亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        食物中典型持久性有機污染物(POPs)的生物可給性研究綜述

        2015-12-07 06:43:48于艷新李奇王慧徐潔
        生態(tài)環(huán)境學報 2015年8期
        關(guān)鍵詞:源性消化基質(zhì)

        于艷新,李奇,王慧,徐潔

        北京師范大學水科學研究院,北京 100875

        食物中典型持久性有機污染物(POPs)的生物可給性研究綜述

        于艷新,李奇*,王慧,徐潔

        北京師范大學水科學研究院,北京 100875

        持久性有機污染物(POPs)因其對人體的潛在危害而成為暴露風險評價關(guān)注的焦點。但是,以往的健康風險評價通常僅關(guān)注人體的外暴露水平,忽視了污染物從體外向體內(nèi)輸移過程中生物可給性對暴露水平的影響,因而可能造成暴露風險的高估或低估,以及主要暴露源的誤判。在人體的3大暴露途徑(飲食暴露、呼吸暴露和皮膚接觸暴露)中,飲食暴露被證明為最主要的暴露途徑。食物中POPs的生物可給性(bioaccessibility)指食物中能夠被人體消化系統(tǒng)消化進入液相且可能被腸道吸收利用的那部分POPs占總POPs含量的比例,生物可給性的引入使內(nèi)暴露取代外暴露成為飲食暴露風險評估的基礎(chǔ),其結(jié)果將更加接近人體暴露的真實情況。本文在查閱大量文獻的基礎(chǔ)上,以4種典型POPs——多氯聯(lián)苯(PCBs)、多溴聯(lián)苯醚(PBDEs)、多環(huán)芳烴(PAHs)及有機氯農(nóng)藥(OCPs)為主線,系統(tǒng)總結(jié)了食物中POPs生物可給性的研究現(xiàn)狀,包括各研究所采用的消化模擬方法和POPs自身理化性質(zhì)、食物基質(zhì)性質(zhì)、消化模擬參數(shù)等因素對生物可給性的影響,進而說明不同污染物生物可給性的差異。我們發(fā)現(xiàn),動物源性食物 POPs生物可給性在 3.0%~84.5%之間,而植物源性食物 POPs生物可給性則為2.6%~59.9%,可見生物可給性在POPs膳食暴露風險評價中是極其重要的。此外,文章還闡述了現(xiàn)有研究在食物基質(zhì)的選擇和預(yù)處理、消化環(huán)境的設(shè)置以及消化液的配置等諸多方面存在的問題,并針對這些不足之處對今后的研究方向進行了展望,呼吁建立和發(fā)展更加科學有效的研究體系。文章對完善和發(fā)展健康風險評價理論、技術(shù)和方法,具有一定的積極意義。

        持久性有機污染物;食物;生物可給性;綜述

        持久性有機污染物(persistent organic pollutants,POPs)是指難于降解、在環(huán)境中具有長期殘留性、可長距離輸送、憎水親脂和具有生物放大作用(余剛等,2001)的一類污染物,如多氯聯(lián)苯(polychlorinated biphenyls,PCBs),多溴聯(lián)苯醚(polybrominated diphenyl ethers,PBDEs),多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)和有機氯農(nóng)藥(organochlorine pesticide,OCPs)。流行病學研究已證實了POPs具有致癌性、內(nèi)分泌干擾作用、再生系統(tǒng)損害、致帕金森病和中樞神經(jīng)系統(tǒng)損害等特性(Capuano et al.,2005;Gilbert,2004;Helberg et al.,2005;Muir et al.,2003;劉征濤,2001;劉征濤,2005)。人體暴露POPs有呼吸暴露、皮膚接觸暴露和飲食暴露3大途徑,其中飲食暴露是主要的暴露途徑(Mussalo et al., 1988;Kostyniak et al.,1999;呂艷,2009),因而成為公共健康領(lǐng)域研究的焦點。

        但是,以往的飲食暴露風險評價主要依托體外暴露,沒有考慮人體內(nèi)消化系統(tǒng)(口腔-胃-腸道組成)的消化作用,即忽略了食物中POPs在消化道內(nèi)的可消化率,據(jù)此進行的風險評價難以準確地反映人體通過飲食途徑獲取的暴露水平,造成暴露風險的高估或低估,并可能造成主要暴露源的誤判。為了更加真實的表征人體對污染物的暴露情況,生物可給性(bioaccessibility)的概念被學者們引入到風險評價中來,食物中 POPs的生物可給性(bioaccessibility)是指食物中能夠被人體消化系統(tǒng)消化進入液相且有可能被腸道吸收利用的那部分POPs占總POPs的比例(Ruby et al.,1992;Ruby et al.,1993;Ruby et al.,1999)。生物可給性的引入使建立在外暴露基礎(chǔ)上的風險評估進階到以內(nèi)暴露為基礎(chǔ),其結(jié)果將進一步接近人體暴露的真實情況。

        本文的目的為對食物中幾種典型的 POPs,多氯聯(lián)苯(polychlorinated biphenyls,PCBs),多溴聯(lián)苯醚(polybrominated diphenyl ethers,PBDEs),多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)和有機氯農(nóng)藥(organochlorine pesticide,OCPs)的生物可給性研究現(xiàn)狀進行綜述。

        1 食物中POPs生物可給性

        1.1 多氯聯(lián)苯(PCBs)

        PCBs是一類含氯的非極性碳氫化合物,具有良好的電絕緣性和耐熱性,作為工業(yè)產(chǎn)品的添加劑被廣泛應(yīng)用(韓姝媛等,2010),雖然早在 20世紀70年代,大部分國家就禁止了PCBs的生產(chǎn)和使用,但直到現(xiàn)在我們依然能在環(huán)境中檢測到 PCBs的存在(馮欽忠等,2014;韓德明等,2014;吳益春等,2014)。PCBs是一種典型的持久性有機污染物,人體暴露后可造成皮膚損傷、免疫紊亂及癌癥等疾?。∕aervoet et al.,2007;Meng et al.,2007;Weintraub et al.,2008)。

        Xing et al.(2008)應(yīng)用體外模擬實驗研究了兩種淡水魚(泥鰍和鳙魚)和兩種蔬菜(菠菜和卷心菜)中 PCBs的生物可給性,發(fā)現(xiàn)淡水魚中 PCBs的生物可給性均值僅為3%,低于蔬菜中PCBs的生物可給性(均值為25%),并指出魚肉和蔬菜中PCBs生物可給性之間的不同主要歸因于動物和植物源性食物脂含量的顯著差異。PCBs具有較強的脂溶性,易蓄積在脂質(zhì)中,但脂肪在消化道中不易消化,因此食物脂含量越高,食物中的PCBs越難釋放出來,生物可給性越低。這與Hack et al.(1996)和Oomen et al.(2000)的研究結(jié)論正好相反,Hank et al.(1996)發(fā)現(xiàn)在對土壤顆粒的體外模擬消化過程中加入全脂奶粉可有效提升PCBs生物可給性,可能的解釋是,土壤基質(zhì)不同于食物,有機質(zhì)含量較低,加入少量有機質(zhì)有利于PCBs在土壤顆粒和有機質(zhì)之間轉(zhuǎn)移,致使土壤基質(zhì)中PCBs的生物可給性升高,具體原因有待進一步證實。Xing et al.(2008)還發(fā)現(xiàn)PCBs的生物可給性與其氯原子數(shù)、辛醇-氣分配系數(shù)(KOA)、辛醇-水分配系數(shù)(KOW)、分子量(MW)及水溶性(WS)等因素具有相關(guān)性,其中 PCB分子中氯原子數(shù)越少,其生物可給性越高;卷心菜PCBs生物可給性與KOA、KOW、MW呈顯著負相關(guān),鳙魚PCBs生物可給性與WS呈顯著正相關(guān),其余因素與生物可給性之間的相關(guān)關(guān)系則不顯著。

        除食物基質(zhì)性質(zhì)和污染物理化性質(zhì)外,體外消化參數(shù)也是PCBs生物可給性的影響因素,比如液固比(消化液體積與食物基質(zhì)質(zhì)量之比)、pH(消化體系酸堿度)及老化時間(食物基質(zhì)被污染物暴露的時間)等。Yu et al.(2009a)關(guān)于草魚中PCBs生物可給性影響因素的研究表明,液固比與草魚中PCBs生物可給性之間呈正相關(guān)趨勢,當液固比小于120時,PCBs生物可給性隨液固比升高從1.9%迅速增至30.3%,隨后,PCBs生物可給性基本趨于穩(wěn)定,相似結(jié)論在土壤PAHs生物可給性研究中亦有發(fā)現(xiàn)(de Wiele et al.,2004)。消化液的pH在消化系統(tǒng)中具有重要的地位,Yu et al.(2009a)研究發(fā)現(xiàn),小腸消化階段草魚PCBs的生物可給性在pH=6~7.5時與pH呈正相關(guān),在pH=7.3時達到最大值。由于食物基質(zhì)的稀釋作用,胃液pH在人體攝食前后會發(fā)生較大的變化,禁食狀態(tài)時其pH=1.3,進食后迅速增至 4.9,食糜從胃部進入小腸致使小腸pH降低,刺激胰腺分泌重碳酸鹽,而后pH重新趨于穩(wěn)定(H?rter et al.,2001)。Tyssandier et al.(2001)的研究也表明pH是類胡蘿卜素由乳濁脂質(zhì)顆粒向混合膠團轉(zhuǎn)移最重要的影響因素之一。由于環(huán)境樣品中POPs含量較低,故在生物可給性研究中,為使檢測儀器能夠檢測到 POPs,實驗者一般會對食物基質(zhì)進行老化以提高基質(zhì)中污染物的濃度,Yu et al.(2009a)采用的方法為將PCBs標準品加入到冷干的魚肉粉末中充分接觸,一段時間后污染物即可附著在基質(zhì)中。研究表明,老化的時間越長,PCBs生物可給性越小,這是因為短時間的老化只能使PCBs附著在基質(zhì)顆粒表面,在胃腸消化系統(tǒng)中易于溶解釋放,隨著老化時間的增長,PCBs可進入到細胞間縫隙與食物基質(zhì)緊密結(jié)合,此時的PCBs將更更難被消化釋放出來。

        綜上,食物中PCBs生物可給性主要受食物基質(zhì)脂含量,各PCB理化性質(zhì)(KOA、KOW、MW、WS等),以及消化環(huán)境(液固比、pH、老化時間)的影響。

        1.2 多溴聯(lián)苯醚(PBDEs)

        PBDEs是一類含溴原子的芳香族化合物,其結(jié)構(gòu)和性質(zhì)與PCBs相似,共有209種同系物,市場上的 PBDEs主要由五溴、八溴和十溴聯(lián)苯醚的混合物組成。作為一類阻燃劑,PBDEs廣泛應(yīng)用于家具、塑料、紡織品等生活用品的生產(chǎn)(Voorspoels et al.,2007)。PBDEs親脂性強,化學性質(zhì)穩(wěn)定,可在食物鏈中生物富集和放大,進入人體可導致內(nèi)分泌系統(tǒng)及肝臟功能損傷、影響人群的繁殖發(fā)育且具有致癌性,甚至可通過母嬰傳播轉(zhuǎn)移至下一代(Dingemans et al.,2008;Doucet et al.,2009;He et al.,2008;Ren et al.,2012)。鑒于PBDEs可對環(huán)境和人群造成極大的威脅和傷害,2004年,歐盟全面禁止五溴和八溴聯(lián)苯醚的生產(chǎn),我國也在2006年出臺相關(guān)規(guī)定限制 PBDEs的生產(chǎn)使用(萬斌等,2011)。

        Yu等人在2009─2011年期間開展系列研究,評估了魚和蔬菜 PBDEs的生物可給性,并闡明生物可給性與消化環(huán)境及食物基質(zhì)性質(zhì)之間的相關(guān)關(guān)系(Yu et al.,2009b;Yu et al.,2010;Yu et al.,2011)。研究表明,草魚 PBDEs在小腸消化階段的生物可給性顯著大于胃部消化階段,源于小腸消化階段的消化時間(6 h)長于胃部消化階段(2 h),且小腸液中含有膽汁鹽和胰液素(Yu et al.,2009b)。在小腸消化階段,PBDEs生物可給性與消化時間成正比,當消化時間大于6 h以后,PBDEs的生物可給性將不再隨消化時間增長(Yu et al.,2009b)。該變化規(guī)律反映了食物污染物在消化過程中的遷移機制,在消化系統(tǒng)中,污染物不斷從基質(zhì)中釋放進入液相,同時液相中的污染物亦不斷附著到基質(zhì)表面,污染物的吸附和釋放機制共存,消化的初始階段,污染物釋放速率大于附著速率,生物可給性與消化時間呈正相關(guān),隨著消化液中污染物濃度升高,附著速率增大,最終與釋放速率相等,此時釋放和附著達到平衡,生物可給性趨于穩(wěn)定。膽汁鹽是小腸液重要成分,具有類似表面活性劑的作用,當其濃度高于0.15 g·L-1的臨界膠束濃度時,能夠降低小腸液的表面張力,同時與疏水性污染物結(jié)合成膠團,產(chǎn)生非極性環(huán)境,有助于疏水性污染物溶解(Oomen et al.,2004)。

        除消化環(huán)境,食物基質(zhì)性質(zhì)也是 PBDEs生物可給性重要的影響因素,Yu et al.(2010)研究包括魚、肉、米、面、蔬菜等13種食物PBDEs生物可給性,發(fā)現(xiàn)魚肉 PBDEs生物可給性最高(32.8%~41.3%),其次是米(均值為40.4%),肉和蔬菜 PBDEs生物可給性變異系數(shù)較大,最高值分別是最低值的7倍和11倍。食物基質(zhì)不同的營養(yǎng)組成是造成各食物 PBDEs生物可給性差異的重要因素,對于動物源性食物,脂含量是其生物可給性最主要的影響因素,當脂含量大于9%時,PBDEs生物可給性與脂含量呈顯著的正相關(guān),但是對于脂含量較低(小于5.5%)的食物,生物可給性與脂含量呈負相關(guān),這是因為在低脂含量食物中,其他成分將成為生物可給性的主要影響因素,比如說蛋白質(zhì)。氨基酸是蛋白質(zhì)的代謝產(chǎn)物,進入到消化液中以鹽的形式存在,可增加液相中離子間作用力,氨基酸的鹽析作用可降低 PBDEs的溶解性,從而造成PBDEs的生物可給性降低。動物源性食物PBDEs生物可給性與蛋白質(zhì)之間沒有觀察到顯著的相關(guān)性,但是植物源性食物 PBDEs生物可給性與蛋白質(zhì)含量之間存在顯著的負相關(guān),這是因為大部分動物源性食物的脂含量較高,掩蓋了蛋白質(zhì)對生物可給性的影響,而植物源性食物中脂含量一般較?。ǘ诡悺⒒ㄉ仁澄锍猓?,此時蛋白質(zhì)的影響即顯現(xiàn)出來。進一步分析,將蛋白含量和脂含量的比值作為變量,發(fā)現(xiàn)動物源性食物 PBDEs生物可給性與之呈負相關(guān)趨勢,進一步證實了高脂含量對其他因素的掩蓋作用。植物源性食物 PBDEs生物可給性與碳水化合物含量呈正相關(guān),因為碳水化合物能夠與PBDEs結(jié)合形成膠團,有利于PBDEs在液相中的分配。另有研究表明,碳水化合物能夠自主組裝成膠團簇,增強疏水性毒性分子的轉(zhuǎn)運能力,致使食物POPs生物可給性升高(Qu et al.,2006)。膳食纖維是另一個影響植物源性食物 PBDEs生物可給性的重要因素,兩者之間呈顯著的負相關(guān)性,研究表明,膳食纖維在食物中以纖維素的形式存在,在消化系統(tǒng)中不被消化,還能吸附液相中的PBDEs,隨糞便排出體外。相似結(jié)論在食物中β-胡蘿卜素,番茄紅素及葉黃素等營養(yǎng)物質(zhì)的生物可給性研究中亦有發(fā)現(xiàn)(Riedl et al.,1999)。

        綜上,食物中 PBDEs生物可給性主要受食物基質(zhì)營養(yǎng)物質(zhì)(如脂肪、蛋白質(zhì)、膳食纖維等)含量,食物基質(zhì) PBDEs總濃度,以及消化環(huán)境(固液比、pH)的影響。

        1.3 多環(huán)芳烴(PAHs)

        PAHs是一類稠環(huán)芳香族化合物,是有機物不完全燃燒的產(chǎn)物(Mcgrath et al.,2007;Mumtaz et al.,1996)。動物實驗表明,常見的 PAHs,如苯并芘(benzo[a]pyrene)、?(chrysene)及茚并[1, 2, 3-cd]芘(indeno [1, 2, 3-cd] pyrene)等具有致癌、致畸和致突變等效應(yīng)(Deutsch-Wenzel et al.,1983;Thyssen et al.,1981)。流行病學調(diào)查研究則表明,PAHs暴露與人群皮膚癌、肺癌、膀胱癌等疾病的發(fā)生具有相關(guān)性(Armstrong et al.,2004;Boffetta et al.,1997)。PAHs對人群和環(huán)境造成極大的威脅和傷害,已然成為環(huán)境污染與人體健康領(lǐng)域的研究熱點(Boobis et al.,2005;Kang et al.,2015;Liu et al.,2014;Martorell et al.,2010;Pufulete et al.,2004;Ramesh et al.,2004)。

        現(xiàn)有關(guān)于PAHs生物可給性的研究主要針對土壤基質(zhì),食物基質(zhì)中PAHs生物可給性的相關(guān)調(diào)查還很欠缺,僅對魚和肉進行了研究(Wang et al.,2010;Yu et al.,2012a)。Wang et al.(2010)應(yīng)用體外模擬消化模型測定了 20種魚肉(包括淡水魚和咸水魚)中PAHs的生物可給性,發(fā)現(xiàn)咸水魚的PAHs殘留濃度顯著高于淡水魚,但兩者生物可給性并無顯著差別,Yu et al.(2012a)測定了18種共175個動物源性食物樣品,其PAHs生物可給性為29.0%~61.2%,與Wang et al.(2010)研究結(jié)論相似。魚肉PAHs在小腸消化階段的生物可給性顯著高于其在胃部消化階段(分別為31.1%和24.3%),草魚中的PBDEs亦是如此(Yu et al.,2009b),Tang et al.(2006)關(guān)于土壤中PAHs生物可給性的研究也發(fā)現(xiàn)這一規(guī)律。與PCBs一樣(Xing et al.,2008),魚肉中PAHs的生物可給性也受各PAH自身理化性質(zhì)的影響,與KOA、KOW和MW呈負相關(guān),與WS呈正相關(guān),說明水溶性強的PAH易于從食物基質(zhì)中釋放出來進入消化液,該規(guī)律在土壤PAHs生物可給性研究中也存在(Tang et al.,2006)。相對累計率是指消化過程中某一PAH在液相中占總PAHs的百分含量與該PAH在樣本中占總PAHs百分含量之間的比值,是評價PAHs在消化過程相對稀釋或相對富集的指標。Wang et al.(2010)的研究表明低分子量 PAHs的相對累計率顯著低于高分子量PAHs。Qin et al.(2010)對香港居民皮下組織PAHs殘留量和各PAH相對累計率做回歸分析得到顯著的正相關(guān),說明相對累計率越高的 PAHs具有較高的生物可給性,更容易被人體消化吸收和富集。

        綜上,食物中PAHs生物可給性主要受PAH理化性質(zhì)(KOA、KOW、MW、WS等)的影響。

        1.4 有機氯農(nóng)藥(OCPs)

        OCPs是有一類具有殺蟲活性的氯代烴的總稱,主要品種滴滴涕(dichlorodiphenyltrichloroethane,DDTs)和六六六(hexachlorocyclohexane,HCHs)分別于1825年和1874年問世,被廣泛應(yīng)用于農(nóng)業(yè)植保和公共衛(wèi)生領(lǐng)域,一度是世界各國首選的殺蟲劑(黃衛(wèi)平,2001)。但由于其本身具有高毒性,難降解性以及高富集性,對環(huán)境系統(tǒng)和人體健康造成嚴重的威脅和傷害,1980s以來世界上大多數(shù)國家已經(jīng)禁止OCPs的生產(chǎn)和使用(呂艷,2009)。即便如此,由于其化學性質(zhì)穩(wěn)定,揮發(fā)性小且半衰期長,環(huán)境各介質(zhì)中依然能檢測到DDTs和HCHs的存在,包括大氣(Bidleman et al.,2004;Leone et al.,2000)、水體(Ilyina et al.,2006;Kolankaya,2006)、土壤(Vega et al.,2007)及動植物(Hinck et al.,2008;Srivastava et al.,2006;Verreault et al.,2005)等??梢姡琌CPs的人群暴露估算及健康風險評價研究已刻不容緩。

        典型的 OCPs中,o, p’-DDT、o, p’-DDD和α-HCH等都是手性化合物,其中α-HCH是以右旋化合物(+)-α-HCH和左旋化合物(-)-α-HCH兩種對映體 1∶1比例存在的外消旋混合物(Tao et al.,2009)。Tao et al.(2009)對土壤顆粒 OCPs的生物可給性研究表明,在胃腸模擬過程中,(+)-α-HCH的釋放速度較(-)-α-HCH更快,導致(+)-α-HCH在胃消化液中富集;但進入腸道后,(-)-α-HCH能比(+)-α-HCH更快進入液相,使得(-)-α-HCH被優(yōu)先排出體外,可能的原因是酶類的立體化學選擇性。與α-HCH相似的是,o, p’-DDT和o, p’-DDD經(jīng)胃的消化后,右旋對映體高于左旋對映體;但經(jīng)小腸消化,右旋對映體減少。

        Wang et al.(2011)應(yīng)用體外消化模擬實驗測定了20種共279個魚肉樣品DDTs和HCHs生物可給性,表明胃部消化階段中DDTs和HCHs的生物可給性(0.37%~12.8%)顯著低于腸道消化階段(0.73%~33.1%),其原因是小腸液中含有膽汁鹽,這與食物基質(zhì)中PBDEs(Yu et al.,2009b)、PAHs(Wang et al.,2010)及土壤中OCPs(Tao et al.,2009)的生物可給性在胃、腸階段呈現(xiàn)的差異是一致的。Yu et al.(2012b)對11種魚類、3種貝類、2種家禽、2種家畜共175個樣品進行了DDTs和HCHs的體外模擬生物可給性測定,結(jié)果表明總DDTs和總 HCHs的生物可給性分別是 31.5%~84.5%和31.1%~59.6%,比Wang et al.(2011)的研究結(jié)論更高,可能是不同動物源性食物的脂肪量差異對生物可給性的影響。

        Wang et al.(2011)研究還指出魚肉中 OCPs的生物可給性與KOW呈顯著的正相關(guān),但Xing et al.(2008)的研究卻指出魚肉中PCBs的生物可給性與KOW之間的相關(guān)性并不顯著,造成結(jié)論不一致的原因很可能是兩個研究所采集的魚種不一樣,脂含量等因素掩蓋了KOW對生物可給性的影響,具體原因需進一步研究。

        除了動物源性食物魚,也有人對植物源性食物胡蘿卜中DDTs的生物可給性進行了研究(陸敏等,2009a;陸敏等,2009b)。靜態(tài)胃腸消化模擬實驗發(fā)現(xiàn)胡蘿卜中DDTs的生物可給性顯著高于魚肉中DDTs的生物可給性。胡蘿卜中的DDTs在小腸消化階段的生物可給性(41.2%~47.1%)顯著大于胃部消化階段(12.0%~12.7%),該結(jié)論與魚肉的情況相類似(Wang et al.,2011)。陸敏等人(2009a)還研究了基質(zhì)質(zhì)量和胡蘿卜中 DDTs的殘留濃度對DDTs生物有效性的影響,結(jié)果表明DDTs的生物可給性與基質(zhì)質(zhì)量呈對數(shù)相關(guān)關(guān)系,隨著胡蘿卜質(zhì)量增加,DDTs的生物可給性下降。在胡蘿卜質(zhì)量恒定的條件下,DDTs的生物可給性不隨胡蘿卜中 DDTs殘留濃度的變化而變化,該結(jié)果與魚肉中 PBDEs生物可給性研究一致(Yu et al.,2009b)。

        綜上,食物中OCPs生物可給性主要受脂含量,OCP理化性質(zhì)(KOW、MW等),以及消化液組成(特別是膽汁鹽含量)的影響。

        2 存在的問題及展望

        食物基質(zhì)中POPs的生物可給性研究在人群暴露風險研究中具有極其重要的意義,是進一步準確評估人群POPs飲食暴露及健康風險至關(guān)重要的一環(huán)?,F(xiàn)有研究建立了食物中POPs生物可給性測定的消化模擬實驗體系并不斷完善,同時分析了各因素對POPs生物可給性的影響等,如表1所示。

        表1 食物中POPs生物可給性體外測定實驗體系及其影響因素Table 1 The bioaccessibility of POPs in food matrix, its measure methods and influence factors

        即便現(xiàn)有關(guān)于食物中POPs生物可給性的研究已經(jīng)取得了一系列成果,但這些研究中存在的問題依然有很多,亟待進一步研究探索:

        (1)現(xiàn)有研究用于消化實驗的食物基質(zhì)均為未經(jīng)加工處理的食物原料,而我國普通人群攝入的食物均經(jīng)烹飪(如煎、烤、炒、蒸等)等處理,研究表明,烹飪處理后,食物中PAHs(Perelló et al.,2009;Purcaro et al.,2006;Reinik et al.,2007),PBDEs(Bayen et al.,2005;Schecter et al.,2006),PCBs(Hori et al.,2001;Hori et al.,2005)等POPs濃度將發(fā)生變化,但變化趨勢并不一致,即烹飪方式對食物POPs殘留濃度的影響方向和程度具有不確定性(Domingo,2011)。雖然草魚中PBDEs(Yu et al.,2009b)和胡蘿卜中DDTs(陸敏等,2009a)的殘留濃度不影響其生物可給性,但其他POPs污染物殘留濃度與生物可給性之間的相關(guān)性則有待進一步研究。同時,烹飪過程食物基質(zhì)被加熱、食用油等營養(yǎng)物質(zhì)的加入是否影響基質(zhì)中污染物的釋放亦有待進一步研究。

        (2)現(xiàn)有研究在進行消化之前均將食物做干燥處理、且研磨至能過100目篩,這與實際情況是不相符的,因為人食入的食物都是含水的,且不可能將食物咀嚼到如此細小。Zhang et al.(2014)的研究表明,用微波的方法提取魚肉中 OCPs,冷干魚肉組織中的OCPs對提取溶劑具有一定的抗性,導致OCPs的提取率較低,加入水后,提取率顯著升高,說明對食物基質(zhì)進行冷干處理會改變基質(zhì)中POPs的存在形態(tài),可能導致生物可給性的低估或高估;Moelants et al.(2012)的研究表明隨著食物基質(zhì)(胡蘿卜和西紅柿)粒徑不斷增大,類胡蘿卜素的生物可給性不斷減小;余應(yīng)新等人(2011)的研究也表明,空調(diào)濾網(wǎng)灰塵中 PBDEs的生物可給性與灰塵粒徑之間呈負相關(guān)。因此,我們可以做如下推理:食物基質(zhì)粒徑越小,與消化液的接觸面積越大,越有利于污染物的釋放??梢姡瑢⑹澄锘|(zhì)研磨至能過100目篩會導致食物中POPs生物可給性的高估。

        (3)在人體胃腸消化系統(tǒng)中,部分從食物中釋放出來的污染物會被小腸上皮細胞吸收并進入血液循環(huán),即在消化系統(tǒng)中不僅存在污染物和基質(zhì)間的釋放-吸附平衡機制,同時還有釋放-吸收平衡機制,液相中的污染物被小腸上皮細胞吸收,其濃度降低,平衡向污染物釋放的方向移動,利于污染物的進一步釋放(張迪宇等,2009)。而現(xiàn)有研究所用體外模擬方法均為穩(wěn)態(tài)模型,未考慮細胞對污染物的吸收機制,將造成食物中POPs生物可給性的嚴重低估。

        (4)關(guān)于食物基質(zhì)的老化,現(xiàn)有研究均用標準品溶液對基質(zhì)粉末進行處理,旨在將目標化合物附著在食物基質(zhì)上。雖然對部分蔬菜而言,殘留的有機污染物主要附著在其可食用部分表面,但對大部分食物而言,有機污染物是殘留在食物細胞間,或與食物中營養(yǎng)物質(zhì)相結(jié)合存在的,并非附著在基質(zhì)顆粒表面?,F(xiàn)有老化方法處理后獲得的生物可給性更多的反映了POPs在一定時間內(nèi)與食物基質(zhì)相互結(jié)合的效率,而非污染物從食物基質(zhì)中消化釋放的效率。Yu et al.(2010)的研究已經(jīng)表明,用此方法進行老化處理后會造成生物可給性的高估,雖然結(jié)果并不顯著,但探索更好的實驗方法仍然是我們努力的方向。

        (5)體外消化實驗中酶的種類、營養(yǎng)液的配比、溫度變化等都會影響模擬的準確性(Dean et al.,2007)。例如小腸中含有腸激酶、能夠激活蛋白質(zhì)的消化酶、胰蛋白酶等,胰液中含有水、碳酸氫鈉、淀粉酶,胰蛋白酶和脂肪酶,模擬實驗所用消化液中采用不同種類的酶,對物質(zhì)的吸收選擇性存在差異;此外,酶的活性、污染物的釋放受到溫度、營養(yǎng)液配比等影響,因此未來應(yīng)該對以上因素進行具體研究。

        ARMSTRONG B. 2004. Lung Cancer Risk after Exposure to Polycyclic Aromatic Hydrocarbons: A Review and Meta-Analysis [J]. Environmental Health Perspectives, 112(9): 970-978.

        BAYEN S, KOROLEVA E, LEE H K, et al. 2005. Persistent organic pollutants and heavy metals in typical seafoods consumed in Singapore [J]. Journal of Toxicology and Environmental Health, Part A, 68(3): 151-166.

        BIDLEMAN T F, LEONE A D. 2004. Soil-air exchange of organochlorine pesticides in the Southern United States [J]. Environmental pollution (Barking, Essex: 1987), 128(1-2): 49-57.

        BOFFETTA P, JOURENKOVA N, GUSTAVSSON P. 1997. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons [J]. Cancer Causes and Control, 8(3): 444-472.

        BOOBIS A, OKONA-MENSAH K B, BATTERSHILL J, et al. 2005. An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution [J]. Food and Chemical Toxicology, 43(7): 1103-1116.

        CAPUANO F, CAVALCHI B, MARTINELLI G, et al. 2005. Environmental prospection for PCDD/PCDF, PAH, PCB and heavy metals around the incinerator power plant of Reggio Emilia town (Northern Italy) and surrounding main roads [J]. Chemosphere, 58(11): 1563-1569.

        DE WIELE V, RICHARD T, VERSTRAETE W, et al. 2004. Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract [J]. Journal of Environmental Quality, 33(4): 1343-1353.

        DEAN J R, MA R L. 2007. Approaches to assess the oral bioaccessibility of persistent organic pollutants: a critical review [J]. Chemosphere, 68(8): 1399-1407.

        DEUTSCH-WENZEL R P, BRUNE H, GRIMMER G, et al. 1983. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons [J]. Journal of the National Cancer Institute, 71(3): 539-544.

        DINGEMANS M M, DE GROOT A, VAN KLEEF R G, et al. 2008. Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells [J]. Environmental Health Perspectives, 116(5): 637-643.

        DOMINGO J L. 2011. Influence of cooking processes on the concentrations of toxic metals and various organic environmental pollutants in food: a review of the published literature [J]. Critical Reviews in Food Science and Nutrition, 51(1): 29-37.

        DOUCET J, TAGUE B, ARNOLD D L, et al. 2009. Persistent organic pollutant residues in human fetal liver and placenta from Greater Montreal, Quebec: A longitudinal study from 1998 through 2006 [J]. Environmental Health Perspectives, 117(4): 605-610.

        GILBERT R. 2004. The public health implications of polychlorinated biphenyls (PCBs) in the environment [J]. Ecotoxicology and Environmental Safety, 59(3): 275-291.

        HACK A, SELENKA F. 1996. Mobilization of PAH and PCB from contaminated soil using a digestive tract model [J]. Toxicology Letters, 88(1): 199-210.

        HE Y, MURPHY M B, RICHARD M K, et al. 2008. Effects of 20 PBDE metabolites on steroidogenesis in the H295R cell line [J]. ToxicologyLetters, 176(3): 230-238.

        HELBERG M, BUSTNES J O, ERIKSTAD K E, et al. 2005. Relationships between reproductive performance and organochlorine contaminants in great black-backed gulls (Larus marinus) [J]. Environmental pollution (Barking, Essex: 1987), 134(3): 475-483.

        HINCK J E, BLAZER V S, DENSLOW N D, et al. 2008. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from rivers in the Southeastern United States [J]. The Science of the Total Environment, 390(2-3): 538-557.

        HORI T, NAKAGAWA R, TOBIISHI K, et al. 2001. Effects of cooking on concentrations of polychlorinated dibenzo-p-dioxins and related compounds in green leafy vegetable 'Komatsuna' [J]. Shokuhin Eiseigaku Zasshi. Journal of the Food Hygienic Society of Japan, 42(5): 339-342.

        HORI T, NAKAGAWA R, TOBIISHI K, et al. 2005. Effects of cooking on concentrations of polychlorinated dibenzo-p-dioxins and related compounds in fish and meat [J]. Journal of Agricultural and Food Chemistry, 53(22): 8820-8828.

        H?RTER D, DRESSMAN J B. 2001. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract [J]. Advanced drug delivery reviews, 46(1-3): 75-87.

        ILYINA T, POHLMANN T, LAMMEL G, et al. 2006. A fate and transport ocean model for persistent organic pollutants and its application to the North Sea [J]. Journal of Marine Systems, 63(1): 1-19.

        KANG Y, SHAO D, LI N, et al. 2015. Cancer risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) via indoor and outdoor dust based on probit model [J]. Environmental Science and Pollution Research, 22(5): 3451-3456.

        KOLANKAYA D. 2006. Organochlorine pesticide residues and their toxic effects on the environment and organisms in Turkey [J]. International Journal of Environmental Analytical Chemistry, 86(1-2): 147-160.

        KOSTYNIAK P J, STINSON C, GREIZERSTEIN H B, et al. 1999. Relation of Lake Ontario fish consumption, lifetime lactation, and parity to breast milk polychlorobiphenyl and pesticide concentrations [J]. Environmental Research, 80(2): S166-S174.

        LEONE A D, ULRICH E M, E BODNAR C, et al. 2000. Organochlorine pesticide concentrations and enantiomer fractions for chlordane in indoor air from the US cornbelt [J]. Atmospheric Environment, 34(24): 4131-4138.

        LIU B L, DONG D M, HUA X Y, et al. 2014. Pollution Characteristics and Exposure Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Sediments of Second Songhua River Basin [J]. Journal of Jilin University (Science Edition), 52(1): 151-157.

        MAERVOET J, VERMEIR G. 2007. Association of thyroid hormone concentrations with levels of organochlorine compounds in cord blood of neonates [J]. Environmental health perspectives, 115(12): 1780-1786.

        MARTORELL I, PERELLó G, MARTí-CID R, et al. 2010. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend [J]. Environment International, 36(4): 424-432.

        MCGRATH T E, WOOTEN J B, CHAN W G, et al. 2007. Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation [J]. Food and Chemical Toxicology, 45(6): 1039-1050.

        MENG X Z, ZENG E Y, YU L P, et al. 2007. Persistent halogenated hydrocarbons in consumer fish of China: regional and global implications for human exposure [J]. Environmental Science and Technology, 41(6): 1821-1827.

        MOELANTS K R N, LEMMENS L, VANDEBROECK M, et al. 2012. Relation between Particle Size and Carotenoid Bioaccessibility in Carrot- and Tomato-Derived Suspensions [J]. Journal of Agricultural and Food Chemistry, 60(48): 11995-12003.

        MUIR D, SAVINOVA T, DAHLE S. 2003. POPs and heavy metal contamination in the Russian Arctic marine and freshwater environments [J]. The Science of the Total Environment, 306(1-3): 1-2.

        MUMTAZ M M, GEORGE J D, GOLD K W, et al. 1996. ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex Problem [J]. Toxicology and Industrial Health, 12(6): 742-971.

        MUSSALO R H, PYYSALO H, ANTERVO K. 1988. Relation between the content of organochlorine compounds in Finnish human milk and characteristics of the mothers [J]. Journal of Toxicology and Environmental Health, 25(1): 1-19.

        OOMEN A G, ROMPELBERG C, VAN DE KAMP E, et al. 2004. Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model [J]. Archives of Environmental Contamination and Toxicology, 46(2): 183-188.

        OOMEN A G, SIPS A J A M, GROTEN J P. 2000. Mobilization of PCBs and lindane from soil during in vitro digestion and their distribution among bile salt micelles and proteins of human digestive fluid and the soil [J]. Environmental Science and Technology, 34(2): 297-303.

        PERELLó G, MARTí-CID R, CASTELL V, et al. 2009. Concentrations of polybrominated diphenyl ethers, hexachlorobenzene and polycyclic aromatic hydrocarbons in various foodstuffs before and after cooking [J]. Food and Chemical Toxicology, 47(4): 709-715.

        PUFULETE M, BATTERSHILL J, BOOBIS A, et al. 2004. Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective [J]. Regulatory Toxicology and Pharmacology: RTP, 40(1): 54-66.

        PURCARO G, NAVAS J A, GUARDIOLA F, et al. 2006. Polycyclic aromatic hydrocarbons in frying oils and snacks [J]. Journal of Food Protection, 69(1): 199-204.

        QIN Y, LEUNG C, LEUNG A, et al. 2010. Persistent organic pollutants and heavy metals in adipose tissues of patients with uterine leiomyomas and the association of these pollutants with seafood diet, BMI, and age [J]. Environmental Science and Pollution Research, 17(1): 229-240.

        QU X Z, KHUTORYANSKIY V V, STEWART A, et al. 2006. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude [J]. Biomacromolecules, 7(12): 3452-3459.

        RAMESH A, WALKER S A, HOOD D B, et al. 2004. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons[J]. International Journal of Toxicology, 23(5): 301-333.

        REINIK M, TAMME T, ROASTO M, et al. 2007. Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia [J]. Food Additives and Contaminants, 24(4): 429-437.

        REN Z, MENG X, CHEN L. 2012. Assessment of human exposure to Polybrominated diphenyl ethers (PBDEs) in China [J]. Journal of Chongqing Normal University (Natural Science), 29(1): 105-109.

        RIEDL J, LINSEISEN J, HOFFMANN J, et al. 1999. Some dietary fibers reduce the absorption of carotenoids in women [J]. The Journal of nutrition, 129(12): 2170-2176.

        RUBY M V, DAVIS A, KEMPTON J H, et al. 1992. Lead bioavailability-dissolution kinetics under simulated gastric conditions [J]. Environmental Science and Technology, 26(6): 1242-1248.

        RUBY M V, DAVIS A, LINK T E, et al. 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead [J]. Environmental Science and Technology, 27(13): 2870-2877.

        RUBY M V, CASTEEL S W, SCHOOF R, et al. 1999. Advances in Evaluating the Oral Bioavailability of inorganics in Soil for use in human health risk assessment [J]. Environmental Science and Technology, 33(21): 3697-3705.

        SCHECTER A, P?PKE O, TUNG K C, et al. 2006. Changes in polybrominated diphenyl ether (PBDE) levels in cooked food [J]. Toxicological and Environmental Chemistry, 88(2): 207-211.

        SRIVASTAVA L P, KUMAR N, GUPTA K P, et al. 2006. Status of HCH Residues in Indian Medicinal Plant Materials [J]. Bulletin of Environmental Contamination and Toxicology, 76(5): 782-790.

        TANG X Y, TANG L, ZHU Y G, et al. 2006. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test [J]. Environmental pollution (Barking, Essex : 1987), 140(2): 279-285.

        TAO S, LU Y, ZHANG D, et al. 2009. Assessment of Oral Bioaccessibility of Organochlorine Pesticides in Soil Using an In Vitro Gastrointestinal Model[J]. Environmental Science and Technology, 43(12): 4524-4529.

        THYSSEN J, ALTHOFF J, KIMMERLE G, et al. 1981. Inhalation Studies with Benzo[a]pyrene in Syrian Golden Hamsters2,3 [J]. Journal of the National Cancer Institute, 66(3): 575-577.

        TYSSANDIER V, LYAN B, BOREL P. 2001. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1533(3): 285-292.

        VEGA F A, COVELO E F, ANDRADE M L. 2007. Accidental organochlorine pesticide contamination of soil in Porrino, Spain [J]. Journal of Environmental Quality, 36(1): 272-279.

        VERREAULT J, MUIR D C, NORSTROM R J, et al. 2005. Chlorinated hydrocarbon contaminants and metabolites in polar bears (Ursus maritimus) from Alaska, Canada, East Greenland, and Svalbard: 1996-2002 [J]. Science of the Total Environment, 351-352: 369-390.

        VOORSPOELS S, COVACI A, NEELS H, et al. 2007. Dietary PBDE intake: A market-basket study in Belgium [J]. Environment International, 33(1): 93-97.

        WANG H S, MAN Y B, WU F Y, et al. 2010. Oral Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) through Fish Consumption, Based on an in Vitro Digestion Model [J]. Journal of Agricultural and Food Chemistry, 58(21): 11517-11524.

        WANG H S, ZHAO Y G, MAN Y B, et al. 2011. Oral bioaccessibility and human risk assessment of organochlorine pesticides (OCPs) via fish consumption, using an in vitro gastrointestinal model [J]. Food Chemistry, 127(4): 1673-1679.

        WEINTRAUB M, BIRNBAUM L S. 2008. Catfish consumption as a contributor to elevated PCB levels in a non-Hispanic black subpopulation [J]. Environmental research, 107(3): 412-417.

        XING G H, YANG Y, CHAN J, et al. 2008. Bioaccessibility of polychlorinated biphenyls in different foods using an in vitro digestion method [J]. Environmental pollution (Barking, Essex: 1987), 156(3): 1218-1226.

        YU Y, HAN S, LI J, et al. 2009a. Factors affecting the bioaccessibility of Polychlorinated biphenyls using in vitro test [C]//2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009: 1-4.

        YU Y, HAN S, ZHANG D, et al. 2009b. Factors affecting the bioaccessibility of polybrominated diphenylethers in an in vitro digestion model [J]. Journal of Agricultural and Food Chemistry, 57(1): 133-139.

        YU Y, LI J, ZHANG X, et al. 2010. Assessment of the bioaccessibility of polybrominated diphenyl ethers in foods and the correlations of the bioaccessibility with nutrient contents [J]. Journal of Agricultural and Food Chemistry, 58(1): 301-308.

        YU Y X, HUANG N B, ZHANG X Y, et al. 2011. Polybrominated diphenyl ethers in food and associated human daily intake assessment considering bioaccessibility measured by simulated gastrointestinal digestion [J]. Chemosphere, 83(2): 152-160.

        YU Y, CHEN L, YANG D, et al. 2012a. Polycyclic aromatic hydrocarbons in animal-based foods from Shanghai: bioaccessibility and dietary exposure [J]. Food additives and contaminants. Part A, Chemistry, analysis, control, exposure and risk assessment, 29(9): 1465-1474.

        YU Y X, LI C L, ZHANG X L, et al. 2012b. Route-specific daily uptake of organochlorine pesticides in food, dust, and air by Shanghai residents, China [J]. Environment International, 50(12): 31-37.

        ZHANG Y, LIN N, SU S, et al. 2014. Freeze drying reduces the extractability of organochlorine pesticides in fish muscle tissue by microwave-assisted method [J]. Environmental pollution (Barking, Essex : 1987), 191(5): 250-252.

        馮欽忠, 陳揚, 劉俐媛, 等. 2014. 多氯聯(lián)苯在我國土壤環(huán)境中的分布特征[C]//2014中國環(huán)境科學學會學術(shù)年會論文集. 成都: 中國環(huán)境科學學會.

        韓德明, 葉磊, 張承中, 等. 2014. 西安城區(qū)大氣中多氯聯(lián)苯的氣粒分配研究[J]. 中國環(huán)境科學, 34(10): 2466-2471.

        韓姝媛, 余應(yīng)新, 李俊嶺, 等. 2010. 上海地區(qū)肉類和魚類食品中多氯聯(lián)苯含量特征及其對人體的生物有效性[J]. 環(huán)境科學學報, 30(6): 1322-1330.

        黃衛(wèi)平. 2001. 食品中有機氯農(nóng)藥殘留分析方法[J]. 中國衛(wèi)生檢驗雜志, 11(6): 739-741.

        劉征濤. 2001. 環(huán)境內(nèi)分泌干擾效應(yīng)與內(nèi)分泌干擾素[J]. 科技術(shù)語研究, 3(3): 15-16.

        劉征濤. 2005. 持久性有機污染物的主要特征和研究進展[J]. 環(huán)境科學研究, 18(3): 93-102.

        陸敏, 余應(yīng)新, 張東平, 等. 2009a. 胡蘿卜中滴滴涕對人體生物有效性影響因素的體外研究[J]. 環(huán)境化學, 28(2): 220-224.

        陸敏, 張帆, 韓姝媛, 等. 2009b. 食物成分對胡蘿卜中滴滴涕生物有效性的影響[J]. 食品科學, 30(13): 44-47.

        呂艷. 2009. 食物中有機氯農(nóng)藥在人體消化吸收的體外模擬研究[D]. 山東: 山東師范大學.

        萬斌, 郭良宏. 2011. 多溴聯(lián)苯醚的環(huán)境毒理學研究進展[J]. 環(huán)境化學, 30(1): 143-152.

        吳益春, 祝世軍, 羅海軍, 等. 2014. 魚油中多氯聯(lián)苯檢測方法的研究[J].食品安全質(zhì)量檢測學報, 5(1): 29-34.

        余剛, 黃俊, 張彭義. 2001. 持久性有機污染物:倍受關(guān)注的全球性環(huán)境問題[J]. 環(huán)境保護, (4): 37-39.

        余應(yīng)新, 黃寧寶, 楊丹, 等. 2011. 空調(diào)濾網(wǎng)不同粒徑灰塵中多溴聯(lián)苯醚的暴露特征及生物有效性[C]//第六屆全國環(huán)境化學大會暨環(huán)境科學儀器與分析儀器展覽會. 上海: 中國化學會環(huán)境化學專業(yè)委員會、中國環(huán)境科學學會環(huán)境化學分會、中國毒理學會分析毒理專業(yè)委員會.

        張迪宇, 呂艷, 賽道建, 等. 2009. 殘渣吸著對消化道中土壤多環(huán)芳烴生物可給性體外測定的影響[J]. 環(huán)境化學, 28(4): 524-529.

        The Bioaccessibility of Typical Persistent Organic Pollutants (POPs) in Food Matrix: A Review

        YU Yanxin, LI Qi*, WANG Hui, XU Jie
        College of Water Science, Beijing Normal University, Beijing 100875, China

        Persistent organic pollutants (POPs) were the focus of attention in the field of exposure and risk assessment because of their potential adverse effects on human health. However, most previous studies of health risk assessment merely focused on the level of external exposure, neglecting the influence of bioaccessibility, which explained the digestion ratio of contaminants in food. As a result, mistakes like overestimation or underestimation of exposure risk as well as the misjudgment of the main exposure sources will be made possibly. Among the three routes of human exposure, diet was proved to be the main source compared with inhalation and dermal contact. The bioaccessibility of POPs in food matrix refers to the proportion of POPs that can be digested and possibly be absorbed in the total POPs in food. The introduction of bioaccessibility, whose data can better reflect the real situation of human exposure, makes the replacement of external exposure by internal exposure to be the basis of diet exposure risk assessment.In this paper, four typical POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticide (OCPs) were focused, and the current state of studies about the bioaccessibility of POPs in food was systematically summarized, including the digestion methods used in each researches, the influences of matrix properties, and experimental environment on bioaccessibility, and the difference of bioaccessibilities of various contaminants. The bioaccessibility of POPs were 3.0%~84.5% and 2.6%~59.9% for animal-based and plant-based food, respectively, it means that the bioaccessibility was extremely important in exposure risk assessment of POPs through digestion pathway. Besides, this paper stated the insufficiency of present studies in the selection and pretreatment of food matrix, the design of experimental environment and the preparation of digestive juices, and raised a prospect of further studies according to those deficiency, appealing for the establishment of a more scientific and effective research system. This paper has practical significance in developing the theory, techniques, and methods of health risk assessment research.

        persistent organic pollutants; foodstuffs; bioaccessibility; review

        10.16258/j.cnki.1674-5906.2015.08.023

        X56

        A

        1674-5906(2015)08-1406-09

        于艷新,李奇,王慧,徐潔. 食物中典型持久性有機污染物(POPs)的生物可給性研究綜述[J]. 生態(tài)環(huán)境學報, 2015, 24(8): 1406-1414.

        YU Yanxin, LI Qi, WANG Hui, XU Jie. The Bioaccessibility of Typical Persistent Organic Pollutants (POPs) in Food Matrix: A Review [J]. Ecology and Environmental Sciences, 2015, 24(8): 1406-1414.

        國家自然科學基金項目(41371466);中央高?;究蒲袠I(yè)務(wù)費專項資金資助(2013NT45)

        于艷新(1972年生),女,講師,碩士生導師,博士,主要從事環(huán)境污染與人體健康、河流污染防治與治理研究。E-mail: yuhe_f@sina.com *通信作者:李奇(1991年生),男,碩士,主要從事環(huán)境污染與人體健康研究。E-mail: liqibnu@foxmail.com

        2015-05-09

        猜你喜歡
        源性消化基質(zhì)
        “胃不舒服”未必都是消化問題
        祝您健康(2022年2期)2022-01-14 16:43:15
        機插秧育苗專用肥——機插水稻育苗基質(zhì)
        金銀花扦插育苗基質(zhì)復(fù)配及驗證
        不同栽培基質(zhì)對一品紅扦插苗的影響
        北京園林(2020年4期)2020-01-18 05:16:46
        后溪穴治療脊柱源性疼痛的研究進展
        食物是怎么消化的
        小布老虎(2017年4期)2017-08-10 08:22:40
        直干藍桉容器育苗基質(zhì)的選擇
        急診消化內(nèi)科上消化道出血治療
        雄激素源性禿發(fā)家系調(diào)查
        健康教育對治療空氣源性接觸性皮炎的干預(yù)作用
        深夜一区二区三区视频在线观看| 精品视频入口| 草莓视频在线观看无码免费| 日本久久久精品免费免费理论| 极品少妇被黑人白浆直流| 亚洲av无码av制服另类专区 | 丰满少妇人妻无码专区| 天天躁日日躁狠狠躁av中文| 国内精品久久久久久久久蜜桃| 亚洲av一二三四五区在线| 亚洲欧美日韩综合一区二区| 国产婷婷一区二区三区| 亚洲无AV码一区二区三区| 日本一区二区三级免费| 中国老太婆bb无套内射| 欧美色aⅴ欧美综合色| 国产日产久久福利精品一区| 亚洲国产av一区二区三区| 任我爽精品视频在线播放| 国产鲁鲁视频在线播放| 久久少妇呻吟视频久久久| 中文字幕亚洲乱码成熟女1区| 黑人巨茎大战欧美白妇| 亚洲一区二区欧美色妞影院| 综合成人亚洲网友偷自拍| 色欲网天天无码av| 亚洲精品无码久久毛片| 99精品国产av一区二区| 亚洲一区二区三区,日本| 国产成人aaaaa级毛片| 久久成人永久免费播放| 国产女主播福利在线观看| 精品久久人妻av中文字幕| 国产nv精品你懂得| 免费人成网站在线播放| 天天躁夜夜躁av天天爽| 国产精品美女久久久久久久| 熟女人妻中文字幕一区| 人妻久久久一区二区三区蜜臀| 欧美尺寸又黑又粗又长| 日本一区免费喷水|