吳 斌
(福建省建筑設(shè)計研究院 福建福州 350000)
目前,對鋼筋混凝土結(jié)構(gòu)的有限元分析主要集中在強度方面[1],對其穩(wěn)定性、初始缺陷影響等研究較少。為了能得到更接近真實情況下的結(jié)構(gòu)性狀,對結(jié)構(gòu)進行非線性分析是很有必要的,它能將結(jié)構(gòu)在實際受力中由于單元剛度變化所引起的內(nèi)力重分布考慮進去[2]。在實際工程中,如果混凝土結(jié)構(gòu)的非線性分析能夠被廣泛使用的話,則在保證結(jié)構(gòu)安全性的前提下,結(jié)構(gòu)的造價將會得到很大程度的降低。本文結(jié)合福建省科技館(新館)球幕影院的實際工程,運用SAP2000完成其混凝土球殼的非線性分析,為今后的工程實踐提供參考。
圖1 球殼結(jié)構(gòu)模型
(圖1)為球幕影院球殼結(jié)構(gòu)在sap2000中的結(jié)構(gòu)模型圖,下部結(jié)構(gòu)對殼體的約束簡化為固端約束。
其主要信息如下:
厚度:100mm
恒載:3.0kN/m2;活載:1.0kN/m2;
基本風(fēng)壓:0.85kN/m2;地面粗糙度:B類;
溫度作用:+30度。
本文中采用SAP2000中的薄殼單元對混凝土球殼進行模擬。在進行非線性分析時,考慮P-△效應(yīng)和大位移。加載條件采用荷載控制,將通過線性屈曲分析得到的極限荷載作為其非線性分析時的加載荷載,并對相應(yīng)點的位移進行監(jiān)測。
結(jié)構(gòu)X方向的風(fēng)荷載體型系數(shù)分布如(圖2)所示。結(jié)構(gòu)在X方向風(fēng)荷載作用下的變形及內(nèi)力分布如(圖3、圖4)所示,(圖5)為無開孔殼模型在X向風(fēng)荷載下的徑向應(yīng)力云圖。
(圖3)表明,在X方向的風(fēng)荷載作用下,風(fēng)吸力起主要作用,球殼在頂部以及球殼開孔處的位移相對較大;(圖4)說明混凝土殼的應(yīng)力傳遞基本沿著拱軸線傳遞,但是在洞口邊緣出現(xiàn)了應(yīng)力集中和突變現(xiàn)象,可以看到在洞口邊緣局部甚至出現(xiàn)了壓應(yīng)力,而(圖5)中無洞口的殼體受力則比較均勻。(圖4、圖5)說明球殼上的洞口對風(fēng)工況較敏感,實際配筋時,洞口處配筋應(yīng)加強。
本文選擇2種荷載工況對結(jié)構(gòu)進行特征值屈曲分析,同時,對在相同荷載工況下殼體上無開洞的情況下也進行了屈曲分析,所得到的屈曲因子如(表1)所示。(表1)表明,在如圖所示開洞情況下,在所選的荷載工況下,殼體的穩(wěn)定承載力有所下降,但是基本變化不大,說明模型中所開的洞口對結(jié)構(gòu)整體的穩(wěn)定性影響不大。
圖2 球殼X方向的風(fēng)荷載體型系數(shù)
圖3 球殼在X方向的風(fēng)荷載下的位移云圖
圖4 球殼在X方向的風(fēng)荷載下的徑向應(yīng)力云圖
圖5 無開孔球殼在X方向的風(fēng)荷載下的徑向應(yīng)力云圖
X向風(fēng)荷載工況下的一階屈曲模態(tài)如(圖6、圖7)所示。(圖6、圖7)表明,在X向風(fēng)荷載作用下,混凝土殼在有無開洞口下的第一階屈曲失穩(wěn)均表現(xiàn)為殼體中部結(jié)構(gòu)的塌陷與隆起。只不過在有開孔的情況下,其在洞口邊緣的屈曲位移明顯要大于相同位置在無開洞情況下的變形位移,因此,有必要在洞口邊緣加強配筋。
表1 不同工況下的屈曲因子
圖6 一階屈曲模態(tài)(D+WX)
圖7 一階屈曲模態(tài)(D+WX(S))
圖8 結(jié)構(gòu)的荷載-位移曲線
(圖8)是結(jié)構(gòu)在無初始缺陷下殼體頂部節(jié)點553的Z向位移與基底反力的荷載位移曲線,以向下的位移為正。(圖8)表明,結(jié)構(gòu)的最大反力約為1.22E6 kN。經(jīng)計算,結(jié)構(gòu)在1倍D+L工況下的基底豎向反力為6000kN,因此可以反算出,結(jié)構(gòu)在無初始缺陷下的極限承載力約為203倍(D+L),說明其穩(wěn)定性很好。
表2 有初始幾何缺陷下結(jié)構(gòu)的屈曲因子(D+L)
仿照球面網(wǎng)殼考慮結(jié)構(gòu)的初始幾何缺陷,其缺陷分布采用結(jié)構(gòu)在(D+L)工況下的最低階屈曲模態(tài),缺陷最大值按球殼跨度的1/300 取值[3]。
對比(表2)和(表1)中的數(shù)據(jù),在考慮初始幾何缺陷后,結(jié)構(gòu)的一階屈曲因子下降為原來的37.0%,說明初始缺陷極大降低了結(jié)構(gòu)的承載力
(圖9)是考慮初始幾何缺陷下,球殼頂部節(jié)點553在Y向的位移與基底反力的荷載位移曲線。
圖9 結(jié)構(gòu)的荷載-位移曲線Fig.9 Load-displacement curves
(圖9)表明,結(jié)構(gòu)的最大反力約為3.65E5 kN,約為61倍(D+L),滿足規(guī)范要求。與無初始幾何缺陷下結(jié)構(gòu)的承載力相比,在相同的(D+L)工況下,有初始幾何缺陷下結(jié)構(gòu)的承載力僅為無初始幾何缺陷下的29.9%,結(jié)果同樣表明初始幾何缺陷對混凝土殼的穩(wěn)定性有很大影響。
圖10 有下部結(jié)構(gòu)支承的球殼結(jié)構(gòu)模型
(圖10)是帶有下部支承結(jié)構(gòu)的計算模型,下部墻厚為300mm,采用殼單元模擬;在球殼與下部墻體間有截面為1400x1200的環(huán)梁,同時,下部布置有800x1400的扶壁柱。下部結(jié)構(gòu)大開洞區(qū)域為球幕影院入口。
(表3)是無初始幾何缺陷下,結(jié)構(gòu)在不同工況下的屈曲因子。對比(表3)和(表1),發(fā)現(xiàn),由于下部支承條件的變化,結(jié)構(gòu)的屈曲因子比無下部支承結(jié)構(gòu)的小很多。
表3 不同工況下的屈曲因子
僅對結(jié)構(gòu)上部混凝土球殼施加初始幾何缺陷,得到節(jié)點385在X向的位移與基底反力的的荷載位移曲線如(圖11)所示。
圖11 結(jié)構(gòu)的荷載-位移曲線
(圖11)表明,結(jié)構(gòu)的最大反力約為2.38E5 kN,約為無下部支承結(jié)構(gòu)的極限承載力的0.65。我們可以近似地將有下部支承的結(jié)構(gòu)看成由上部結(jié)構(gòu)和下部支承結(jié)構(gòu)串聯(lián),由于環(huán)梁以及下部支承結(jié)構(gòu)的剛度不是無限大,因此串聯(lián)后,結(jié)構(gòu)的整體剛度小于無下部支承條件的混凝土球殼,從而其屈曲因子以及有初始缺陷下的極限荷載均小于無下部支承條件時的結(jié)果。
(表1、表3)以及(圖9、圖11)數(shù)據(jù)說明,當(dāng)下部支承條件的剛度相對于上部結(jié)構(gòu)剛度不是大很多時,下部支承結(jié)構(gòu)對結(jié)構(gòu)整體的極限承載力影響較大,建議將下部結(jié)構(gòu)帶入整體計算。
本文針對福建省科技館(新館)的球幕影院混凝土球殼進行了非線性分析,綜合對比了混凝土殼在洞口、初始幾何缺陷、有無下部支承結(jié)構(gòu)等因素影響下的力學(xué)性能。計算發(fā)現(xiàn),洞口球殼在風(fēng)荷載作用下對洞口比較敏感,因此在實際設(shè)計時,對削弱的洞口進行了加強,在孔洞周邊均設(shè)置了加勁肋,且保證其在任意法向剖面上其混凝土與鋼筋的截面面積均不少于被割去殼板混凝土與鋼筋的截面面積。同時,考慮到下部支承對混凝土殼的重要性,本工程加大了下部環(huán)梁以及扶壁柱截面,以確保其整體穩(wěn)定性。
[1]薛偉辰,張志鐵.鋼筋混凝土結(jié)構(gòu)非線性全過程分析方法及其應(yīng)用[J].計算力學(xué)學(xué)報.1999,16(3):339-342.
[2]葉英華,刁波.鋼筋混凝土結(jié)構(gòu)非線性理論綜述[J].哈爾濱建筑工程學(xué)院學(xué)報.1995,28(1):127-130.
[3]JGJ7-2010,空間網(wǎng)格技術(shù)規(guī)程[S].