相關(guān)性研究[D].南昌:南昌大學(xué),2009.
[37]Shmueli K,de Zwart JA,van Gelderen P,et al.Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data[J].Magn Reson Med,2009,62(6):1510-1522.
[38]Deistung A,Schweser F,Wiestler B,et al.Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[J]. PLoS One,2013,8(3):e57924.
[39]Haacke EM,Lai S,Reichenbach JR,et al.In vivo measurement of blood oxygen saturation using magnetic resonance imaging:a direct validation of the blood oxygen level-dependent concept in functional brain imaging[J].Human Brain Mapp,1997,5(5):341-346.
[40]Port JD,Pomper MG.Quantification and minimization of magnetic susceptibility artifacts on GRE images[J].J Comput Assist Tomogr,2000,24(6):958-964.
[41]Li L,Leigh JS.Quantifying arbitrary magnetic susceptibility distributions with MR[J].Magn Reson Med,2004,51 (5):1077-1082.
1)目標(biāo)點(diǎn)的坐標(biāo)計(jì)算。用目標(biāo)點(diǎn)的水平距離與其平均值之間偏差絕對(duì)值的最大值作為檢定結(jié)果。目標(biāo)點(diǎn)之間每一組水平距離li,k的計(jì)算公式為
[42]Reichenbach JR,Venkatesan R,Schillinger DJ,et al.Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J].Radiology,1997,204(1):272-277.
[43]范敬爭(zhēng),田亞楠,周蕾,等.自發(fā)性腦出血患者腦微出血MR磁化率與體積的相關(guān)性研究[J].臨床放射學(xué)雜志,2012,31(12):1694-1698.
[44]Stojanov D,Vojinovic S,Aracki-Trenkic A,et al.Imaging characteristics of cerebral autosomal dominant arteriopathy with subcorticalinfarctsandleucoencephalopathy(CADASIL) [J].Bosn J Basic Med Sci,2015,15(1):1-8.
[45]Klohs J,Deistung A,Schweser F,et al.Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis[J]. J Cereb Blood Flow Metab,2011,31(12):2282-2292.
[46]Schrag M,McAuley G,Pomakian J,et al.Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy:a postmortem MRI study[J].Acta Neuropathol,2010,119(3):291-302.
[47]Yates PA,Villemagne VL,Ellis KA,et al.Cerebral microbleeds:a review of clinical,genetic,and neuroimaging associations[J].Front Neurol,2014,4:205.
[48]Schweser F,Deistung A,Lehr BW,et al.Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase:an approach to in vivo brain iron metabolism? [J].Neuroimage,2011,54(4):2789-2807.
[50]Barbosa JH,Emídio R,Alho AT,et al.Correlation between paramagnetic ions and quantitative susceptibility values of postmortem brain study[EB/OL].(2015-09-01)[2016-02-08].https://www.researchgate.net/publication/277477174_CORRELATION_BETWEEN_PARAMAGNETIC_IONS_AND_QUANTITATIVE_SUSCEPTIBILITY_VALUES_OF_POSTMORTEM_BRAIN_STUDY.
[51]Haller S,Bartsch A,Nguyen D,et al.Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment[J].Radiology,2010,257(3):764-773.
[52]Schenck JF.The role of magnetic susceptibility in magnetic resonance imaging:MRI magnetic compatibility of the first and second kinds[J].Med Phys,1996,23(6):815-850.
[53]Bilgic B,Pfefferbaum A,Rohlfing T,et al.MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J].Neuroimage,2012,59(3): 2625-2635.
[54]Tan H,Liu T,Wu Y,et al.Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping[J].Invest Radiol,2014,49(7):498-504.
[55]Lim IA,F(xiàn)aria AV,Li X,et al.Human brain atlas for automated region of interest selection in quantitative susceptibility mapping:application to determine iron content in deep gray matter structures[J].Neuroimage,2013,82: 449-469.
[56]Chen W,Zhu W,Kovanlikaya I,et al.Intracranial calcifications and hemorrhages:characterization with quantitative susceptibility mapping[J].Radiology,2014,270(2):496-505.
[57]Liu T,Surapaneni K,Lou M,et al.Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[J].Radiology,2012,262(1):269-278.
[58]Salomir R,de Senneville BD,Moonen CT.A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[J].Magnetic Resonance Engineering,2003,19B(1):26-34.
[59]Martinez-Ramirez S,Greenberg SM,Viswanathan A.Cerebral microbleeds:overview and implications in cognitive impairment[J].Alzheimers Res Ther,2014,6(3):33.
The application of susceptibility weighted imaging and quantitative susceptibility mapping in essential hypertension complicated by cerebral microbleeds
Saiyinwuqirila,NIU Guangming
(Department of Medical Imaging,Affiliated Hospital of Inner Mongolia Medical University,Hohhot Inner Mongolia 010050,China)
Cerebral microbleeds(CMBs)are the essence of subclinical brain damage of tiny blood vessels in the brain caused by the disease,mainly characterized by small parenchymal hemorrhage,no clear clinical symptoms and signs.It often appears in the brain and neurodegenerative diseases,such as cerebral amyloid angiopathy(CAA),Alzheimer’s disease(AD),essential hypertension(EH),also finds in normal elderly population.It represents a potential change of vascular pathology.This article reviews the clinical progression of susceptibility weighted imaging(SWI)and quantitative magnetic susceptibility mapping(QSM)applied in CMBs.
Magnetic resonance imaging(MRI);Susceptibility weighted imaging(SWI);Quantitative magnetic susceptibility mapping(QSM);Cerebral microbleeds(CMBs);Essential hypertension(EH)
R445.2;R743
A
2095-3097(2016)06-0376-05
10.3969/j.issn.2095-3097.2016.06.015
2016-03-31 本文編輯:馮 博)
國(guó)家自然科學(xué)基金(81460259)
010050內(nèi)蒙古呼和浩特,內(nèi)蒙古醫(yī)科大學(xué)附屬醫(yī)院影像科(賽音烏其日拉,牛廣明)