李澤陽馮京海周 明張敏紅常 玉(1.安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥30036;.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
?
連續(xù)飼喂轉(zhuǎn)Cry1Ab/1Ac基因糙米對(duì)2個(gè)世代鵪鶉生長(zhǎng)發(fā)育的影響
李澤陽1,2馮京海2?周 明1??張敏紅2常 玉2
(1.安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥230036;2.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
摘 要:本試驗(yàn)旨在研究連續(xù)飼喂轉(zhuǎn)Cry1Ab/1Ac基因糙米對(duì)2個(gè)世代鵪鶉生長(zhǎng)發(fā)育的影響。選取健康的1日齡日本鵪鶉(Coturnix japonica)402羽隨機(jī)分成2組,每組3個(gè)重復(fù),每個(gè)重復(fù)67羽,雌雄混養(yǎng)。2組分別為轉(zhuǎn)基因組和非轉(zhuǎn)基因組,分別飼喂含轉(zhuǎn)Cry1Ab/1Ac基因或非轉(zhuǎn)基因糙米的飼糧,35日齡時(shí)從各組中分別挑選健康的體重相近的鵪鶉72羽,平均分成6個(gè)重復(fù),每個(gè)重復(fù)3羽雄性9羽雌性,分別繼續(xù)飼喂2種飼糧,飼養(yǎng)至91日齡。2個(gè)組85~91日齡所產(chǎn)的蛋分別孵化,孵化出的子代鵪鶉分別繼續(xù)飼喂2種飼糧,分組及飼養(yǎng)管理與親代相同。結(jié)果表明:轉(zhuǎn)基因糙米中的粗蛋白質(zhì)、粗脂肪、粗纖維等營(yíng)養(yǎng)成分的含量與非轉(zhuǎn)基因糙米沒有顯著差異(P>0.05);與非轉(zhuǎn)基因組相比,轉(zhuǎn)基因組親代和子代鵪鶉的平均日采食量、平均日增重和料重比均無顯著差異(P>0.05);2代鵪鶉的肝臟、心臟、睪丸和卵巢等器官指數(shù)也與非轉(zhuǎn)基因組無顯著差異(P>0.05)。結(jié)果表明,連續(xù)2個(gè)世代采食含轉(zhuǎn)Cry1Ab/1Ac基因糙米的飼糧對(duì)日本鵪鶉的生長(zhǎng)發(fā)育沒有顯著影響。
關(guān)鍵詞:轉(zhuǎn)基因;糙米;Cry1Ab/1Ac;鵪鶉;生長(zhǎng)發(fā)育
??通信作者:周 明,教授,碩士生導(dǎo)師,E?mail:aauzhouming@163.com
轉(zhuǎn)蘇云金芽胞桿菌(Bacillus thuringiensis,Bt)基因(包括Cry1Ab、Cry1A和Cry1Ab/1Ac等基因)作物可在莖、葉、種子等部位表達(dá)外源殺蟲蛋白,該蛋白質(zhì)具有高度專一性,能與昆蟲腸道上皮細(xì)胞膜上的特異受體蛋白發(fā)生專一性結(jié)合,造成細(xì)胞滲透壓改變,上皮細(xì)胞膜穿孔,進(jìn)而導(dǎo)致昆蟲死亡,故能有效防治鱗翅目、雙翅目、鞘翅目等蟲害[1-4]。水稻是重要的糧食作物[5-6],早在20世紀(jì)80年代,國(guó)內(nèi)外就開展了轉(zhuǎn)Bt基因水稻的培育[7-14]、安全性評(píng)價(jià)和營(yíng)養(yǎng)價(jià)值差異等工作[15-17]。研究發(fā)現(xiàn),連續(xù)90 d飼喂轉(zhuǎn)Cry1C基因水稻[17]、轉(zhuǎn)Cry1Ab基因水稻[18]或轉(zhuǎn)CryAb/CryAc基因水稻[19]對(duì)大鼠采食量、體增重和料重比(F/G)等指標(biāo)無顯著影響。但也有試驗(yàn)表明,連續(xù)90 d飼喂轉(zhuǎn)Cry1Ab基因糙米顯著增加雄鼠的睪丸指數(shù)[20]。連續(xù)42 d喂轉(zhuǎn)Cry1Ab基因糙米“Bt110”顯著提高肉雞采食量、日增重和F/G[21-22],其原因可能是2種飼糧組成不同,而非引入的外源基因。此外,研究人員還評(píng)價(jià)了轉(zhuǎn)Bt基因水稻對(duì)動(dòng)物血液生理生化、外源基因殘留和腸道微生物等方面的影響[23-28]。上述研究工作主要針對(duì)轉(zhuǎn)Bt基因水稻的亞急性安全評(píng)價(jià),評(píng)價(jià)周期一般在90 d以內(nèi),不能完全反映轉(zhuǎn)Bt基因水稻的長(zhǎng)期影響。
華中農(nóng)業(yè)大學(xué)自行培育出“華恢1號(hào)”和“Bt汕優(yōu)63”2種轉(zhuǎn)Bt基因水稻,經(jīng)過系統(tǒng)的安全評(píng)價(jià)研究,于2009年獲得農(nóng)業(yè)部頒發(fā)的轉(zhuǎn)基因生物安全證書。由于水稻是人類的主糧之一,人們還是擔(dān)心長(zhǎng)期食用轉(zhuǎn)基因水稻是否會(huì)產(chǎn)生未知的不利影響。因此,本試驗(yàn)連續(xù)2個(gè)世代飼喂轉(zhuǎn)Cry1Ab/1Ac基因糙米,觀察轉(zhuǎn)Bt基因水稻對(duì)鵪鶉生長(zhǎng)發(fā)育的長(zhǎng)期影響。
1.1 試驗(yàn)動(dòng)物與試驗(yàn)設(shè)計(jì)
親代鵪鶉:選擇健康、體重相近的1日齡日本鵪鶉402羽,隨機(jī)分成2個(gè)組,每組3個(gè)重復(fù),每個(gè)重復(fù)67羽,雌雄混養(yǎng)。分別飼喂含有轉(zhuǎn)Cry1Ab/1Ac基因和非轉(zhuǎn)基因親本糙米的飼糧,自由采食和飲水。13日齡稱重,更換喂料器,記錄采食量,35日齡稱重,從各組中挑選健康的、體重相近的鵪鶉72羽,平均分成6個(gè)重復(fù),每個(gè)重復(fù)3羽雄性、9羽雌性。采用3層階梯式籠養(yǎng),35日齡更換產(chǎn)蛋料,自由飲水和采食,每天光照16 h,試驗(yàn)至91日齡結(jié)束。
子代鵪鶉:選取不同組親代鵪鶉85~91日齡所產(chǎn)的蛋分別孵化,孵化出的子代鵪鶉分別繼續(xù)飼喂含有轉(zhuǎn)Cry1Ab/1Ac基因和非轉(zhuǎn)基因親本糙米,分組及飼養(yǎng)管理與親代相同。
1.2 試驗(yàn)飼糧
糙米和豆粕為主要原料,參照NRC(1994)推薦的鵪鶉營(yíng)養(yǎng)需要配制試驗(yàn)飼糧(表1)。轉(zhuǎn)Cry1Ab/1Ac基因水稻及其傳統(tǒng)親本水稻(表2)由華中農(nóng)業(yè)大學(xué)提供。試驗(yàn)前分別對(duì)2種水稻及豆粕進(jìn)行Cry1Ab/1Ac基因特異性片段擴(kuò)增,結(jié)果表明,僅轉(zhuǎn)基因水稻含有375 bp的陽性目標(biāo)片段。
1.3 測(cè)定指標(biāo)及方法
1.3.1 糙米及飼料營(yíng)養(yǎng)成分
參照張麗英[29]的方法測(cè)定糙米及飼料中粗蛋白質(zhì)、水分、粗脂肪、粗纖維、粗灰分含量等。
1.3.2 生長(zhǎng)性能和器官指數(shù)
因雛鶉體型小,12日齡前需將飼料均勻撒在墊紙上飼喂,飼料消耗量無法準(zhǔn)確記錄,從13日齡開始使用小型自動(dòng)喂料器,以重復(fù)為單位準(zhǔn)確記錄13~35日齡的給料量和剩料量。計(jì)算平均日增重(ADG)、平均日采食量(ADFI)和F/G。36日齡開始以重復(fù)為單位記錄每周耗料量。91日齡禁食24 h后,每重復(fù)挑選雄性和雌性鵪鶉各2只,頸部放血處死后記錄各器官重量,計(jì)算器官指數(shù)。
1.4 數(shù)據(jù)處理與統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用SAS 9.1.3軟件進(jìn)行t檢驗(yàn)分析,P<0.05為差異顯著,各組試驗(yàn)數(shù)據(jù)以“平均值±標(biāo)準(zhǔn)誤”表示。
表1 試驗(yàn)飼糧組成及營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ))Table 1 Composition and nutrient levels of experimental diets(air?dry basis) %
續(xù)表1
2.1 轉(zhuǎn)基因糙米與傳統(tǒng)親代糙米營(yíng)養(yǎng)成分比較
從表2可以看出,轉(zhuǎn)Cry1Ab/1Ac基因與非轉(zhuǎn)基因糙米的粗蛋白質(zhì)、粗脂肪、粗纖維等常規(guī)營(yíng)養(yǎng)成分的含量無顯著差異(P>0.05)。從表1可以看出,含有轉(zhuǎn)Cry1Ab/1Ac基因和非轉(zhuǎn)基因糙米的2種飼糧粗蛋白質(zhì)、粗脂肪、粗纖維等常規(guī)營(yíng)養(yǎng)成分的含量也無顯著差異(P>0.05)。
表2 轉(zhuǎn)基因和非轉(zhuǎn)基因糙米的營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ))Table 2 Nutrient levels of genetically modified and non?genetically modified rice(air?dry basis) %
2.2 轉(zhuǎn)基因糙米對(duì)親代鵪鶉生長(zhǎng)性能的影響
由表3可以看出,2個(gè)組親代鵪鶉13~35日齡及36~91日齡的ADFI、ADG和F/G沒有顯著差異(P>0.05),91日齡時(shí),2個(gè)組雌性和雄性鵪鶉的平均體重沒有顯著差異(P>0.05)。可見轉(zhuǎn)Cry1Ab/1Ac基因糙米對(duì)親代鵪鶉生長(zhǎng)性能沒有顯著影響。
表3 轉(zhuǎn)基因糙米對(duì)親代鵪鶉生長(zhǎng)性能的影響Table 3 Effects of genetically modified rice on growth performance of quails in parental generation
2.3 轉(zhuǎn)基因糙米對(duì)親代鵪鶉器官指數(shù)的影響
由表4可以看出,飼喂91日齡轉(zhuǎn)Cry1Ab/1Ac基因糙米對(duì)親代雄性和雌性鵪鶉心臟、肝臟、肌胃、腺胃以及睪丸或卵巢等器官指數(shù)無顯著影響(P>0.05)。
表4 轉(zhuǎn)基因糙米對(duì)91日齡親代鵪鶉器官指數(shù)的影響Table 4 Effects of genetically modified rice on organ indexes of quails in parental generation at age of 91 days %
2.4 轉(zhuǎn)基因糙米對(duì)子代鵪鶉生長(zhǎng)性能的影響
由表5可以看出,2個(gè)組子代鵪鶉13~35日齡及36~91日齡的ADFI、ADG和F/G沒有顯著差異(P>0.05),91日齡時(shí),2組雌性和雄性鵪鶉的平均體重沒有顯著差異(P>0.05)。可見連續(xù)飼喂2世代轉(zhuǎn)Cry1Ab/1Ac基因糙米對(duì)鵪鶉的生長(zhǎng)性能沒有顯著影響。
2.5 轉(zhuǎn)基因糙米對(duì)子代鵪鶉器官指數(shù)的影響
由表6可以看出,連續(xù)飼喂2個(gè)世代轉(zhuǎn)Cry1Ab/1Ac基因糙米對(duì)子代雄性和雌性鵪鶉心臟、肝臟、肌胃、腺胃以及睪丸或卵巢等器官指數(shù)無顯著影響(P>0.05)。
表5 轉(zhuǎn)基因糙米對(duì)子代鵪鶉生長(zhǎng)性能的影響Table 5 Effects of genetically modified rice on growth performance of quails in filial generation
表6 轉(zhuǎn)基因糙米對(duì)91日齡子代鵪鶉器官指數(shù)的影響Table 6 Effects of genetically modified rice on organ indexes of quails in filial generation at age of 91 days %
水稻是人類的主要糧食作物,也是重要的飼料原料。轉(zhuǎn)Bt基因水稻經(jīng)過人工導(dǎo)入外源基因能夠穩(wěn)定表達(dá)殺蟲蛋白,有效抗病蟲害,提高水稻產(chǎn)量,人們擔(dān)心外源Bt基因?qū)胍鹚緺I(yíng)養(yǎng)成分等變化。本研究表明,轉(zhuǎn)Cry1Ab/1Ac基因水稻與其非轉(zhuǎn)基因親本水稻之間在營(yíng)養(yǎng)成分含量上無顯著差異。Cao等[15]對(duì)比了轉(zhuǎn)Cry1Ab基因糙米T1c?19與其非轉(zhuǎn)基因親本糙米“明恢63”的各項(xiàng)營(yíng)養(yǎng)成分含量,也未見顯著差異。Wang等[16]發(fā)現(xiàn)轉(zhuǎn)Cry1Ab基因的水稻“克螟稻I”與其非轉(zhuǎn)基因親本水稻“秀水11”粗蛋白質(zhì)、脂肪和氨基酸含量沒有顯著差異。但王軍[21]的研究結(jié)果顯示,轉(zhuǎn)基因水稻“Bt110”與非轉(zhuǎn)基因親本水稻“秀水110”之間粗蛋白質(zhì)和氨基酸含量存在顯著差異。Schr?der等[20]同樣對(duì)比了“克螟稻I”和“秀水11”(與Wang等[16]所用材料相同,僅種植時(shí)間和地點(diǎn)不同),發(fā)現(xiàn)2種水稻粗蛋白質(zhì)、氨基酸和礦物質(zhì)含量存在微小但顯著的差異,作者認(rèn)為2種水稻營(yíng)養(yǎng)成分的差異可能是由于水稻種植時(shí)間和地點(diǎn)不同造成的正常的生物學(xué)變異,而非外源基因?qū)朐斐伞?/p>
轉(zhuǎn)Bt基因作物所表達(dá)的殺蟲蛋白具有高度的特異性[1-4],由于哺乳動(dòng)物和禽類腸道內(nèi)為酸性環(huán)境且不存在特異性的受體[30],因此理論上對(duì)人類以及動(dòng)物安全,但人們擔(dān)心由于外源Bt基因的導(dǎo)入產(chǎn)生未知的不利影響。王忠華等[18]用轉(zhuǎn)Cry1Ab基因水稻“克螟稻2號(hào)”飼喂SD大鼠90 d,發(fā)現(xiàn)其對(duì)大鼠采食量、日增重和F/G等無顯著影響。Wang等[26]用轉(zhuǎn)基因水稻TT51飼喂大鼠90 d的結(jié)果也表明轉(zhuǎn)基因水稻不影響大鼠的生長(zhǎng)發(fā)育,大量試驗(yàn)也表明轉(zhuǎn)Bt基因水稻不影響小鼠等動(dòng)物生長(zhǎng)發(fā)育[25,30-31]。但杜紅方[22]發(fā)現(xiàn)飼喂轉(zhuǎn)Cry1Ab基因糙米“Bt110”42 d顯著提高肉仔雞耗料量、體增重,王軍[21]的研究結(jié)果也與之類似,認(rèn)為可能是由于2種飼糧組成不同,而非外源基因引入導(dǎo)致肉雞生長(zhǎng)性能的提高。上述研究主要針對(duì)轉(zhuǎn)Bt基因水稻的亞急性安全評(píng)價(jià),評(píng)價(jià)周期一般在90 d以內(nèi),不能完全反映轉(zhuǎn)Bt基因水稻的長(zhǎng)期影響。本試驗(yàn)連續(xù)2個(gè)世代飼喂轉(zhuǎn)Cry1Ab/1Ac基因糙米,發(fā)現(xiàn)對(duì)鵪鶉體增重、F/G、器官指數(shù)等指標(biāo)均未產(chǎn)生顯著影響。Flachowsky等[32]用轉(zhuǎn)Bt基因玉米Bt176連續(xù)飼喂鵪鶉10個(gè)世代,每世代持續(xù)12周,也未發(fā)現(xiàn)長(zhǎng)期飼喂轉(zhuǎn)Bt基因玉米對(duì)鵪鶉生長(zhǎng)發(fā)育產(chǎn)生任何不利影響。Wang等[26]的2世代飼養(yǎng)試驗(yàn)結(jié)果顯示,轉(zhuǎn)Cry?Ab/CryAc基因糙米TT51對(duì)大鼠的生長(zhǎng)發(fā)育也沒有顯著影響。
轉(zhuǎn)Cry1Ab/1Ac基因糙米中的粗蛋白質(zhì)、粗脂肪、粗纖維、粗灰分、干物質(zhì)等營(yíng)養(yǎng)成分的含量與傳統(tǒng)親本糙米相比無顯著差異。連續(xù)飼喂2個(gè)世代對(duì)鵪鶉的生長(zhǎng)速度及器官指數(shù)無顯著影響。
參考文獻(xiàn):
[1] SANAHUJA G,BANAKAR R,TWYMAN R M,et al.Bacillus thuringiensis:a century of research,devel?opment and commercial applications[J].Plant Bio?technology Journal,2011,9(3):283-300.
[2] SHAO Z Z,CUI Y L,LIU X L,et al.Processing of δ?endotoxin of Bacillus thuringiensis subsp.kurstaki HD?1 in Heliothis armigera Midgut juice and the effects of protease inhibitors[J].Journal of Invertebrate Patholo?gy,1998,72(1):73-81.
[3] KNIGHT P J K,CRICKMORE N,ELLAR D J.The receptor for Bacillus thuringiensis CrylA(c)delta?en?dotoxin in the brush border membrane of the lepidop?teran Manduca sexta is aminopeptidase N[J].Molecu?lar Microbiology,1994,11(3):429-436.
[4] BETZ F S,HAMMOND B G,F(xiàn)UCHS R L.Safety and advantages of Bacillus thuringiensis?protected plants to control insect pests[J].Regulatory Toxicology and Pharmacology,2000,32(2):156-173.
[5] VAN NGUYEN N,F(xiàn)ERRERO A.Meeting the chal?lenges of global rice production[J].Paddy and Water Environment,2006,4(1):1-9.
[6] RAO Y C,DONG G J,ZENG D L,et al.Genetic anal?ysis of leaffolder resistance in rice[J].Journal of Ge?netics and Genomics,2010,37(5):325-331.
[7] TORIYAMA K,ARIMOTO Y,UCHIMIYA H,et a1.Transgenic rice plants after direct gene transfer into protoplasts[J].Nature Biotechnology,1988,6(9):1072-1074.
[8] ZHANG W,WU R.Efficient regeneration of transgen?ic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants[J].Theo?retical and Applied Genetics,1988,76(6):835-840.
[9] 謝道昕,范云六,倪王沖.蘇云金芽孢桿菌殺蟲基因?qū)胫袊?guó)栽培水稻品種中花11號(hào)獲得轉(zhuǎn)基因植株[J].中國(guó)科學(xué),1991(8):830-834.
[10] FUJIMOTO H,ITOH K,YAMAMMOTO M,et al.In?sect resistant rice generated by introduction of a modi?fied δ?endotoxin gene of Bacillus thuringiensis[J].Nature Biotechnology,1993,11(10):1151-1155.
[11] WüNN J,KL?TI A,BURKHARDT P K,et al.Trans?genic indica rice breeding line IR58 expressing a syn?thethic cry1A(b)gene from Bacillus thuringiensis provide effective insect pest control[J].Biotechnolo?gy,1996,14(2):171-176.
[12] WU C,F(xiàn)AN Y,ZHANG C,et al.Transgenic fertile ja?ponica rice plants expressing a modified cry1A(b)gene resistant to yellow stem borer[J].Plant Cell Re?ports,1997,17(2):129-132.
[13] 舒慶堯,葉恭銀.轉(zhuǎn)基因水稻“克螟稻”選育[J].浙江農(nóng)業(yè)大學(xué)學(xué)報(bào),1998,24(6):579-580.
[14] 張志罡,李勇,朱兆洲.Cry1Ab殺蟲蛋白在轉(zhuǎn)Bt水稻中的表達(dá)及在害蟲體內(nèi)的積累動(dòng)態(tài)[J].中國(guó)植??茖W(xué),2010,30(7):10-13.
[15] CAO S S,HE X Y,XU W T,et al.Safety assessment of transgenic Bacillus thuringiensis rice T1c?19 in sprague?dawly rats from metabonomics and bacterial profile perspectives[J].IUBMB Life,2012,64(3):242-250.
[16] WANG Z H,WANG Y,CUI H R,et al.Toxicological evaluation of transgenic rice flour with a synthetic cry1Ab gene from Bacillus thuringiensis[J].Journal of the Science of Food and Agriculture,2002,82(7):738-744.
[17] TANG X M,HAN F T,ZHAO K,et al.A 90?day diet?ary toxicity study of genetically modified rice T1C?1 expressing Cry1C protein in sprague dawley rats[J].PLoS One,2012,7(12):e52507.
[18] 王忠華,王茵,崔海瑞,等.Bt水稻“克螟稻”稻米毒理性評(píng)價(jià)研究初報(bào)[J].中國(guó)農(nóng)業(yè)科學(xué),2002,5 (12):1487-1492.
[19] WANG E H,YU Z,HU J,et al.Effects of 90?day feeding of transgenic Bt rice TT51 on the reproductive system in male rats[J].Food and Chemical Toxicolo?gy,2013,62:390-396.
[20] SCHR?DER M,POULSEN M,WILCKS A,et al.A 90?day safety study of genetically modified rice ex?pressing Cry1Ab protein(Bacillus thuringiensis tox?in)in Wistar rats[J].Food and Chemical Toxicolo?gy,2007,45(3):339-349.
[21] 王軍.轉(zhuǎn)基因糙米在肉仔雞日糧中的安全性初探[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2006.
[22] 杜紅方.轉(zhuǎn)基因水稻作為肉仔雞飼糧原料的安全性評(píng)價(jià)[D].博士學(xué)位論文.北京:中國(guó)農(nóng)業(yè)科學(xué)院,2006.
[23] 熊燕飛,覃銅城,陳超,等.轉(zhuǎn)Bt基因水稻對(duì)雄性小白鼠體內(nèi)酶活性的影響[J].湖北農(nóng)業(yè)科學(xué),2011,50(24):5200-5205.
[24] 曹正輝,王占彬,顧憲紅.轉(zhuǎn)Bt基因糙米中外源蛋白質(zhì)和外源基因在生長(zhǎng)豬體內(nèi)的殘留及對(duì)組織器官的損傷[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2014,26(7):1908-1915.
[25] 張珍譽(yù),劉立軍,張琳,等.轉(zhuǎn)Bt基因稻谷對(duì)小鼠的亞慢性毒性實(shí)驗(yàn)[J].毒理學(xué)雜志,2010,24(2):126-129.
[26] WANG E H,YU Z,HU J,et al.A two?generation re?production study with transgenic Bt rice TT51 in Wist?ar rats[J].Food and Chemical Toxicology,2014,65:312-320.
[27] YUAN Y F,XU W T,LUO Y B,et al.Effects of ge?netically modified T2A?1 rice on faecal microflora of rats during 90 day supplementation[J].Journal of the Science of Food and Agriculture,2011,91(11):2066-2072.
[28] YUAN Y,XU W,HE X,et al.Effects of genetically modified T2A?1 rice on the GI health of rats after 90?day supplement[J].Scientific Reports,2013,3:1962.
[29] 張麗英.飼料分析及飼料質(zhì)量檢測(cè)技術(shù)[M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2003:45-75.
[30] MCCLINTOCK J T,SCHAFFER C R,SJOBLAD R D.A comparative review of the mammalian toxicity of Bacillus thuringiensis?based pesticides[J].Pesticide Science,1995,45(2):95-105.
[31] JIANG L X,YANG L T,ZHANG H B,et al.Interna?tional collaborative study of the endogenous reference gene,Sucrose Phosphate Synthase(SPS),used for qualitative and quantitative analysis of genetically modified rice[J].Journal of Agricultural and Food Chemistry,2009,57(9):3525-3532.
[32] FLACHOWSKY G,HALLE I,AULRICH K.Long term feeding of Bt?corn?a ten?generation study with quails[J].Archives of Animal Nutrition,2005,59 (6):449-451.
Effects of Feeding Transgenic Rice Containing Cry1Ab/1Ac Gene on Growth and Development in Two Generations of Quails
LI Zeyang
1,2
FENG Jinghai
2?
ZHOU Ming
1??
ZHANG Minhong
2
CHANG Yu
2
(責(zé)任編輯 陳 燕)
(1.College of Animal Science and Technology,Anhui Agricultural University,Hefei 230036,China;2.State Key Laboratory of Animal Nutrition,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,China)
?Contributed equally
??Corresponding author,professor,E?mail:aauzhouming@163.com
Abstract:A two?generation feeding trial was conducted to study the effects of transgenic rice containing Cry1Ab/1Ac gene on growth and development in Japanese quails(Coturnix japonica).Four hundred and two 1?day?old Japanese quails were randomly divided into 2 groups with 3 replicates per group and 67 quails per replicate.The 2 groups were genetically modified and non?genetically modified(non?GM)groups,and quails in these 2 groups were fed diets with genetically modified rice containing Cry1Ab/1Ac gene and non?genetically modified(non?GM)rice,respectively.At age of 35 d,seventy?two healthy quails with similar body weight from each group were selected and randomly divided into 2 groups with 6 replicates per group,each replicate contained 9 female quails and 3 male quails,and quails in different groups were continued to feed with the 2 di?ets.The duration of each generation was 91 d and the eggs of first generation in the period at 85 to 91 d of age were hatched for the next generation.The experimental design and management of the second generation was the same as the first generation.The results showed that there was no significant difference in nutrient compo?nent contents in the genetically modified rice compared with the non?GM rice(P>0.05).The results of aver?age daily gain(ADG),average daily feed intake(ADFI)and the ratio of feed to gain(F/G)of quails in each generation showed no significant difference in each generation between different groups(P>0.05).Com?paring with the non?GM group,the indexes of liver,heart,testis and ovary of quails in each generation be?tween the 2 groups were not significantly different.The results suggest that consuming genetically modified rice containing Cry1Ab/1Ac gene for consecutive two generations has no significant effect on growth and develop?ment in quails.[Chinese Journal of Animal Nutrition,2015,27(7):2168?2175]
Key words:genetically modified;rice;Cry1Ab/1Ac;quails;growth and development
作者簡(jiǎn)介:李澤陽(1990—),男,安徽蕪湖人,碩士研究生,研究方向?yàn)閯?dòng)物營(yíng)養(yǎng)生態(tài)。E?mail:xmyglzy@126.com?同等貢獻(xiàn)作者
基金項(xiàng)目:國(guó)家科技重大專項(xiàng)子課題(2012ZX08011001?005);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS07)
收稿日期:2015-02-05
doi:10.3969/j.issn.1006?267x.2015.07.022
文章編號(hào):1006?267X(2015)07?2168?08
文獻(xiàn)標(biāo)識(shí)碼:A
中圖分類號(hào):S816.41;S839
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2015年8期