亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Rural Power System Load Forecast Based on Principal Component Analysis

        2015-11-25 02:18:28FangJunlongXingYuFuYuXuYangandLiuGuoliang

        Fang Jun-long, Xing Yu, Fu Yu, Xu Yang, and Liu Guo-liang

        College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China

        Rural Power System Load Forecast Based on Principal Component Analysis

        FangJun-long,XingYu,FuYu,XuYang,andLiuGuo-liang

        CollegeofElectricalandInformation,NortheastAgriculturalUniversity,Harbin150030,China

        Powerloadforecastingaccuracyrelatedtothedevelopmentofthepowersystem.Thereweresomanyfactorsinfluencing thepowerload,buttheireffectswerenotthesameandwhatfactorsplayedaleadingrolecouldnotbedeterminedempirically.Based ontheanalysisoftheprincipalcomponent,thepaperforecastedthedemandsofpowerloadwiththemethodofthemultivariate linearregressionmodelprediction.Tooktheruralpowergridloadforexample,thepaperanalyzedtheimpactsofdifferentfactorson powerload,selectedtheforecastmethodswhichwereappropriateforusinginthisarea,forecastedits2014-2018electricityload,and providedareliablebasisforgridplanning.

        load,principalcomponentanalysis,forecast,ruralpowersystem

        Introduction

        Loadforecastingisthebasisfornetworkplanning (Yanget al.,2013)andhasabiginfluenceonthe powersystem.Finishingtheworkofthepowerload forecastingisanimportantsafeguardtorealizethe securityofthegridandtheeconomicaloperation(Niu et al.,1999;JiandWang,2001;Ranaweeraet al., 1997).Nowadays,therearenumerousstudiesabout theloadforecastingmethods,butthereisnowayto determinewhichoneisthebestandthemostaccurate method(Luoet al.,1997).Inordertomakeanaccurate predictionofthepowerloadduringthenextfew years,theprincipalcomponentanalysismethodwas introducedintothepowerloadforecastingproblems. Throughtheexamples,themethodgotahighaccuracy predictivevalue,andprovidedsomereferencestothe ruralpowergridplanning.

        Materials and Methods

        Mathematical model of principal component analysis

        Supposedanobservedobjectwhichcouldbemeasuredbyp indicatorsX1,X2,…,Xp,pindicatorsthen constitutedonep-dimensionalrandomvector,denoted asthefollowing:

        SetthemeanoftherandomvectorXwasthe covariance matrix was, and made a linear transformationofpindicator:

        Fromai=(a1i,a2i,…,api),then

        Theso-calledprincipalcomponentanalysis(XuandWang,2006),thelinearcombinationofF1,F2,…,FpwasunrelatedandthevarianceofVar(Fi)=aiT∑aiwas maximized.Informedbymatrixtheory,coefficient vectorsai=(a1i,a2i,…,api),i=1,2,…,pineachequation wastheeigenvaluethateigenvectorofthecovariance matrix ∑ of the matrix Xcorrespondedto,whichwas makingVar (F1)tothemaximum.Thismaximum reached the first eigenvalue of the covariance matrix ∑correspondedtothefeaturevector.Andbythisanalogy, Var (Fp)reachedthemaximumatthefeaturevectorthat pcharacteristicvaluecorrespondedto.

        Fromformula(2),

        Principal component analysis of calculation process

        (1)Assumednobservedobjects.Notingpindicators' predictivevalueof iobservedobjectwasxi1,xi2,…,xip, theneachpindicator'sobservedvaluesofnobjectscould beexpressedasthematrixformasthefollowing:

        Including,thenumberofobservedobjectswasn,and thenumberofindicatorsorvariableswasp.

        Fromtheformula

        Thevarianceofindicatorsorvariableswas1,and meanvaluewas0afternormalization.

        (3)Determinedthecorrelationcoefficientmatrix consistedoftheobservations,asformula(8):

        Among,

        (4)Seekedmnon-negativeeigenvaluesλ1,λ2,…,λmofthecharacteristicequation|R–λI|=0andeigenvectors correspondedtotheeigenvalueλiaccordingtocorrelationmatrixR:

        (5)Principalcomponents.Mprincipalcomponents composedoftheeigenvectorswereasthefollowing:

        ThemaincomponentsF1,F2,…,Fmwereunrelated, andtheirvariancesweredecreasing.

        (6)Selectedm(m<p)principalcomponents.Ifthe sumofthefirstmprincipalcomponentF1,F2,…,Fmvariancesofthetotalvariancesclosedto1(ingeneral, onlyreached85%),thenselectedthefirstmprincipal componentsF1,F2,…,Fm.Thesumofmprincipal componentvariancesreached85%ofthetotalvariances meantreservedoriginalindicatorsorvariablesX1, X2,…,Xp'sinformationbasically,thus,thenumberof theindicatorsorvariableswasreducedbyptom,and thenplayedaroleinscreeningindexorvariables.

        (7)Combinedwithexpertise,weexplainedthe selectedprincipalcomponents.

        Computing eigenvalues and eigenvectors

        Theeffectdegreesofeachfactorontheelectricload weredifferent.Ingeneral,thevariablesexistedcertain correlationbetweenthem,thereby,theinformation providedbythevariableoverlapedtoacertainextent (Zou,2008).Therefore,theanalysesofthevariables werequiteessential,usingaminimumofmaincore factorstoreflectthevastmajorityoftheoriginalvariable informationasfaraspossible.Principalcomponent analysiswasamethodforprocessinghigh-dimensional data.Analyzedthevariablestoachievethepurposeof findingoutmainfactorsbythemethodoftheprincipal componentanalysis(ZhangandLiu,2011).

        Throughstatisticaldataandthecombinationof subjectiveandobjectiveanalyses,foundthefactors affectingtheelectricalloadinmanyaspects.Tookthe ruralpowergridforexample,andlistedtherelevant factorsaffectingthepowerloadasTable1.

        Firstly,calculatedthecorrelationcoefficientmatrix Rasformulas(7)and(8)inTable1,asthefollowing:

        Table 1 Related factors to Jiamusi power load

        Startedfromthecorrelationcoefficientmatrix R,computedtheeigenvalues,contributionrate andcumulativecontributionrateofeachprincipal component,andtheresultswereshowninTable2.

        Then,wegottherelationsbetweenprincipalcomponentsandthestandardizedvariableswere:

        Results

        Result analyses and main index selection

        FromTable2,thefirstandsecondmaincomponent eigenvalueswerelargerthanothers.Thecumulative contributionratehadreached99.38%.Amongthem, fromformula(12)thatx1,x2,x5andx6informulaF1hadahigherloadfactor,madeadescriptionofthefirst principalcomponentF1havingabigrelevancewith thefirstindustrialpower,thesecondindustrialpower, populationandGNPoftheregions;fromformula (13),x3andx4informulaF2hadahigherloadfactor, anditcouldbeconcludedthatthesecondprincipal componentF2hadabigrelevancewiththetertiary industryelectricityconsumptionandresidential electricityconsumption.Thus,thefactorsabovewere themainfactorsaffectingtheloadforecasting.

        Easytoseefromequation(12),ruralpowergrid loadwasinfluencedmainlybyindustry,agriculture,populationandGNPoftheregions.Industry andagriculturewereregardedasthemainproductivi-tiesinrural.Suchaconclusionwasinlinewithrural powergridactualsituation.Fromformula(13),the commercialandresidentialelectricityconsumption wasonlytobethesecond,continuingdevelopthe economyservicesmadethebusinessservicesoccupya highstatusinthisregion'spowerloadgradually.

        Table 2 Eigenvalues, contribution rate and cumulative contribution rate of each principal component

        Discussion

        Multiple linear regression models

        Thepowerloadwasinfluencedbymultiplefactors. Multiplelinearregressionmodelshaduniversal significanceinmulti-elementanalysissystem. Therefore,thechoiceofthemultiplelinearregression modelanalysis,commonpredictingbyoptimal combinationofmultipleindependentvariablesor estimatingthedependentvariableweremorerealistic. Assumingadependentvariablewasinfluenced bykindependentvariablesx1,x2,…,xk,andthenitsN setsofobservedvaluewereyα=x1α,x2α,…,xkα,α=1,2,…, n,thegeneralformofmultiplelinearregressionmodel was:

        Intheformula,β0,β1,β2,…,βkwereundeterminedcoefficients,andεαwasrandomvariables(Bin, 2010).

        Multiple linear regression model to test

        Takinganindexhavingagreatercorrelationofthe mainfactorstothefirstprincipalcomponentF1was μ1.Takinganotherindexaccordingtohaveagreater correlationofthemainfactorstothefirstprincipal componentF2wasμ2.

        Accordingtotheprincipleoftheleastsquare method,obtainedthefollowinglinearregression predictionmodelusingMatlabsoftware.

        Including,R2=0.3932,F=106.64,Sig=0.0000meant themodelwasvalid.Thespecificdataisshownin Table3.

        AsitisshowninTable3,theaveragerelativeerror betweentheactualandpredictivevalueoftheload, during2004-2013wasonly0.918%,whichreached arelativelyhighpredictionprecision.Bythedeep dataanalysesinTable1,itmeantthefirstindustrial electricityconsumption,electricityconsumptioninthe secondindustry,residentialelectricityconsumption, population,GNPintheareaandmaximumload utilizationhoursweresteadilygrowing,steady growth,lowvolatility,sowecouldpredicttheseseveral factorsaboveinthenextfiveyearsbythemethod ofaveragegrowthrate.However,thegrowthrate ofthetertiaryindustryelectricityconsumptiontook amonotonicallyincreasingtrend,usingthemethodoflinearregressionequationstopredict.Last, finishedthepredictionofthepowerloadinthisarea during2014-2018byfittingfunctioncalculatingthe maximumload,specificresultsisshowninTable4.

        Table 3 Rural power grid load fitting relative error

        Table 4 Predictive value of 2014-2018 power load

        FromTable4,powerloadofthisareaduring 2014-2018wasincreasing.Itwouldincreaseto 1468.78MWby2018.Alsofindingouttheincreasing agriculturalpowerconsumptionwasamajorfactorto increasethepowerload,inlinewiththeruralpower gridelectricityactualsituation.

        Conclusions

        Bytheprincipalcomponentanalyses,thepaperpredictedanimportantpowerindicator,themaximum powerload.Firstly,bythethoughtofreducingthe dimension,analysesofthemainfactorsamongso manyeffectfactorsfoundtherightweightofdifferent affectingfactors.Then,wegotthemaximumpowerload predictivevaluebycalculatingthemaineffectfactors. Fromtheaboveexample,themethodnotonlysimplified theregressionmodel,butalsohadahighfitting accuracy,andprovedthefeasibilityofthismethod.

        References

        BinB.2010.Multiplelinearregressionanalysisanditsapplication.China Science and Technology Information,9:60-61.

        JiSD,WangLH.2001.Technologyanalysisaboutmanagement systemofareanetworkloadprediotion.Heilongjiang Electric Power, 23(5):12-15.

        LuoP,WangSM,YangDO,et al.1997.Electricityandpowerload forecastofLiaoyangin1997-2005.North China Electric Power,6: 31-34.

        NiuDX,CaoSH,ZhaoL.1999.Electric load forecasting technology and its applications.ChinaElectricPowerPress,Beijing.pp.1-7.

        RanaweeraDK,KaradyGG,FarmerRG.1997.Economicimpact analysisofloadforecasting.Transactions on Power Systems,12(3): 1388-1392.

        XuYJ,WangYZ.2006.Theimprovementoftheapplicationmethod ofprinciplecomponentanalysis.Mathematics in Practice and Theory,36(6):68-74.

        YangCY,LiRQ,ZhouY.2013.Loadforecastingmethodsapplicable toregionalpowergird.East China Electric Power,41(12): 2655-2657.

        ZhangM,LiuH.2011.Assessmentmodeloftastequalityofmillet basedonprincipalcomponentanalysismethod. Journal of Northeast Agricultural University,42(8):7-12.

        ZouDT.2008.Analysisofprincipalcomponentsofqualitytraitsin riceinHeilongjiangProvince.Journal of Northeast Agricultural University, 39(3):17-21.

        TM926Document code: AArticle ID: 1006-8104(2015)-02-0067-06

        11December2014

        SupportedbytheScienceandTechnologyResearchProjectFundofProvincialDepartmentofEducation(12531004);ProjectofHeilongjiangLeading TalentEchelonTalented(2012)

        FangJun-long(1971-),male,professor,supervisorofPh.Dstudent,engagedintheresearchoflocalpowersystem.E-mail:junlongfang@126.com

        国产福利永久在线视频无毒不卡 | 日本黑人乱偷人妻在线播放| 青娱乐极品视觉盛宴国产视频| 欧美性大战久久久久久久| 2020国产精品久久久久| 国产午夜视频高清在线观看| 边添小泬边狠狠躁视频| 国产性生交xxxxx免费| 国产va免费精品高清在线观看 | 亚洲国产中文字幕视频| 老师粉嫩小泬喷水视频90| 国产成人免费a在线视频| 亚洲色图少妇熟女偷拍自拍 | 日本特黄特色特爽大片| 丰满岳乱妇在线观看中字无码| 少妇爽到爆视频网站免费| 免费视频无打码一区二区三区 | 亚洲暴爽av天天爽日日碰| 久久亚洲精品成人综合| 日本成人午夜一区二区三区| 国产成人精品a视频| 日本不卡视频免费的| 少妇久久高潮不断免费视频| 情爱偷拍视频一区二区| 波多野结衣av手机在线观看| 久久亚洲第一视频黄色| 青青草手机视频免费在线播放 | 97超碰精品成人国产| 无码人妻久久一区二区三区免费 | 中文字幕精品一区二区三区| 久久久久久国产精品免费免费男同| 国产精品三级一区二区按摩| 中文字幕视频一区二区 | av中文字幕一区人妻| 欧美乱人伦人妻中文字幕| 亚洲高清无码第一| 久久久国产精品三级av| 国产精品无码人妻在线| 国产做无码视频在线观看浪潮| 亚洲乱码中文字幕综合| 日韩午夜理论免费tv影院|