亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        T細(xì)胞性急性淋巴細(xì)胞白血病的特異性免疫治療及靶向基因治療研究進(jìn)展

        2016-01-11 12:21:33遲昨非,吳斌,楊威
        中國(guó)全科醫(yī)學(xué) 2015年35期
        關(guān)鍵詞:免疫治療白血病靶向

        ·綜述·

        T細(xì)胞性急性淋巴細(xì)胞白血病的特異性免疫治療及靶向基因治療研究進(jìn)展

        遲昨非,吳斌,楊威

        作者單位:110022遼寧省沈陽(yáng)市,中國(guó)醫(yī)科大學(xué)附屬盛京醫(yī)院小兒血液內(nèi)科(遲昨非),第二血液內(nèi)科(吳斌,楊威)

        通信作者:楊威,110022遼寧省沈陽(yáng)市,中國(guó)醫(yī)科大學(xué)附屬盛京醫(yī)院第二血液內(nèi)科;

        E-mail:yangw@sj-hospital.org

        【摘要】T細(xì)胞性急性淋巴細(xì)胞白血病(T-ALL)預(yù)后差,易早期復(fù)發(fā),尋找安全有效的治療手段成為臨床研究熱點(diǎn)。特異性免疫治療及靶向基因治療克服了傳統(tǒng)化療藥物的非靶向性,為解決化療對(duì)正常細(xì)胞和機(jī)體損傷較大的問(wèn)題提供了可能。本文對(duì)Campath-1H、Dachzumab、抗原特異性細(xì)胞毒性T細(xì)胞(CTL)等特異性免疫治療及阻斷Lmo2基因、FMS樣酪氨酸激酶-3(FLT3)、Bcl-2相互作用的細(xì)胞凋亡調(diào)節(jié)因子(Bim)和Notch1等靶向基因治療T-ALL進(jìn)行綜述,闡述其抗T-ALL細(xì)胞的作用機(jī)制和相關(guān)臨床試驗(yàn),為T-ALL的治療提供參考和新的研究思路。

        【關(guān)鍵詞】前體T細(xì)胞淋巴母細(xì)胞白血病淋巴瘤;免疫療法;基因療法;綜述

        基金項(xiàng)目:遼寧省教育廳一流特色學(xué)科建設(shè)工程專項(xiàng)

        【中圖分類號(hào)】R 733.7

        收稿日期:(2015-02-08;

        遲昨非,吳斌,楊威.T細(xì)胞性急性淋巴細(xì)胞白血病的特異性免疫治療及靶向基因治療研究進(jìn)展[J].中國(guó)全科醫(yī)學(xué),2015,18(35):4393-4400.[www.chinagp.net]

        Chi ZF,Wu B,Yang W.Research progress of specific immunotherapy and targeted gene therapy on T-cell acute lymphoblastic leukemia[J].Chinese General Practice,2015,18(35):4393-4400.

        Research Progress of Specific Immunotherapy and Targeted Gene Therapy on T-cell Acute Lymphoblastic LeukemiaCHIZuo-fei,WUBin,YANGWei.DepartmentofPediatricBloodInternalMedicine,ShengjingHospitalofChinaMedicalUniversity,Shenyang110022,China

        Abstract【】T-cell acute lymphoblastic leukemia (T-ALL) has poor prognosis and early relapse,which makes it a research hotspot to find safe and effective therapies.Specific immunotherapy and targeted gene therapy have the superiority of killing T-ALL cells without injuring normal cells and body compared with the traditional chemotherapy drugs.The article made a review of specific immunotherapy,such as Campath-1H,Dachzumab and CTL,and targeted gene therapy,such as blocking Lmo2,FLT3,Bim and Notch1 on T-ALL and illustrated the mechanism and relevant clinical trials,in order to provide a reference for the treatment of T-ALL and new thoughts for relevant research.

        【Key words】Precursor T-cell lymphoblastic leukemia-lymphoma;Immunotherapy;Gene therapy;Review

        T細(xì)胞性急性淋巴細(xì)胞白血病(T-ALL)是基因突變所致T系前體細(xì)胞惡性轉(zhuǎn)化所致的造血系統(tǒng)惡性克隆性疾病,占兒童ALL的15%,成人ALL的25%,近年來(lái),我國(guó)T-ALL發(fā)病率呈升高趨勢(shì)[1]。T-ALL臨床表現(xiàn)為初診外周血白細(xì)胞計(jì)數(shù)顯著升高、縱隔占位。T-ALL預(yù)后較差,易復(fù)發(fā),且復(fù)發(fā)后難以通過(guò)化療再次達(dá)到完全緩解,被列為非低危組加強(qiáng)治療,故臨床亟須尋找新的治療方法。隨著治療方案的不斷改善,以及對(duì)T-ALL免疫治療和靶向基因治療研究的深入,T-ALL患者預(yù)后有所改善。腫瘤的發(fā)生、發(fā)展與患者的免疫狀態(tài)密切相關(guān),T淋巴細(xì)胞是人體內(nèi)主要的免疫細(xì)胞,具有抗腫瘤免疫的活性,不同類型白血病患者的細(xì)胞免疫功能均存在不同形式和程度的紊亂,ALL患者在獲得完全緩解后接受免疫治療可以提高療效,且經(jīng)過(guò)長(zhǎng)期臨床觀察發(fā)現(xiàn)T-ALL細(xì)胞具有較高的免疫原性,因此近年來(lái)關(guān)于T-ALL免疫治療逐漸成為研究熱點(diǎn)。

        免疫治療是指利用免疫學(xué)的原理,針對(duì)疾病的發(fā)生機(jī)制,人為地調(diào)整機(jī)體的免疫功能,為達(dá)到治療目的所采取的措施,包括非特異性免疫治療、特異性免疫治療、主動(dòng)性免疫治療和被動(dòng)性免疫治療。隨著白血病免疫治療的不斷發(fā)展,針對(duì)T-ALL不同基因的特異性免疫治療的研究取得了一定成果。靶向基因治療是指將目的基因通過(guò)載體系統(tǒng)導(dǎo)入機(jī)體,并特異性地在靶組織、細(xì)胞中以可調(diào)控的方式表達(dá),以達(dá)到治療目的而不影響正常細(xì)胞、組織或器官的功能,其已在遺傳代謝性疾病、腫瘤等領(lǐng)域取得了一定的進(jìn)展,對(duì)T-ALL細(xì)胞的靶向殺傷已成為對(duì)該病治療的發(fā)展趨勢(shì)。本文通過(guò)相關(guān)基礎(chǔ)試驗(yàn)和臨床研究,對(duì)T-ALL的特異性免疫治療及針對(duì)某些特殊基因的靶向治療進(jìn)行綜述。

        1Campath-1H

        Campath-1H是人源化的抗CD52的單克隆IgG抗體,與表達(dá)CD52的細(xì)胞結(jié)合后,破壞白血病細(xì)胞。CD52為糖基磷脂酰肌醇(GPI)錨定糖蛋白抗原,其基因定位于人1號(hào)染色體,分子量為25~29 kD,在正常和惡性B細(xì)胞、T細(xì)胞、單核細(xì)胞、巨噬細(xì)胞、樹突細(xì)胞等均有表達(dá),尤其在慢性淋巴細(xì)胞白血病(CLL)細(xì)胞及T細(xì)胞上高密度分布,而粒細(xì)胞、紅細(xì)胞、血小板及骨髓干細(xì)胞/祖細(xì)胞不表達(dá),同時(shí)Campath-1H識(shí)別的表位由C-端的多肽和部分GPI組成,靠近細(xì)胞膜,有助于細(xì)胞間分子相互作用,因此CD52抗原成為CLL、T-ALL和T細(xì)胞性非霍奇金淋巴瘤(T-NHLs)的治療靶點(diǎn)。

        抗CD52單克隆抗體臨床最早用于清除移植物中T細(xì)胞以避免骨髓移植中出現(xiàn)的移植物抗宿主病(GVHD)。Nageswara Rao等[2]報(bào)道,Campath-1H能有效減少骨髓移植患者發(fā)生嚴(yán)重GVHD的風(fēng)險(xiǎn),同時(shí)清除供者的T細(xì)胞而不影響采集干細(xì)胞的數(shù)量和功能,成為異基因造血干細(xì)胞移植中預(yù)防GVHD較為理想的選擇。隨著1988年人源化的Campath-1H出現(xiàn),避免了鼠源性免疫球蛋白在人體內(nèi)引起的免疫反應(yīng),使抗CD52單克隆抗體得到更廣泛的應(yīng)用,如純紅細(xì)胞再生障礙性貧血、嗜酸細(xì)胞增多癥、多發(fā)性硬化、腎移植的排斥等[3-5]。2001年,Campath-1H在美國(guó)和歐盟獲批上市,用于治療難治復(fù)發(fā)性CLL[6]。

        Zhang等[7]對(duì)小鼠T-ALL模型研究發(fā)現(xiàn),接受4 mg/kg劑量Campath-1H治療4周的小鼠生存率高于接受4周Dachzumab(達(dá)利珠單抗)治療的小鼠,認(rèn)為Campath-1H體內(nèi)殺傷腫瘤細(xì)胞的主要機(jī)制是有Fc受體的分葉核白細(xì)胞和巨噬細(xì)胞可以引起CD52抗原的交聯(lián),進(jìn)而引發(fā)抗體依賴的細(xì)胞毒作用(ADCC),并導(dǎo)致細(xì)胞凋亡。該研究為臨床應(yīng)用Campath-1H治療T-ALL和T-NHLs提供了證據(jù)。在Hopfinger等[8]進(jìn)行多中心Ⅱ期臨床試驗(yàn)中,25例前T細(xì)胞性急性淋巴細(xì)胞白血病(T-PLL)患者接受氟達(dá)拉濱、米托蒽醌和環(huán)磷酰胺(FMC聯(lián)合化療)治療4個(gè)周期,隨后予其中21例患者聯(lián)合Campath-1H治療至12周,第1天給予3 mg Campath-1H靜脈滴注,若患者耐受良好,第2天給予10 mg,第3天增至30 mg,隨后每周3次靜脈滴注30 mg Campath-1H至12周?;颊邔?duì)FMC聯(lián)合化療的總反應(yīng)率為68%,其中包括6例完全緩解和11例部分緩解。聯(lián)合Campath-1H治療后總反應(yīng)率提高至92%,其中12例完全緩解和11例部分緩解。經(jīng)過(guò)FMC聯(lián)合化療結(jié)合Campath-1H治療后患者中位生存時(shí)間為17.1個(gè)月,無(wú)事件生存時(shí)間為11.9個(gè)月。此研究結(jié)果顯示FMC聯(lián)合化療結(jié)合Campath-1H治療T-PLL安全有效。Chen等[9]分別單獨(dú)應(yīng)用選擇性凋亡抑制基因Survivin抑制劑YM155與YM155聯(lián)合Campath-1H治療T-ALL鼠模型,觀察兩種方案的抗腫瘤活性。結(jié)果顯示,兩種方案均取得理想的療效,且YM155與Campath-1H聯(lián)合用藥比單獨(dú)應(yīng)用YM155具有更顯著的抗腫瘤效應(yīng),聯(lián)合用藥小鼠均存活,且無(wú)病生存6個(gè)月以上。

        上述研究發(fā)現(xiàn),Campath-1H治療T-ALL有效,目前認(rèn)為合適的劑量為30 mg靜脈注射,每周3次,4周1個(gè)療程,可延長(zhǎng)至3個(gè)月。Campath-1H能特異性與CD52抗原結(jié)合,通過(guò)ADCC和補(bǔ)體依賴細(xì)胞毒性(CDC)發(fā)揮細(xì)胞毒作用和促凋亡作用,使靶細(xì)胞死亡。但Tibes等[10]也認(rèn)為單用Campath-1H治療復(fù)發(fā)或難治的急性白血病療效有限,與其他藥物聯(lián)合治療會(huì)取得更理想的效果。Campath-1H的不良反應(yīng)主要有首劑細(xì)胞因子釋放綜合征[11]、骨髓抑制、持久的免疫抑制、機(jī)會(huì)性感染及過(guò)敏[5,7,12]。

        2Dachzumab

        CD25分子為白介素2(IL-2)受體,特異性表達(dá)于激活的T細(xì)胞,且為活化的T細(xì)胞克隆擴(kuò)增及其活性維持所必需??笴D25單克隆抗體能特異性識(shí)別CD25的α亞單位并能阻斷IL-2與其結(jié)合,從而抑制通過(guò)IL-2受體的信號(hào)傳導(dǎo)。Dachzumab為重組抗CD25人源化單克隆抗體,分子量為55 kD[13],具有3個(gè)跨膜蛋白鏈,只存在于活化的T細(xì)胞,而在正常處于靜止期的T細(xì)胞、B細(xì)胞及單核細(xì)胞內(nèi)不表達(dá)。

        1997年,美國(guó)批準(zhǔn)Dachzumab用于預(yù)防腎臟移植引起的GVHD。后將Dachzumab試用于非傳染性葡萄膜炎、多發(fā)性硬化癥、某些神經(jīng)系統(tǒng)疾病以及人類嗜T細(xì)胞病毒Ⅰ(HTLV-Ⅰ)相關(guān)的骨髓性疾病。由于CD25通常在高危白血病、淋巴瘤、T-ALL中高表達(dá),而T-ALL患者體內(nèi)存在過(guò)多的活化T細(xì)胞,具有高表達(dá)CD25和IL-2R α的特點(diǎn),因此有研究將Dachzumab用于T-ALL的治療。

        Phillips等[14]利用T-ALL小鼠模型評(píng)估Dachzumab的療效,每只小鼠給予0.2 ml含100 μg的Dachzumab尾靜脈注射,每周1次,共4周,對(duì)照組給予注射磷酸鹽緩沖液(PBS)或正常人IgG,記錄小鼠生存時(shí)間。結(jié)果顯示,Dachzumab能夠延緩T-ALL小鼠的進(jìn)展。

        在一項(xiàng)由34例成人T細(xì)胞性白血病/淋巴瘤患者參與的Ⅰ/Ⅱ期臨床試驗(yàn)中[15],患者Dachzumab耐受劑量為每次8 mg/kg,1次/3周。結(jié)果顯示,患者總無(wú)進(jìn)展生存期(PFS)為12周,總生存期(OS)為75周,12例慢性或隱襲性患者的PFS為14周,11例急性和淋巴瘤患者的PFS為7周。且該研究提示,高劑量的Dachzumab(8 mg/kg)可以飽和95%以上的淋巴結(jié)中腫瘤細(xì)胞的CD25,比小于該劑量的Dachzumab(4 mg/kg和6 mg/kg)對(duì)淋巴系統(tǒng)惡性腫瘤更為有效。

        一項(xiàng)由成人T細(xì)胞性淋巴細(xì)胞白血病(ATL)患者組成的臨床研究中[16],進(jìn)行Dachzumab劑量遞增試驗(yàn),以確定飽和IL-2受體的Dachzumab劑量。結(jié)果顯示,每3周給予1次8 mg/kg的Dachzumab能夠飽和IL-2受體,此劑量為其用于治療器官移植和免疫系統(tǒng)疾病劑量的8倍。IL-2R α陽(yáng)性的隱襲性和慢性ATL患者對(duì)Dachzumab反應(yīng)顯著,而無(wú)IL-2R α表達(dá)的急性ATL患者對(duì)Dachzumab反應(yīng)甚微。

        3抗原特異性細(xì)胞毒性T細(xì)胞(CTL)

        細(xì)胞免疫治療是通過(guò)采集人體自身免疫細(xì)胞,體外經(jīng)相關(guān)細(xì)胞因子和腫瘤特異性抗原的刺激誘導(dǎo)和培養(yǎng)后,使其數(shù)量增多,并增強(qiáng)其靶向性和殺傷活性,再回輸?shù)阶泽w中,從而對(duì)體內(nèi)的腫瘤細(xì)胞產(chǎn)生殺傷作用。CTL為T細(xì)胞的亞群,具有明顯的特異性殺傷作用。CTL殺傷靶細(xì)胞機(jī)制主要有:(1)CTL細(xì)胞表面T細(xì)胞抗原受體(TCRs)對(duì)靶細(xì)胞表面主要組織相容性復(fù)合體(MHC)-Ⅰ或MHC-Ⅱ抗原肽進(jìn)行識(shí)別,CTL通過(guò)穿孔素和絲氨酸蛋白酶,造成細(xì)胞裂解、死亡;(2) CTL識(shí)別靶細(xì)胞表面Fas分子,通過(guò)死亡結(jié)構(gòu)域介導(dǎo)細(xì)胞凋亡。

        抗原特異性CTL在抗腫瘤免疫治療中發(fā)揮重要作用,其特異性識(shí)別表達(dá)于腫瘤細(xì)胞表面的腫瘤相關(guān)性或特異性蛋白,在腫瘤患者或動(dòng)物模型體內(nèi)均具有腫瘤細(xì)胞殺傷效應(yīng)。在一項(xiàng)Ⅰ期臨床試驗(yàn)中,Mackensen等[17]利用人類白細(xì)胞抗原(HLA)-A2/Melan-A獲得Melan-A特異性CTL細(xì)胞系用于11例HLA-A2+的轉(zhuǎn)移性惡性淋巴瘤患者,患者在2周內(nèi)接受至少3次靜脈注射。結(jié)果顯示,患者體內(nèi)均產(chǎn)生有效的免疫應(yīng)答,其中1例獲得完全緩解,1例部分緩解。王雷等[18]給予人食管癌移植瘤裸鼠皮下注射食管癌細(xì)胞抗原致敏、IL-27基因修飾的樹突細(xì)胞(DC)活化的特異性CTL,結(jié)果顯示裸鼠腫瘤組織內(nèi)細(xì)胞增殖指數(shù)和移植瘤的體積、質(zhì)量下降,細(xì)胞凋亡率和抑瘤率增高,證實(shí)活化的CTL在荷瘤小鼠體內(nèi)對(duì)食管癌細(xì)胞具有明顯的細(xì)胞毒作用。

        輸注抗原特異性CTL無(wú)大劑量化療的毒性,對(duì)改善高危ALL患者預(yù)后是一種良好選擇。然而,白血病細(xì)胞亦可產(chǎn)生逃逸機(jī)制,逃避CTL介導(dǎo)的殺傷應(yīng)用。聯(lián)合用藥可能會(huì)對(duì)抗T-ALL的逃逸機(jī)制,從而增強(qiáng)CTL介導(dǎo)的白血病細(xì)胞凋亡作用。同時(shí),誘導(dǎo)受體淋巴細(xì)胞缺乏可顯著增強(qiáng)CTL輸注的治療效果[23]。因此,在CTL的基礎(chǔ)上人們開始尋找更具有靶向功能的免疫治療方法。CTL對(duì)靶細(xì)胞的識(shí)別特異性依賴于T細(xì)胞抗原受體(TCR),將能特異性識(shí)別并結(jié)合腫瘤細(xì)胞表面抗原或受體的抗體或配體與TCR的細(xì)胞內(nèi)成分融合成嵌合性T細(xì)胞受體(ChTCR),從而產(chǎn)生一種新型的具有高度特異性的CTL,此類研究目前集中在B-ALL、CLL、急性髓細(xì)胞性白血病、非霍奇金淋巴瘤、多發(fā)性骨髓瘤和移植[24-28],用于T-ALL的試驗(yàn)尚未見報(bào)道。

        4直接針對(duì)性阻斷Lmo2基因的靶向治療

        哺乳動(dòng)物中存在4個(gè)Lmo基因,其中Lmo2是重要的轉(zhuǎn)錄調(diào)節(jié)因子,原癌基因Lmo2定位于人類染色體11p13區(qū),最早是從帶有染色體易位t(11;14)(p13;q11)或t(7;11)(q35;p13)的T-ALL患者白血病細(xì)胞染色體易位斷裂點(diǎn)處克隆而來(lái)。多項(xiàng)研究發(fā)現(xiàn)[29-31],作為一種T細(xì)胞原癌基因,Lmo2參與造血系統(tǒng)發(fā)生、發(fā)育,并隨細(xì)胞的成熟而表達(dá)明顯下調(diào)。而其蛋白質(zhì)的異常高水平表達(dá)(染色體易位或者反轉(zhuǎn)錄病毒插入)則會(huì)導(dǎo)致異常的轉(zhuǎn)錄因子復(fù)合物的形成,識(shí)別特殊的DNA序列,調(diào)控異常的基因表達(dá),改變細(xì)胞內(nèi)原有的信號(hào)調(diào)節(jié)途徑,從而導(dǎo)致T細(xì)胞過(guò)度增殖,引起T-ALL的發(fā)生[32]。

        Lmo2在腫瘤血管新生中發(fā)揮作用,因此其與腫瘤惡化密切相關(guān)。有研究表明[33],在霍奇金淋巴瘤、伯基特淋巴瘤和彌漫大B細(xì)胞淋巴瘤中,Lmo2表達(dá)水平增高,提示Lmo2可能是淋巴細(xì)胞增殖性疾病的致病基因。除血液系統(tǒng)疾病外,Lmo2的表達(dá)與前列腺癌、胰腺癌、血管瘤及多發(fā)性內(nèi)分泌腺瘤病等實(shí)體瘤的惡化和轉(zhuǎn)移有關(guān)[34-35]。超過(guò)50%的T-ALL患者Lmo2基因異常表達(dá)[36],分化早期的淋巴祖細(xì)胞中可見Lmo2表達(dá),而在T細(xì)胞的正常分化過(guò)程中,Lmo2的表達(dá)逐漸下降,成熟T細(xì)胞中并無(wú)Lmo2表達(dá)。Ryan等[37]認(rèn)為,Lmo2對(duì)人造血系統(tǒng)的成熟具有重要作用,但也可表達(dá)異常促進(jìn)T-ALL的發(fā)生。Oram等[38]研究發(fā)現(xiàn),T-ALL患者激活的Lmo2啟動(dòng)子元件包括未知的第三啟動(dòng)子,其在細(xì)胞系、原發(fā)T-ALL患者及轉(zhuǎn)基因小鼠中均得到證實(shí)。miR-142和deltaEF1作為L(zhǎng)mo2的病理靶點(diǎn),其功能分別被定位到影響細(xì)胞增殖和分化兩個(gè)方面,通過(guò)負(fù)調(diào)控miR-142引起細(xì)胞增殖加快,同時(shí)通過(guò)負(fù)調(diào)控deltaEF1引起T細(xì)胞發(fā)育受阻[39]。

        上述發(fā)現(xiàn)提示直接針對(duì)性阻斷Lmo2基因是否可以有效治療T-ALL。Mccormack等[40]利用T-ALL小鼠模型進(jìn)行的研究發(fā)現(xiàn),將Lmo2作為攻擊的靶點(diǎn)是阻礙T-ALL原始細(xì)胞生成的可行方法,并分離出破壞Lmo2功能的抗體片段或多肽核酸適配體。Nam等[41]成功利用載體介導(dǎo)的抗Lmo2單鏈抗體(scFv)抑制Lmo2依賴的紅細(xì)胞生成,但不抑制內(nèi)皮生成。該抗體能進(jìn)入白血病細(xì)胞內(nèi)抑制與Lmo2有關(guān)的白血病,證實(shí)反轉(zhuǎn)錄病毒介導(dǎo)的scFv對(duì)Lmo2陽(yáng)性小鼠T細(xì)胞白血病具有抑制作用,干擾Lmo2多蛋白復(fù)合物的形成能夠抑制正常造血和白血病的發(fā)生,scFv可能成為治療Lmo2陽(yáng)性T-ALL的有效手段。Sewell等[42]探討了Lmo2多蛋白復(fù)合物的形成機(jī)制,利用scFv片段抑制Lmo2的表達(dá),提示Lmo2可作為T-ALL治療的藥物作用靶點(diǎn)。盡管在直接針對(duì)性阻斷Lmo2基因的靶向治療方面的研究取得了進(jìn)展,但如何在抑制Lmo2陽(yáng)性白血病的同時(shí)又不損傷正常的紅系祖細(xì)胞和造血干細(xì)胞,同時(shí)scFv體積過(guò)大,與Lmo2的黏合位點(diǎn)結(jié)合也存在一定的困難。

        5針對(duì)FMS樣酪氨酸激酶-3(FLT3)的靶向治療

        Augustin等[45]將抗癌藥物triazoloacridinone C-1305用于FLT3不同狀態(tài)的急性髓細(xì)胞白血病(AML)細(xì)胞,檢測(cè)細(xì)胞增殖和凋亡情況。結(jié)果顯示,與野生型FLT3和無(wú)FLT3表達(dá)細(xì)胞比較,F(xiàn)LT3內(nèi)部串聯(lián)重復(fù)序列突變的細(xì)胞對(duì)triazoloacridinone C-1305更為敏感,且將FLT3內(nèi)部串聯(lián)重復(fù)突變的細(xì)胞敲除FLT3基因后,triazoloacridinone C-1305對(duì)其細(xì)胞毒性作用顯著降低,可見FLT3可作為triazoloacridinone C-1305治療AML的作用靶點(diǎn)。Alvarado等[46]將FLT3抑制劑作為靶向治療藥物用于69例具有FLT3突變的成人AML患者,其中32%的FLT3-ITD突變患者對(duì)FLT3抑制劑有反應(yīng),而D835/I836突變、ITD與D835/I836混合突變患者無(wú)反應(yīng)。對(duì)具有FLT3-ITD突變的原發(fā)耐藥AML患兒,可嘗試給予FLT3抑制劑進(jìn)行靶向治療[47],爭(zhēng)取達(dá)到骨髓緩解,為異基因造血干細(xì)胞移植創(chuàng)造條件。

        CEP-701(Lestaurtinib,美國(guó)Cephalon公司)為FLT3抑制劑,有研究將CEP-701作用于不同類型ALL嬰兒和兒童的骨髓樣本,包括1種T-ALL細(xì)胞系Karpas-45和6種B-ALL細(xì)胞系,結(jié)果顯示高表達(dá)FLT3或具有FLT3基因突變的ALL細(xì)胞系對(duì)CEP-701更為敏感[48]。除莠霉素是由吸水鏈霉菌產(chǎn)生的一組苯安莎類抗生素,其中除莠霉素A(herbimycin A)由日本學(xué)者Satoshi首次從吸水鏈霉菌AM-3672發(fā)酵液中分離獲得,其能選擇性抑制酪氨酸激酶活性。突變FLT3基因轉(zhuǎn)染的小鼠細(xì)胞株32D皮下注射,能使小鼠發(fā)生急性白血病,而給予herbimycin A干預(yù)可延長(zhǎng)疾病潛伏期甚至可完全預(yù)防白血病的發(fā)生,提示herbimycin A有望成為白血病靶向治療藥物[49]。

        T-ALL小鼠模型體外實(shí)驗(yàn)證實(shí)FLT3是較好的藥物作用靶點(diǎn),但在ALL患者的臨床試驗(yàn)結(jié)論不一[50]。鑒于甲磺酸伊馬替尼的治療經(jīng)驗(yàn),單一應(yīng)用FLT3抑制劑也可能產(chǎn)生耐藥性。另外,并非所有FLT3突變對(duì)FLT3抑制劑敏感。因此,推測(cè)與其他藥物聯(lián)合應(yīng)用效果可能較為理想。

        6針對(duì)Bcl-2相互作用的細(xì)胞凋亡調(diào)節(jié)因子(Bim)的靶向治療

        Bim是Bcl-2蛋白家族中促凋亡成員之一,屬于BH-3亞族,Bim基因位于2q12-q13,主要通過(guò)拮抗Bcl-2等抗凋亡因子的作用或直接與Bax作用并共同移位到線粒體膜上引起細(xì)胞色素C釋放而促進(jìn)細(xì)胞凋亡,也是化療藥作用于腫瘤細(xì)胞后執(zhí)行細(xì)胞死亡的媒介。Bim的缺失可導(dǎo)致多種腫瘤的發(fā)生,Bim受到抑制為腫瘤細(xì)胞轉(zhuǎn)移和產(chǎn)生耐藥性提供了更大可能。Bim因僅含有一個(gè)BH-3結(jié)構(gòu)域而被稱為“僅含BH-3域蛋白”,而目前認(rèn)為僅含BH-3結(jié)構(gòu)域蛋白是程序性細(xì)胞死亡的必須啟動(dòng)子。

        Bim是近年來(lái)研究較多的促凋亡蛋白,多項(xiàng)研究表明Bim基因表達(dá)情況與惡性腫瘤的靶向治療的療效密切相關(guān)。Li等[51]對(duì)H1299、A549、PC-9和PC-9/BB4肺癌細(xì)胞株研究發(fā)現(xiàn),對(duì)吉非替尼敏感的細(xì)胞株Bim表達(dá)增強(qiáng),而耐藥細(xì)胞株Bim表達(dá)不明顯,吉非替尼通過(guò)增加Bim蛋白表達(dá)以增強(qiáng)對(duì)非小細(xì)胞肺癌細(xì)胞株的殺傷作用,將BIM基因沉默后,原敏感的細(xì)胞株則對(duì)吉非替尼產(chǎn)生耐藥。抑制Bim的表達(dá)亦促進(jìn)MCF-7乳腺癌細(xì)胞對(duì)紫杉醇產(chǎn)生耐藥[52]。

        Bim在諸多白血病細(xì)胞中表達(dá)異常,對(duì)白血病細(xì)胞的增殖活性和細(xì)胞特性有一定影響。Bim表達(dá)于T細(xì)胞和B細(xì)胞,但表達(dá)程度不一,而表達(dá)Bim的正常T系祖細(xì)胞對(duì)線粒體途徑的細(xì)胞凋亡敏感。促進(jìn)Bim表達(dá)上調(diào)可增加ALL細(xì)胞對(duì)化療藥物的敏感性[53]。Leung等[54]研究發(fā)現(xiàn),通過(guò)JNK途徑可促進(jìn)T-ALL細(xì)胞系Sup-T1的Bim磷酸化,利用特殊的JNK抑制劑SP600125也可上調(diào)Bim表達(dá)水平,從而增強(qiáng)依托泊苷誘導(dǎo)的Sup-T1細(xì)胞凋亡作用。Bachmann等[55]應(yīng)用組蛋白去乙?;敢种苿﹙orinostat解除Bim抑制后,可與地塞米松協(xié)同發(fā)揮抗白血病作用,在體內(nèi)和體外試驗(yàn)均得出一致的結(jié)論,從而為對(duì)糖皮質(zhì)激素耐藥的高危ALL患兒提供了新的治療方法。Reynolds等[56]利用模擬Bim BH3的多肽片段恢復(fù)T-ALL患者Bim功能取得進(jìn)展,其在轉(zhuǎn)基因斑馬魚模型觀察到下調(diào)MYC基因表達(dá)水平可引起T細(xì)胞Bim表達(dá)上調(diào),同時(shí)采用MYC或PI3K-AKT抑制劑處理人T-ALL細(xì)胞系和原發(fā)耐藥T-ALL患者白血病細(xì)胞,同樣可引起B(yǎng)im表達(dá)上調(diào),促進(jìn)細(xì)胞凋亡,提示高危T-ALL患者Bim的表達(dá)被MYC和PI3K-AKT所抑制。

        靶向誘導(dǎo)T-ALL細(xì)胞中Bim表達(dá)水平上調(diào)或恢復(fù)其功能可作為治療T-ALL的新策略。但有研究發(fā)現(xiàn),Bim基因2號(hào)內(nèi)含子存在缺失多態(tài)性[57],導(dǎo)致該類患者Bim缺乏BH3結(jié)構(gòu)域,為無(wú)促凋亡活性的Bim亞型,從而對(duì)化療藥物原發(fā)耐藥,因此尚需探索Bim更敏感的檢測(cè)方法。

        7針對(duì)Notch1的靶向治療

        Notch1是進(jìn)化十分保守的內(nèi)皮生長(zhǎng)因子樣跨膜受體蛋白家族(Notch家族)的成員,Notch信號(hào)轉(zhuǎn)導(dǎo)與細(xì)胞的增殖、分化和凋亡有關(guān)。野生型Notch1基因定位于染色體9q34,編碼高度保守的單次跨膜蛋白,分子量約350 kD。2004年Weng等[58]首次提出超過(guò)半數(shù)的兒童及成人T-ALL患者存在激活的Notch1突變,后Notch1成為T-ALL公認(rèn)的癌基因,而在B-ALL中未發(fā)現(xiàn)Notch1突變,在AML中也很少出現(xiàn)Notch1突變。在淋巴細(xì)胞形成過(guò)程中,Notch1可促進(jìn)T細(xì)胞的分化而抑制B細(xì)胞的分化,在T細(xì)胞形成與發(fā)展的多個(gè)階段發(fā)揮作用[59]。研究表明,選擇性失活的Notch1信號(hào)通路可使T細(xì)胞增殖分化停滯,而Notch1基因突變可導(dǎo)致下游信號(hào)的持續(xù)激活,繼而促進(jìn)T-ALL的發(fā)生[60-61],Notch1通路異常激活是T-ALL細(xì)胞對(duì)化療藥物敏感性下降的主要原因,引起預(yù)后不良。

        目前針對(duì)Notch1的靶向治療研究較為深入的是γ分泌酶抑制劑(GSI),γ分泌酶為膜內(nèi)切割蛋白酶家族的成員,是Notch1信號(hào)通路激活過(guò)程第3步水解反應(yīng)的關(guān)鍵酶,經(jīng)其作用后,Notch1信號(hào)通路中的活性成分ICN1(intracellular domain Notch1)得以釋放,而GSI可阻斷該過(guò)程,從而抑制Notch1信號(hào)通路的激活。因此,有Notch1信號(hào)通路開關(guān)作用的γ分泌酶是Notch1通路鈍化的最佳靶點(diǎn),且已應(yīng)用于Notch1激活引起的相關(guān)疾病,如阿爾茨海默病[62]、乳腺癌[63]、卵巢癌[64]、腸道腫瘤[65]、肺癌[66]、胰腺癌[67]、GVHD[68]、血管炎[69]、黃斑變性[70]、糖尿病腎病[71]及聽力損傷[72]等。

        GSI的抗T-ALL作用已在動(dòng)物實(shí)驗(yàn)和Ⅰ期臨床試驗(yàn)中得到證實(shí)。研究顯示,將ICN1植入小鼠體內(nèi),能100%誘發(fā)小鼠T-ALL的發(fā)生[61]。在T-ALL小鼠模型中,GSI展現(xiàn)了顯著的抗白血病作用。在Tatarek等[73]對(duì)ICN1植入小鼠的研究發(fā)現(xiàn),超過(guò)一半的小鼠檢測(cè)到Notch1自發(fā)性突變,GSI治療將白血病原始細(xì)胞降至可檢測(cè)范圍以下,并可阻止小鼠發(fā)展為T-ALL。在Deangelo等[74]進(jìn)行的Ⅰ期臨床試驗(yàn)中,7例T-ALL患者接受默克公司生產(chǎn)的口服GSI制劑MK-0752治療,其中1例Notch1突變的患者在治療28 d后縱隔腫塊縮小45%,然而患者均未得到理想的持久緩解。對(duì)GSI不敏感的白血病細(xì)胞,GSI作用有限,且易發(fā)生較強(qiáng)的劑量依賴性腸道不良反應(yīng)。聯(lián)合其他化療藥物,如糖皮質(zhì)激素或分子靶向藥物,或許可提高GSI抗白血病作用,減少GSI劑量,同時(shí)改為腸外劑型和采取間歇給藥方式以減輕腸道不良反應(yīng)。Samon等[75]采用1 μmol/L的GSI(PF-03084014)聯(lián)合1 nmol/L或10 nmol/L的地塞米松治療對(duì)糖皮質(zhì)激素耐藥的T-ALL患者,在人T-ALL細(xì)胞系和原發(fā)性T-ALL患者中均觀察兩者協(xié)同的抗白血病作用,其原因?yàn)镻F-03084014與地塞米松聯(lián)合用藥可上調(diào)糖皮質(zhì)激素受體和糖皮質(zhì)激素目的基因的表達(dá)。體外實(shí)驗(yàn)表明,GSI和mTOR抑制劑如雷帕霉素(rapamycin)治療T-ALL同樣有協(xié)同作用[76]。

        T-ALL細(xì)胞也可以對(duì)Notch1抑制劑產(chǎn)生耐藥,17%的原發(fā)性T-ALL患者在診斷時(shí)即有PTEN基因缺失和PI3K-AKT信號(hào)通路的激活,導(dǎo)致對(duì)Notch1抑制劑的原發(fā)耐藥[77]。此外,F(xiàn)BXW7基因突變?cè)趯?duì)Notch1抑制劑耐藥的T-ALL細(xì)胞中常見,其可能參與耐藥機(jī)制[78]。

        通過(guò)靶向治療根治白血病,以取代化療,是治療白血病的最終目標(biāo)。發(fā)現(xiàn)特異高效的T-ALL治療靶點(diǎn),針對(duì)性殺傷致病的靶基因,是實(shí)現(xiàn)T-ALL靶向治療的關(guān)鍵。因此,對(duì)患者進(jìn)行基因突變的檢測(cè),以決定其是否屬于獲益人群,是靶向基因治療的前提。以抗體為基礎(chǔ)的基因治療為T-ALL的治療提供了新思路,針對(duì)T-ALL的免疫特征及信號(hào)通路,選擇特異性的單克隆抗體、信號(hào)通路抑制劑或白血病干細(xì)胞拮抗劑,以達(dá)到靶向治療目的。越來(lái)越多的基礎(chǔ)研究、臨床前期及臨床試驗(yàn)均顯示特異性免疫治療抗T-ALL的可能性和應(yīng)用前景,對(duì)于T-ALL的多種靶向基因表達(dá)者,可進(jìn)行靶向藥物的聯(lián)合治療,以提高療效。此外,對(duì)不具備殺傷白血病細(xì)胞能力的單克隆抗體,通過(guò)交聯(lián)方式攜帶細(xì)胞殺傷遞質(zhì),以偶聯(lián)物結(jié)構(gòu)定向作用于靶向位點(diǎn),達(dá)到抗白血病效果,減少對(duì)正常細(xì)胞的損傷。其他免疫抑制通路在T-ALL的免疫治療中發(fā)揮了負(fù)面作用,如最佳劑量、給藥時(shí)間、免疫逃逸、免疫耐受、抗體的穩(wěn)定性、靶向性、抗原異質(zhì)性或突變和表達(dá)下調(diào)等一系列問(wèn)題均有待于通過(guò)臨床研究進(jìn)一步改善。相信隨著對(duì)T-ALL的發(fā)生、發(fā)展與機(jī)體免疫系統(tǒng)關(guān)系的深入研究,在不久的將來(lái),T-ALL的免疫治療和靶向基因治療將會(huì)更加完善。

        利益沖突:課題未涉及任何廠家及相關(guān)雇主或其他經(jīng)濟(jì)組織直接或間接的經(jīng)濟(jì)或利益的贊助。無(wú)利益沖突。

        參考文獻(xiàn)

        [1]Bressanin D,Evangelisti C,Ricci F,et al.Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia:eliminating activity by targeting at different levels[J].Oncotarget,2012,3(8):811-823.

        [2]Nageswara Rao AS,Kumar R,Altaf S,et al.Pretransplant conditioning with Campath-1H(alemtuzumab)in pediatric matched unrelated hematopoietic stem cell transplants:an institutional experience[J].J Pediatr Hematol Oncol,2012,34(2):96-100.

        [3]Strati P,Cortes J,Faderl S,et al.Long-term follow-up of patients with hypereosinophilic syndrome treated with Alemtuzumab,an anti-CD52 antibody[J].Clin Lymphoma Myeloma Leuk,2013,13(3):287-291.

        [4]Clatworthy MR,Friend PJ,Calne RY,et al.Alemtuzumab(Campath-1H)for the treatment of acute rejection in kidney transplant recipients:long-term follow-up[J].Transplantation,2009,87(7):1092-1095.

        [5]Tuohy O,Costelloe L,Hill-Cawthorne G,et al.Alemtuzumab treatment of multiple sclerosis:long-term safety and efficacy[J].J Neurol Neurosurg Psychiatry,2015,86(2):208-215.

        [6]O′brien SM,Kantarjian HM,Thomas DA,et al.Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia[J].Cancer,2003,98(12):2657-2663.

        [7]Zhang Z,Zhang M,Goldman CK,et al.Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody,Campath-1H[J].Cancer Res,2003,63(19):6453-6457.

        [8]Hopfinger G,Busch R,Pflug N,et al.Sequential chemoimmunotherapy of fludarabine,mitoxantrone,and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia[J].Cancer,2013,119(12):2258-2267.

        [9]Chen J,Pise-Masison CA,Shih JH,et al.Markedly additive antitumor activity with the combination of a selective survivin suppressant YM155 and alemtuzumab in adult T-cell leukemia[J].Blood,2013,121(11):2029-2037.

        [10]Tibes R,Keating MJ,Ferrajoli A,et al.Activity of alemtuzumab in patients with CD52-positive acute leukemia[J].Cancer,2006,106(12):2645-2651.

        [11]Wing M.Monoclonal antibody first dose cytokine release syndromes-mechanisms and prediction[J].J Immunotoxicol,2008,5(1):11-15.

        [12]Baldo BA.Adverse events to monoclonal antibodies used for cancer therapy:Focus on hypersensitivity responses[J].Oncoimmunology,2013,2(10):e26333.

        [13]Dancey G,Violet J,Malaroda A,et al.A phase I clinical trial of CHT-25 a 131I-Labeled chimeric Anti-CD25 antibody showing efficacy in patients with refractory lymphoma[J].Clin Cancer Res,2009,15(24):7701-7710.

        [14]Phillips KE,Herring B,Wilson LA,et al.IL-2Ralpha-Directed monoclonal antibodies provide effective therapy in a murine model of adult t-cell leukemia by a mechanism other than blockade of IL-2/IL-2Ralpha interaction[J].Cancer Res,2000,60(24):6977-6984.

        [15]Berkowitz JL,Janik JE,Stewart DM,et al.Safety,efficacy,and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma[J].Clin Immunol,2014,155(2):176-187.

        [16]Morris JC,Waldmann TA.Advances in interleukin 2 receptor targeted treatment[J].Ann Rheum Dis,2000,59(Suppl 1):i109-114.

        [18]Wang L,Liu LH,Liu QY,et al.Effects of specific cytotoxicity T lymphocyte activated by interleukin-27 gene modified DC and loaded with esophageal tumor lysate on growth of transplantation tumor of human esophageal carcinoma in nude mice[J].Medical Journal of Chinese People′s Liberation Army,2014,39(8):609-613.(in Chinese)

        王雷,劉麗華,劉慶熠,等.抗原致敏IL-27基因修飾的樹突細(xì)胞活化的細(xì)胞毒性T淋巴細(xì)胞對(duì)食管癌裸鼠移植瘤生長(zhǎng)的影響[J].解放軍醫(yī)學(xué)雜志,2014,39(8):609-613.

        [19]Kitazono T,Okazaki T,Araya N,et al.Advantage of higher-avidity CTL specific for Tax against human T-lymphotropic virus-1 infected cells and tumors[J].Cell Immunol,2011,272(1):11-17.

        [20]Weber G,Caruana I,Rouce RH,et al.Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia--implications for immunotherapy[J].Clin Cancer Res,2013,19(18):5079-5091.

        [21]Mattes J,Hulett M,Xie W,et al.Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells:an eotaxin and STAT6-dependent process[J].J Exp Med,2003,197(3):387-393.

        [22]Warren EH,Fujii N,Akatsuka Y,et al.Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens[J].Blood,2010,115(19):3869-3878.

        [23]Lou JW,Yang JM,Chen L,et al.Recipient lymphopenia state enhances the expansion and anti-leukemia effect of leukemia specific cyto-toxic T lymphocytes[J].Chinese Journal of Hematology,2005,26(8):465-468.(in Chinese)

        樓敬偉,楊建民,陳莉,等.淋巴細(xì)胞缺乏狀態(tài)對(duì)白血病特異性細(xì)胞毒性T淋巴細(xì)胞體內(nèi)抗白血病效應(yīng)的影響[J].中華血液學(xué)雜志,2005,26(8):465-468.

        [24]Grupp SA,Kalos M,Barrett D,et al.Chimeric antigen receptor-modified T cells for acute lymphoid leukemia[J].N Engl J Med,2013,368(16):1509-1518.

        [25]Pegram HJ,Lee JC,Hayman EG,et al.Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning[J].Blood,2012,119(18):4133-4141.

        [26]Hudecek M,Schmitt TM,Baskar S,et al.The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to Express a ROR1-specific chimeric antigen receptor[J].Blood,2010,116(22):4532-4541.

        [27]Brentjens RJ,Davila ML,Riviere I,et al.CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia[J].Sci Transl Med,2013,5(177):177ra38.

        [28]Ritchie DS,Neeson PJ,Khot A,et al.Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia[J].Mol Ther,2013,21(11):2122-2129.

        [29]Warren AJ,Colledge WH,Carlton MB,et al.The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development[J].Cell,1994,78(1):45-57.

        [30]Yamada Y,Warren AJ,Dobson C,et al.The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis[J].Proc Natl Acad Sci U S A,1998,95(7):3890-3895.

        [31]Yamada Y,Pannell R,Forster A,et al.The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis in mice[J].Proc Natl Acad Sci U S A,2000,97(1):320-324.

        [32]Hacein-Bey-Abina S,Von Kalle C,Schmidt M,et al.LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1[J].Science,2003,302(5644):415-419.

        [33]Shams TM.High expression of LMO2 in Hodgkin,Burkitt and germinal center diffuse large B cell lymphomas[J].J Egypt Natl Canc Inst,2011,23(4):147-153.

        [34]Peng X,Ye Z,Gao Y.Regulation of E-cadherin promoter activity by LMO2 impact on the progression and metastasis of prostate cancer[J].Zhongguo Ying Yong Sheng Li Xue Za Zhi,2013,29(5):385-389.

        [35]Serewko-Auret MM,Mould AW,Loffler KA,et al.Alterations in gene expression in MEN1-associated insulinoma development[J].Pancreas,2010,39(8):1140-1146.

        [36]Ferrando AA,Herblot S,Palomero T,et al.Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia[J].Blood,2004,103(5):1909-1911.

        [37]Ryan DP,Duncan JL,Lee C,et al.Assembly of the oncogenic DNA-binding complex LMO2-Ldb1-TAL1-E12[J].Proteins,2008,70(4):1461-1474.

        [38]Oram SH,Thoms JA,Pridans C,et al.A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients[J].Oncogene,2010,29(43):5796-5808.

        [39]Sun W,Yang S,Shen W,et al.Identification of DeltaEF1 as a novel target that is negatively regulated by LMO2 in T-cell leukemia[J].Eur J Haematol,2010,85(6):508-519.

        [40]Mccormack MP,Young LF,Vasudevan S,et al.The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal[J].Science,2010,327(5967):879-883.

        [41]Nam CH,Lobato MN,Appert A,et al.An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions[J].Oncogene,2008,27(36):4962-4968.

        [42]Sewell H,Tanaka T,El Omari K,et al.Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex[J].Sci Rep,2014(4):3643.

        [43]Stirewalt DL,Radich JP.The role of FLT3 in hematopoietic maglignancies[J].Nat Rev Cancer,2003,3(9):650-665.

        [44]Taketani T,Taki T,Sugita K,et al.FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy[J].Blood,2004,103(3):1085-1088.

        [45]Augustin E,Skwarska A,Weryszko A,et al.The antitumor compound triazoloacridinone C-1305 inhibits FLT3 kinase activity and potentiates apoptosis in mutant FLT3-ITD leukemia cells[J].Acta Pharmacol Sin,2015,36(3):385-399.

        [46]Alvarado Y,Kantarjian HM,Luthra R,et al.Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations[J].Cancer,2014,120(14):2142-2149.

        [47]Hasskarl J.Sorafenib:targeting multiple tyrosine kinases in cancer[J].Recent Results Cancer Res,2014,201:145-164.

        [48]Brown P,Levis M,Shurtleff S,et al.FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression[J].Blood,2005,105(2):812-820.

        [49]張顏,何明生.急性淋巴細(xì)胞白血病靶向基因治療的研究進(jìn)展[J].當(dāng)代醫(yī)學(xué),2010,16(2):35-36,47.

        [50]Stubbs MC,Armstrong SA.FLT3 as a therapeutic target in childhood acute leukemia[J].Curr Drug Targets,2007,8(6):703-714.

        [51]Li H,Zhou S,Li X,et al.Gefitinib-resistance is related to BIM expression in non-small cell lung cancer cell lines[J].Cancer Biother Radiopharm,2013,28(2):115-123.

        [52]Ajabnoor GM,Crook T,Coley HM.Paclitaxel resistance is associated with Switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells[J].Cell Death Dis,2012,3:e260.

        [53]Heidari N,Miller AV,Hicks MA,et al.Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells[J].Cell Death Dis,2012,3(3):e349.

        [54]Leung KT,Li KK,Sun SS,et al.Activation of the JNK pathway promotes phosphorylation and degradation of BimEL——a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia[J].Carcinogenesis,2008,29(3):544-551.

        [55]Bachmann PS,Piazza RG,Janes ME,et al.Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia,and its reversal by histone deacetylase inhibition[J].Blood,2010,116(16):3013-3022.

        [56]Reynolds C,Roderick JE,Labelle JL,et al.Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia[J].Leukemia,2014,28(9):1819-1827.

        [57]Gagné V,Rousseau J,Labuda M,et al.Bim polymorphisms:influence on function and response to treatment in children with acute lymphoblastic leukemia[J].Clin Cancer Res,2013,19(18):5240-5249.

        [58]Weng AP,Ferrando AA,Lee W,et al.Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia[J].Science,2004,306(5694):269-271.

        [59]Pajcini KV,Speck NA,Pear WS.Notch signaling in mammalian hematopoietic stem cells[J].Leukemia,2011,25(10):1525-1532.

        [60]Aster JC,Blacklow SC,Pear WS.Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies[J].J Pathol,2011,223(2):262-273.

        [61]Ma J,Wu M.The indicative effect of Notch1 expression for the prognosis of T-cell acute lymphocytic leukemia:a systematic review[J].Mol Biol Rep,2012,39(5):6095-6100.

        [62]Roher AE,Maarouf CL,Kokjohn TA,et al.Neuropathological and biochemical assessments of an Alzheimer′s disease patient treated with the γ-secretase inhibitor semagacestat[J].Am J Neurodegener Dis,2014,3(3):115-133.

        [63]Xiao Y,Ye Y,Zou X,et al.The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction[J].Oncogene,2011,30(3):287-300.

        [64]Wang M,Wu L,Wang L,et al.Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780[J].Biochem Biophys Res Commun,2010,393(1):144-149.

        [65]Peignon G,Durand A,Cacheux W,et al.Complex interplay between β-catenin signalling and Notch effectors in intestinal tumorigenesis[J].Gut,2011,60(2):166-176.

        [66]Hassan KA,Wang L,Korkaya H,et al.Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma[J].Clin Cancer Res,2013,19(8):1972-1980.

        [67]Yabuuchi S,Pai SG,Campbell NR,et al.Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer[J].Cancer Lett,2013,335(1):41-51.

        [68]Roderick JE,Gonzalez-Perez G,Kuksin CA,et al.Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia[J].J Exp Med,2013,210(7):1311-1329.

        [69]Piggott K,Deng J,Warrington K,et al.Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis[J].Circulation,2011,123(3):309-318.

        [70]Ablonczy Z,Prakasam A,Fant J,et al.Pigment epithelium-derived factor maintains retinal pigment epithelium function by inhibiting vascular endothelial growth factor-R2 signaling through gamma-secretase[J].J Biol Chem,2009,284(44):30177-30186.

        [71]Lin CL,Wang FS,Hsu YC,et al.Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy[J].Diabetes,2010,59(8):1915-1925.

        [72]Mizutari K,Fujioka M,Hosoya M,et al.Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma[J].Neuron,2013,77(1):58-69.

        [73]Tatarek J,Cullion K,Ashworth T,et al.Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL[J].Blood,2011,118(6):1579-1590.

        [74]Deangelo DJ,Stone RM,Silverman LB,et al.A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias[J].Journal of Clinical Oncology,2006,24(S18):6585.

        [75]Samon JB,Castillo-Martin M,Hadler M,et al.Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia[J].Mol Cancer Ther,2012,11(7):1565-1575.

        [76]Chan SM,Weng AP,Tibshirani R,et al.Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia[J].Blood,2007,110(1):278-286.

        [77]Palomero T,Sulis ML,Cortina M,et al.Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia[J].Nat Med,2007,13(10):1203-1210.

        [78]Tosello V,Ferrando AA.The NOTCH signaling pathway:role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy[J].Ther Adv Hematol,2013,4(3):199-210.

        修回日期:2015-09-10)

        (本文編輯:吳立波)

        猜你喜歡
        免疫治療白血病靶向
        白血病男孩終于摘到了星星
        軍事文摘(2024年2期)2024-01-10 01:59:00
        如何判斷靶向治療耐藥
        MUC1靶向性載紫杉醇超聲造影劑的制備及體外靶向?qū)嶒?yàn)
        毛必靜:靶向治療,你了解多少?
        肝博士(2020年5期)2021-01-18 02:50:18
        腫瘤免疫治療發(fā)現(xiàn)新潛在靶點(diǎn)
        一例蛋雞白血病繼發(fā)細(xì)菌感染的診治
        腎癌生物免疫治療進(jìn)展
        白血病外周血體外診斷技術(shù)及產(chǎn)品
        靶向超聲造影劑在冠心病中的應(yīng)用
        Toll樣受體:免疫治療的新進(jìn)展
        三级国产女主播在线观看| 久热re这里精品视频在线6| 东北妇女肥胖bbwbbwbbw| 91在线在线啪永久地址| 亚洲精品日本久久久中文字幕| 亚洲最新精品一区二区| 亚洲av无码精品国产成人| 乱人伦中文字幕成人网站在线| 国产亚洲欧美另类第一页| 人妻少妇偷人精品一区二区| 永久天堂网av手机版| 国产中老年妇女精品| 99久久久精品免费| 亚洲高清一区二区精品| 国产精品无码一区二区三区电影 | 成人看片黄a免费看那个网址| 欧美日韩中文亚洲另类春色| 偷偷夜夜精品一区二区三区蜜桃| 摸丰满大乳奶水www免费| 国产精品亚洲综合色区韩国| yy111111少妇影院| 免费一区二区在线观看视频在线 | 开心五月婷婷激情综合网| 日韩毛片免费无码无毒视频观看| jjzz日本护士| 成人永久福利在线观看不卡 | 日本大肚子孕妇交xxx| 国产亚洲精品久久久久久久久动漫| 精品国产自拍在线视频| 偷拍一区二区盗摄视频| 特黄特色的大片观看免费视频| 国产91色在线|亚洲| 久久久精品网站免费观看| 蜜臀亚洲av无码精品国产午夜.| 成人区人妻精品一区二区不卡网站 | 在线视频国产91自拍| 成 人 免费 黄 色 视频| 香港三级欧美国产精品| 国产传媒精品成人自拍| 挺进朋友人妻雪白的身体韩国电影| 麻豆变态另类视频在线观看|