王雯婷,葛海波,王艷艷
(西安郵電大學(xué) 電子工程學(xué)院,陜西 西安710121)
變步長LMS算法抑制窄帶干擾技術(shù)研究*
王雯婷,葛海波,王艷艷
(西安郵電大學(xué) 電子工程學(xué)院,陜西 西安710121)
為抑制窄帶信號并減少其對直接序列擴頻通信系統(tǒng)的干擾,研究了一種新的變步長LMS算法處理信號。根據(jù)步長調(diào)節(jié)原則,結(jié)合雙曲正割函數(shù)來調(diào)整步長μ(n)及誤差e(n)的非線性關(guān)系。對算法進行理論分析,該算法提高了收斂速度,提升了收斂精度,降低了穩(wěn)態(tài)時的誤差。在MATLAB中通過搭建直接序列擴頻通信系統(tǒng)進行仿真,研究結(jié)果表明該算法優(yōu)于已有的算法,能更準(zhǔn)確地預(yù)測及抑制音頻干擾信號,增強了直擴通信系統(tǒng)的抗干擾性能。
變步長LMS;窄帶干擾;直接序列擴頻;雙曲正割
在直接序列擴頻通信系統(tǒng)中,干擾容限值是決定抗干擾能力強度的關(guān)鍵,系統(tǒng)性能在外部的干擾強度大于系統(tǒng)干擾容限時會受到嚴(yán)重影響。直接序列擴頻通信系統(tǒng)(DSSS)能有效地減少信道中存在的窄帶干擾信號[1]。由于擴頻帶寬的限制,相對于提高擴頻系統(tǒng)的處理增益來抑制干擾的作法,采用自適應(yīng)技術(shù)抑制干擾代價更低而且更為有效,由此可提高直接序列擴頻通信系統(tǒng)(DSSS)的抗干擾能力。
為研究如何降低頻譜泄漏以及抑制干擾,Jones提出了基于濾波器組的變換域干擾抑制技術(shù)[2]。雖然變換域干擾技術(shù)能更有效地解決隨時間變化的干擾信號,但無法完全抑制頻譜泄漏,而且處理干擾時會損失有用信號。Panayirci及 Barness等人為了提高窄帶干擾抑制性能,主要依據(jù)最小冗余度結(jié)構(gòu),設(shè)計了一種基于線性預(yù)測的濾波器用來抑制干擾[3],但當(dāng)信號功率遠(yuǎn)遠(yuǎn)大于噪聲功率時,抑制窄帶干擾性能效果不明顯。Vijayan和Poor首次于1990年提出利用非線性自適應(yīng)預(yù)測濾波器抑制直擴通信系統(tǒng)中的窄帶干擾[4],采用基于更新濾波器抽頭系數(shù)值的LMS算法更好地預(yù)測了窄帶干擾信號,但不足之處是不具有較快的收斂速度和良好的長期穩(wěn)定性。文獻(xiàn)[5]利用Sigmoid函數(shù)抑制兩頭對中間細(xì)微變化敏感的優(yōu)點,提出一種兼顧收斂速度和穩(wěn)態(tài)誤差性能的變步長LMS算法,具有收斂速度快和時變跟蹤能力好的優(yōu)點,但是該算法在誤差變量靠近零時步長因子變化范圍大,穩(wěn)態(tài)失調(diào)量大。本文在研究時域干擾抑制技術(shù)基礎(chǔ)之上,提出了一種穩(wěn)態(tài)失調(diào)量小、收斂速度快的基于雙曲正割函數(shù)的變步長LMS自適應(yīng)算法。
步長調(diào)整原則就是利用LMS算法的權(quán)重系數(shù)遞推的步長函數(shù)替換傳統(tǒng)LMS算法中的定步長,基本思想是:
(1)當(dāng)權(quán)系數(shù)距離最佳權(quán)系數(shù) Wopt較遠(yuǎn)時,選取較大的步長,用來提高收斂速度;
(2)當(dāng)所選擇的算法收斂之后,權(quán)系數(shù)距離最佳權(quán)系數(shù) Wopt較近時,將步長調(diào)小,從而使穩(wěn)態(tài)失調(diào)減??;
(3)計算量小,提高實時性;
(4)算法收斂后,即使有再大的干擾噪聲輸入,步長也應(yīng)保持很小,從而有較小的穩(wěn)態(tài)失調(diào),具有較好的抗干擾能力。
變步長LMS算法的核心在于對步長函數(shù)的選擇,文獻(xiàn)[5]中提出的SVSLMS算法,建立誤差函數(shù) e(n)與步長因數(shù)μ(n)之間的公式為:
此算法在變量接近零時,穩(wěn)態(tài)時的誤差信號變化太大,要加快算法的收斂速度,就要符合步長函數(shù)能夠達(dá)到自適應(yīng)初始部分步長較大的條件;為了能達(dá)到抑制噪聲干擾的效果,需減小均方誤差,以及穩(wěn)態(tài)步長。依據(jù)以上分析及對步長函數(shù)算法的研究,基于雙曲正割函數(shù)y=1-sech(x)具有的特性,從圖1中函數(shù)圖像得出:誤差信號 e(n)在零時刻附近時,步長較??;隨著誤差信號e(n)變大,步長較大。函數(shù)圖像如圖1所示。
圖1 y=1-sech(x)函數(shù)圖
對雙曲正割函數(shù)進行調(diào)整,并引入調(diào)節(jié)因子α、β和γ,自適應(yīng)濾波器n時刻的輸入信號為 X(n),自適應(yīng)濾波器的權(quán)系數(shù)為W(n),誤差信號矢量為e(n),期望信號矢量為d(n),L是濾波器階數(shù),μ是調(diào)整穩(wěn)定性和收斂速度的步長因子數(shù)。改進后的變步長LMS算法公式為:
由輸入信號自相關(guān)矩陣得出 λmax為最大特征值,為了使算法收斂具有長期穩(wěn)定性,將步長μ的取值定為:0<μ<1/λmax,得出自適應(yīng)時間常數(shù):τmax=1/(4μλn),誤差函數(shù)失調(diào)量為:M=μtr(R)。
通過改變公式中的調(diào)節(jié)因子α、β和γ分析了調(diào)節(jié)因子對步長函數(shù)的影響,并根據(jù)函數(shù)μ(n)與 e(n)關(guān)系曲線圖選出調(diào)節(jié)因子的最佳值。
圖2為調(diào)節(jié)因數(shù)分別取0、1和7時,步長函數(shù)μ(n)圖像的相對改變狀態(tài)。步長傾斜度隨著α的增加而變大,由此可得出:α值越大,步長函數(shù)收斂速度越快。但當(dāng)α值太大,誤差函數(shù)e(n)趨于零的過程中,|dμ/de|越大,導(dǎo)致算法的穩(wěn)態(tài)均方誤差值越大,算法穩(wěn)定性降低。
圖2 α不同時μ(n)與e(n)關(guān)系曲線圖
圖3為調(diào)節(jié)因數(shù) β分別取 0.02、0.1和 0.2時,步長函數(shù)μ(n)的相對改變狀態(tài)。步長初始值μ隨著β值得增加而變大,算法有較快的收斂速度,β值越小,μ越小,算法的收斂速度越慢。
圖3 β不同時μ(n)與e(n)關(guān)系曲線圖
圖4為調(diào)節(jié)因子分別取1、2和8時,步長函數(shù)μ(n)圖像的相對改變狀態(tài)。步長初始值μ隨著γ的增加而衰減得越快。當(dāng)γ>2時,|e(n)|<0.1時,步長值基本為0。因此,調(diào)節(jié)因數(shù)γ的值應(yīng)取小于2的正數(shù)值。
圖4 γ不同時μ(n)與e(n)關(guān)系曲線圖
由以上對基于步長調(diào)整原則的步長函數(shù)的分析得到,改進后的新算法不僅保證了SVSLMS算法在收斂速度及跟蹤能力上的優(yōu)勢,并且進行了優(yōu)化,在趨于穩(wěn)定狀態(tài)時,步長變化相對較為平緩。α、β和γ三個參數(shù)的取值對步長性能的影響需要根據(jù)環(huán)境來確定。上述分析得出,不同的β值,對應(yīng)不同的步長初始值,即滿足0< β<λmax,其中 λmax為具有自相關(guān)矩陣輸入信號的最大特征值。
根據(jù)仿真軟件,編寫算法仿真程序。輸入信號 X(n)為標(biāo)準(zhǔn)高斯隨機信號,v(n)是高斯白噪聲。每次采樣點數(shù)為1 000,仿真次數(shù)為150次,求出統(tǒng)計平均值作為學(xué)習(xí)曲線。如圖5所示,本文算法最優(yōu)調(diào)節(jié)因子取值為α= 300,β=0.05,γ=2,LMS算法中,固定步長μ=0.01,SVSLMS算法最優(yōu)調(diào)節(jié)因子取值為α=1.0,β=0.5。得到的算法收斂曲線如圖5所示,可以看出,本文算法較定步長LMS算法、SVSLMS算法都有較快的收斂速度。
圖5 算法學(xué)習(xí)曲線比較
擴頻調(diào)制是將高速率擴頻碼與信息序列相乘,使得信號頻譜展寬,功率譜密度變小。解擴時,雖然有用信號被恢復(fù),干擾及噪聲被濾除,但系統(tǒng)抑制窄帶信號的能力還不具有顯著的效果。為使直擴系統(tǒng)抗干擾能力更強,在系統(tǒng)中加入了新的變步長LMS自適應(yīng)濾波器模塊,來抑制系統(tǒng)中的窄帶干擾。
設(shè)計直擴通信系統(tǒng)仿真平臺如圖6所示。在發(fā)送信號端,將調(diào)制載波與生成的信息序列相乘,得到可以發(fā)送到信道的擴頻信號,本仿真中對信號加入了音頻干擾。將信號通過變步長LMS自適應(yīng)濾波器干擾處理技術(shù),對存在于系統(tǒng)中的干擾信號進行濾波,得到輸出信號。在接收端,根據(jù)擴頻碼和擴頻信息序列的相關(guān)性分離出接收信息序列,將得到的接收信息序列與初始信息序列進行對比處理,最終得到直擴通信系統(tǒng)的誤碼性能。
圖6 直擴系統(tǒng)仿真模型圖
根據(jù)直擴通信系統(tǒng)原理,為抑制窄帶干擾信號進行仿真。設(shè)置基本參數(shù)值為:調(diào)制方式采用BPSK調(diào)制方式,信息傳輸速率為4 kbps,擴頻碼長度 PN=128位,擴頻增益為20 dB,擴頻信號帶寬200 kHz,中心頻率8 MHz,窄帶信號帶寬2 kHz,窄帶干擾功率遠(yuǎn)大于擴頻信號功率。
如圖7所示,上部為加窄帶干擾后的擴頻信號,干擾后的信號幅度遠(yuǎn)大于有用信號幅度,無法直接分離出有用信號,下部為經(jīng)過本文提出的變步長LMS自適應(yīng)算法預(yù)測到的窄帶干擾信號,可看出經(jīng)過該算法濾波能基本恢復(fù)出窄帶干擾信號。圖8為解調(diào)前信號,相比于傳統(tǒng)定步長LMS自適應(yīng)算法抑制窄帶干擾的效果,在直擴通信系統(tǒng)中,經(jīng)過新的變步長LMS濾波器后窄帶大功率信號基本得到抑制,結(jié)果表明本文算法能更有效地抑制窄帶信號,效果優(yōu)于定步長LMS自適應(yīng)算法。
圖7 有窄帶干擾時的信號頻譜圖
系統(tǒng)性能仿真:假設(shè)DSSS系統(tǒng)接收到的信號選取3個隨機音頻干擾,信噪比(SNR)范圍是-20 dB~-15 dB用1 000幀隨機數(shù)進行測試,圖9顯示了無任何窄帶干擾抑制系統(tǒng)、采用傳統(tǒng)定步長LMS自適應(yīng)算法以及本文采用的算法處理后的性能對比。當(dāng)干信比大于擴頻增益時,由于使用了濾波器抑制窄帶干擾,增大了相關(guān)器的輸入信噪比,從而降低了系統(tǒng)誤幀率(FER)。仿真結(jié)果得出本文提出的算法是有效的,且抑制音頻干擾的性能優(yōu)于定步長LMS自適應(yīng)算法。
圖8 抑制窄帶干擾后效果比較圖
圖9 系統(tǒng)誤幀率比較圖
本文針對直接序列擴頻通信系統(tǒng)中的窄帶干擾,利用擴頻信號樣值間的不相關(guān)性,提出了一種基于雙曲正割函數(shù)的變步長LMS自適應(yīng)算法來抑制窄帶干擾,利用該算法收斂快速及穩(wěn)態(tài)誤差小的特點,來降低干擾對傳輸信號的影響。對比傳統(tǒng)定步長LMS自適應(yīng)算法,優(yōu)化了長期穩(wěn)定性及跟蹤性能,對抑制音頻信號的能力進行了仿真,結(jié)果表明該算法更優(yōu)于傳統(tǒng)LMS算法,更適用于存在音頻干擾的直接擴頻通信系統(tǒng)中。
[1]PICKHOLTZ R L,SCHILLING D L,MILSTEIN L B.Theory of Spread Spectrum Communications—A Tutorial.IEEE Trans.Commun.,1982,30:855-884.
[2]JONES W W,JONES K R.Narrowband interference sup-pression using filter-bank analysis/synthesis techniques[J]. IEEE MILCOM′92,Oct.1992:898-902.
[3]PANAYIRCI E,BARNESS Y.Performance of direct-sequence spread spectrum systems employing minimum redundant transversal filters for narrow band interference cancellation[J]. AEV Arch,Electron,1995,49(4):183-191.
[4]VIJAYAN R,POOR H V.Nonlinear techniques forinterference suppression in spread spectrum systems.IEEE Trans. Commun.,1990,38:1060-1065.
[5]高鷹,謝勝利.一種變步長LMS自適應(yīng)濾波算法及分析[J].電子學(xué)報.2001(8):1094-1097.
The research of narrowband interference suppression on variable step size LMS algorithm
Wang Wenting,Ge Haibo,Wang Yanyan
(School of Electronic Engineering,Xi′an University of Posts and Telecommunications,Xi′an 710121,China)
In order to suppression the narrowband signal and reduce the interference of the DSSS,a new variable step size LMS adaptive algorithm is proposed for signal processing.According to the principle of adjusting step size,to adjust the step size μ(n) and error e(n)nonlinear relation.Combing with the hyperbolic secant function curve theory analysis shows that the algorithm accelarates the convergence speed,improves the convergence precision,and reduces the error in steady state.In MATLAB building a DSSS,the analysis results indicate that the proposed algorithm outperforms the existing algorithms,can be more accurate in prediction and suppression of audio signal interference and enhances the anti-jamming performance of DSSS communication system.
fixed step LMS;narrowband interference;direct sequence spread spectrum(DSSS);hyperbolic secant
TN914.4
A
0258-7998(2015)02-0089-04
10.16157/j.issn.0258-7998.2015.02.021
陜西省教育廳自然科學(xué)研究基金項目(2011JM8038)
2014-07-31)
王雯婷(1989-),女,碩士,主要研究方向:擴跳頻通信。
葛海波(1963-),男,碩士生導(dǎo)師,教授,主要研究方向:高頻電路。
王艷艷(1989-),女,碩士,主要研究方向:擴跳頻通信。