兩自由度含間隙彈性碰撞系統(tǒng)的顫碰運動分析
朱喜鋒1,2, 羅冠煒2
(1. 蘭州交通大學 機電工程學院, 蘭州 730070; 2. 甘肅省軌道交通裝備系統(tǒng)動力學與可靠性重點實驗室, 蘭州 730070)
摘要:利用數(shù)值仿真方法,對一類兩自由度含間隙彈性碰撞系統(tǒng)的動力學特性做了深入研究,分析了系統(tǒng)周期運動及其參數(shù)存在區(qū)域,并揭示了系統(tǒng)的顫碰運動特性。首先,詳細分析了激振頻率和系統(tǒng)間隙等關鍵參數(shù)對系統(tǒng)周期運動及存在區(qū)域的影響。其次,在小間隙低頻工況下,數(shù)值計算了系統(tǒng)p/1周期運動序列及其存在區(qū)域。最后,得出隨著激振頻率的遞減,p/1運動的碰撞次數(shù)p因擦邊分岔而逐一增加,當p/1運動的碰撞次數(shù)p足夠大時,系統(tǒng)呈現(xiàn)出顫碰特性,總結了系統(tǒng)由1/1周期運動到顫碰運動的轉遷規(guī)律。
關鍵詞:振動;顫碰;周期運動;分岔;存在區(qū)域
中圖分類號:O322文獻標志碼:A
基金項目:國家自然科學基金資助項目(51205294,61271008)
收稿日期:2014-05-04修改稿收到日期:2014-07-23
Chattering-impact motion of a 2-DOF system with clearance and soft impacts
ZHUXi-feng1,2,LUOGuan-wei2(1. School of Mechatronic Engineering Lanzhou Jiaotong University, Lanzhou 730070, China;2. Gansu Provincial Key Laboratory of System Dynamics and Reliability of Rail Transport Equipment, Lanzhou 730070, China)
Abstract:A 2-DOF system with clearance and soft impacts was considered. Its existence region of periodic motion and chattering-impact characteristics were analyzed with the numerical simulation method. Firstly, the influences of key parameters of the system, such as, exciting frequency and clearance on its existence region of periodic-impact motion were studied in detail. Secondly, the sequence of p/1 motion and its existence region under a small clearance and a low exciting frequency were investigated using numerical simulation. Finally, a series of grazing bifurcations occurred with decrease in exciting frequency so that the impact number p of p/1 motions correspondingly increased one by one. When the impact number p of p/1 motions became big enough, the chattering-impact characteristics appeared. The transition law from 1/1 motion to chattering-impact motion via grazing bifurcation with decrease in exciting frequency was summarized explicitly.
Key words:vibration; chattering-impact; periodic motion; bifurcation; existence region
機械系統(tǒng)零部件之間的間隙和約束可導致沖擊振動的發(fā)生,從而使機械裝備成為一個非光滑的動力學系統(tǒng),運動過程也呈現(xiàn)出倍周期分岔、Grazing分岔和混沌等復雜動力學特性。為了降低噪音和削弱顫振的影響,在實際機械系統(tǒng)零部件碰撞面間常設置具有緩沖作用的彈性碰撞面,如齒輪傳動系統(tǒng)、壓力安全閥和開關電路等。Shaw等[1]利用傳統(tǒng)理論研究了一類單自由度振動沖擊系統(tǒng)的周期碰撞運動、鞍結分岔、多吸引子共存及混沌等復雜動力學現(xiàn)象,發(fā)現(xiàn)了振動沖擊系統(tǒng)中存在Grazing分岔等特殊現(xiàn)象,并可以導致Poincaré碰撞映射奇異性。Nordmark[2]提出了研究分段線性系統(tǒng)和振動沖擊系統(tǒng)的Grazing動力學及其伴隨分岔的系統(tǒng)方法。李健等[3]研究了非光滑系統(tǒng)吸引子及其吸引域的計算方法。運用不連續(xù)映射方法,分析了振動沖擊系統(tǒng)在多維Grazing分岔臨界點的多種復雜動力學特征和余維二分岔[4-6]。研究結果可用于指導實用性機械裝置的設計,Wen等[7]設計了沿導軌運行的彈簧振子實驗裝置,模擬出周期碰撞運動及其分岔。呂小紅等[8]分析了小型振動沖擊式打樁機的吸引子共存現(xiàn)象及其吸引域,得出低頻下顫碰運動使樁體的漸進效果最好。俞翔等[9]通過實驗研究發(fā)現(xiàn),將碰撞振動子系統(tǒng)引入到隔振系統(tǒng)可有效抑制被隔振設備的振動。隨著研究的不斷深入,國內外學者開始重點關注系統(tǒng)參數(shù)與動力學特性之間的關系,Peterka等[10]分析了單自由度彈性碰撞系統(tǒng)亞諧運動的穩(wěn)定性及存在區(qū)域。Luo等[11-12]以含間隙和剛性約束的兩自由度周期激勵系統(tǒng)為研究對象,詳細分析了周期運動的多樣性及其演化規(guī)律,重點揭示了系統(tǒng)動力學特性與關鍵參數(shù)之間匹配規(guī)律。
近年來,國內外學者對振動沖擊系統(tǒng)的動力學研究大多是基于單參數(shù)分岔,對非線性系統(tǒng)顫碰及其轉遷規(guī)律的研究較少。本文通過建立一類兩自由度含間隙彈性碰撞系統(tǒng)的力學模型,構造了兩種Poincaré映射,采用數(shù)值仿真方法,在(ω,δ)關鍵參數(shù)平面上詳細分析了系統(tǒng)的周期運動及參數(shù)存在區(qū)域,得出了系統(tǒng)在小間隙低頻工況下,由1/1周期運動到顫碰運動的轉遷規(guī)律。
1力學模型
圖1所示的力學模型為一類兩自由度含間隙彈性碰撞系統(tǒng)的典型代表,兩質量塊的質量分別用M1,M2表示,位移用X1,X2表示,兩質量塊之間由剛度為K1的線性彈簧和阻尼系數(shù)為C1的線性阻尼器相連。質塊M2由剛度為K2的線性彈簧和阻尼系數(shù)為C2的線性阻尼器固定于支承面,作用在兩質量塊上的簡諧激振力為Pisin(ΩT+τ)(i=1,2)。當激振力幅值較小時,系統(tǒng)屬于簡單的線性振子;隨著激振力幅值的增加,當質量塊M1的位移等于間隙B,即X1=B時,M1與固定于支承的剛度為K0的彈性約束碰撞。彈性約束的剛度K0可以在[0, ∞)區(qū)間取值,因彈性碰撞的存在,使原本分段線性的系統(tǒng)變成一個具有復雜動力學行為的沖擊碰撞系統(tǒng)。為使分析具有一般性,引入以下無量綱量:
圖1 兩自由度含間隙彈性碰撞系統(tǒng)的力學模型 Fig.1 Mechanical model of a two-degree-of-freedom system with clearance and soft impact
(1)
由方程(1)可得,系統(tǒng)參數(shù)的取值范圍為:μm∈(0,1),μk∈(0,1),μc∈(0,1),μk0∈[0,1),f20∈[0,1]。圖1所示兩自由度含間隙彈性碰撞系統(tǒng)的無量綱運動微分方程為:
(2)
其中,
(3)
用符號q=p/n表示系統(tǒng)相應的周期碰撞運動,p=0, 1, 2, 3,…表示碰撞次數(shù),n=1, 2, 3,…表示周期數(shù)。當間隙δ較大或激振力幅值較小時,系統(tǒng)為無碰撞的線性振子,用q=0,即p=0表示無碰撞運動。
(4)
2周期運動的參數(shù)域及顫碰轉遷規(guī)律
顫碰運動是指振動系統(tǒng)在有限時間內與約束界面發(fā)生無限次碰撞的振幅逐漸衰減的振動,它是碰撞振動系統(tǒng)的一種固有運動特性。顫碰運動通常發(fā)生在一個激勵周期內,它是碰撞振動系統(tǒng)中最重要的問題之一。在(ω,δ)參數(shù)平面上,通過分析圖1所示兩自由度含間隙彈性碰撞系統(tǒng)的力學模型,得出了系統(tǒng)的周期運動、顫碰及參數(shù)存在區(qū)域。
由無量綱運動微分方程(2)可知,系統(tǒng)的動力學特性由μm,μk,μc,ζ,f20,μk0,δ和ω八個參數(shù)決定,其中最重要的兩個關鍵參數(shù)是間隙δ和激振頻率ω。選取參數(shù)(Ⅰ):μm=2/3,μk=5/6,μc=5/6,ζ=0.1,f20=0,μk0=0.95. 以δ∈[0,4]和ω∈[0.05,3]為參數(shù)采樣范圍,數(shù)值計算系統(tǒng)在(ω,δ)參數(shù)平面上的雙參數(shù)分岔,如圖2所示。彈性碰撞周期運動的參數(shù)區(qū)域用p/n及相應的顏色表示,一些未識別的周期運動和混沌運動統(tǒng)一用黑色區(qū)域表示。
圖2 參數(shù)(Ⅰ)下系統(tǒng)周期運動的雙參數(shù)分岔圖Fig.2Diagramofdoubleparameterbifurcationofperiodicmotionsforthesystemwiththeparameters(Ⅰ)圖3 低頻工況下系統(tǒng)周期運動的雙參數(shù)分岔圖Fig.3Diagramofdoubleparameterbifurcationofperiodicmotionsforthesysteminlowfrequencycase圖4 圖3的局部放大圖Fig.4ThepartialenlargementofFig.3
由圖2可知,當ω>1.0時,系統(tǒng)存在0/1,1/1,2/2,4/4,1/2和2/4周期運動,即在中高頻區(qū)出現(xiàn)1/1周期運動的倍周期分岔,但倍周期序列2p/2n被Saddle-node分岔或Grazing分岔打斷,導致1/n(n=2, 3,…)亞諧運動的產生。在(ω,δ)參數(shù)平面的左下角區(qū)域,即δ<1.2和ω<1.0,彈性碰撞系統(tǒng)存在一系列p/1單周期多碰撞運動,并且隨著激振頻率的遞減,p/1周期運動的碰撞次數(shù)p逐一增加。
為了分析p/1周期運動及其參數(shù)存在區(qū)域,數(shù)值計算系統(tǒng)低頻工況下的(ω,δ)雙參數(shù)分岔,如圖3和圖4所示。由圖3和圖4可以看出,系統(tǒng)在δ∈[0,1.2]和ω∈[0.05,0.95]的參數(shù)采樣范圍內存在完整的p/1周期運動序列。
由圖3可得,當δ<1.2時,隨激振頻率ω的減小,小間隙系統(tǒng)的p/1周期運動發(fā)生Grazing分岔,碰撞次數(shù)p逐一增加,當碰撞次數(shù)p足夠大時,系統(tǒng)呈現(xiàn)出Chatting-impact的動力學特征,顫碰運動增大了系統(tǒng)噪音和零部件磨損。隨激振頻率ω的減小,系統(tǒng)由1/1周期運動到顫碰運動的轉遷規(guī)律如下:
(5)
圖5 δ=0.52時系統(tǒng)的局部分岔圖 Fig.5 Local bifurcation diagrams for the system along a horizontal scan for δ=0.52
3擦邊分岔及顫碰運動分析
當激勵頻率ω∈[0.626 4,1.549 6]時,系統(tǒng)呈現(xiàn)穩(wěn)定的1/1周期運動(見圖6(a)),圖中虛線表示位移x1=δ=0.52的彈性約束位置。當ω=0.626 4時,質量塊M1以零速度接觸彈性約束面,1/1周期運動Grazing分岔,碰撞次數(shù)p增加1次,形成2/1運動,1/1擦邊運動相圖如圖6(b)所示。
當ω=0.440 5時,2/1周期運動Grazing分岔為3/1運動,2/1擦邊運動相圖如圖7(b)所示。當ω穿越ω=0.379 59時,發(fā)生擦邊分岔,3/1周期運動分岔為4/1運動,4/1周期運動Grazing分岔的臨界頻率為ω=0.267 94,ω=0.243 78時,5/1周期運動發(fā)生擦邊分岔,6/1周期運動當ω=0.22956時擦邊分岔為7/1運動,相應的擦邊運動相圖如圖8所示。
當ω∈[0.05,0.7]時,隨激振頻率ω的減小,p/1周期運動發(fā)生Grazing分岔,碰撞次數(shù)p逐一增加,并且相應的參數(shù)域寬度逐漸變窄。當碰撞次數(shù)p足夠大時,系統(tǒng)呈現(xiàn)出Chatting-impact的動力學特征,即在一個有限時間內(t (a) 1/1運動,ω=0.63 (b) 1/1擦邊運動,ω=0.6264 (c) 2/1運動,ω=0.6262 圖6 周期運動相圖 Fig.6 Phase plane portraits of periodic motions (a) 2/1運動,ω=0.443 (b) 2/1擦邊運動,ω=0.4405 (c) 3/1運動,ω=0.43 圖7 周期運動相圖 Fig.7 Phase plane portraits of periodic motions 圖8 擦邊運動相圖 Fig.8 Phase plane portraits with grazing contact 圖9 p/1運動時間歷程圖 Fig.9 Time series of p/1 motions 4擦邊分岔邊界上特殊運動分析 由圖3和圖4可以發(fā)現(xiàn),在p/1周期運動發(fā)生Grazing分岔的邊界上存在數(shù)個凸起的舌狀區(qū)域。每個舌狀區(qū)域內部均存在周期運動和混沌,如3/2,5/2,7/2,10/3,9/2,13/3等,并且其周期運動與p/1周期運動存在一定的關系。即:在p/1和(p+1)/1運動擦邊分岔邊界上的舌狀區(qū)域內,存在(np+1)/n的周期運動序列。 圖10 ω=0.352 4時系統(tǒng)的局部分岔圖 Fig.10 Local bifurcation diagrams for the system along a vertical scan for ω=0.352 4 圖11 周期運動相圖 Fig.11 Phase plane portraits of periodic motions 通過以上分析和圖11可知,因倍周期、Saddle-node和Grazing分岔的相互交織,在4/1和5/1周期運動之間擦邊分岔邊界的舌狀區(qū)域內,存在9/2, 13/3, …等周期運動序列。符合在p/1和(p+1)/1運動擦邊分岔邊界上的舌狀區(qū)域,存在完整的(np+1)/n的周期運動序列的規(guī)律。 5結論 本文以典型的兩自由度含間隙彈性碰撞系統(tǒng)為研究對象,建立了系統(tǒng)的力學模型,構造了σp,σn兩種Poincaré映射,分析了系統(tǒng)的周期運動及Grazing分岔。運用數(shù)值仿真方法,在(ω,δ)關鍵參數(shù)平面上詳細分析了系統(tǒng)彈性碰撞運動的參數(shù)存在區(qū)域及顫碰運動的轉遷規(guī)律。 (1)以δ∈[0,4]和ω∈[0.05,3]為參數(shù)采樣范圍,數(shù)值計算了系統(tǒng)的(ω,δ)雙參數(shù)分岔,分析了間隙δ和激振頻率ω兩個關鍵參數(shù)對系統(tǒng)動力學特性的影響。在(ω,δ)雙參數(shù)平面上分析系統(tǒng)的周期運動特征,可彌補單參數(shù)分岔圖的不足,發(fā)現(xiàn)了在p/1運動擦邊分岔邊界上存在特定的舌狀區(qū)域。 (2)當δ>1.2時系統(tǒng)僅有0/1和1/1等主要周期運動。當δ<1.2時,在ω>1.5中高頻區(qū)開始出現(xiàn)1/1周期運動的倍周期分岔,但倍周期序列2p/2n被Saddle-node分岔或Grazing分岔打斷,導致1/n(n=2, 3,…)亞諧運動的產生。 (3)對于p/1系列基本周期運動,在p/1和(p+1)/1運動的擦邊分岔邊界上的舌狀區(qū)域內,存在完整的(np+1)/n的周期運動序列。 (4)在δ<1.2,ω<0.7的采樣區(qū)間,系統(tǒng)呈現(xiàn)出一系列p/1周期運動。隨激振頻率ω的減小,系統(tǒng)發(fā)生Grazing分岔,碰撞次數(shù)p逐一增加,當碰撞次數(shù)p足夠大時,系統(tǒng)呈現(xiàn)出Chatting-impact的動力學特征,并總結了系統(tǒng)由1/1周期運動到顫碰的轉遷規(guī)律。 參考文獻 [1]Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator[J].Journal of Sound and Vibration, 1983,90(1): 129-155. [2]Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator[J]. Journal of Sound and Vibration, 1991, 145(2): 279-297. [3]李健, 張思進. 非光滑動力系統(tǒng)胞映射計算方法[J]. 固體力學學報, 2007, 28(1): 93-96. LI Jian, ZHANG Si-jin. Cell-Mapping computation method for non-smooth dynamical system[J]. Acta Mechanica Solida Sinica, 2007, 28(1): 93-96. [4]Dankowicz H, Zhao Xiao-peng. Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators[J]. Physica D, 2005, 202(3/4): 238-257. [5]Nordmark A B, Kowalczyk P. A codimension-two scenario of sliding solutions in grazing-sliding bifurcations[J]. Nonlinearity, 2006, 19(1): 1-26. [6]Mason J F, Humphries N, Piiroinen P T. Numerical analysis of codimension-one, -two and -three bifurcations in a periodically-forced impact oscillator with two discontinuity surfaces[J]. Mathematics and Computers in Simulation, 2013, 95: 98-110. [7]Wen Gui-lin, Xu Hui-dong, Xiao Lu. Experimental investigation of a two-degree-of-freedom vibro-impact system[J]. International Journal of Bifurcation and Chaos, 2012, 22(5):1250110. [8]呂小紅, 羅冠煒. 小型振動沖擊式打樁機的非線性動力學分析[J]. 工程力學, 2013, 30(11): 227-232. Lü Xiao-hong, LUO Guan-wei. Analysis of nonlinear dynamics of a small vibro-impact driver[J]. Engineering Mechanics, 2013, 30(11): 227-232. [9]俞翔,朱石堅,樓京俊.基于碰撞振動的隔振系統(tǒng)混沌化實驗研究[J].振動與沖擊,2014,33(18):59-64. YU Xiang, ZHU Shi-jian, LOU Jing-jun. Tests for chaotification method of a vibration isolation system with a vibro-impact subsystem[J]. Journal of Vibration and Shock,2014,33(18):59-64. [10]Peterka F, Tondl A. Phenomena of subharmonic motions of oscillator with soft impacts[J]. Chaos, Solitons and Fractals, 2004, 19(5): 1283-1290. [11]Luo G W, Lü X H, Shi Y Q. Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: Diversity and parameter matching of periodic-impact motions[J]. International Journal of Non-Linear Mechanics, 2014, 65: 173-195. [12]Luo G W, Zhu X F, Shi Y Q. Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: Diversity and evolution of periodic-impact motions[J]. Journal of Sound and Vibration, 2015, 334:338-362. 第一作者胡峰男,博士,副教授,碩士生導師,1979年生