陸 超
(重慶交通大學(xué) 土木工程學(xué)院,重慶 400074)
Lu Chao
(School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074)
坐標(biāo)方位角在工程測量應(yīng)用中具有重要地位。在市政工程、公路工程現(xiàn)場施工放樣中,通常采用極坐標(biāo)法將設(shè)計點位放樣到實地,必須通過坐標(biāo)反算得到測站點到放樣點的距離和坐標(biāo)方位角。
傳統(tǒng)的坐標(biāo)方位角計算方法是在象限判斷的基礎(chǔ)上利用象限角與方位角的定量關(guān)系推算坐標(biāo)方位角,象限角與方位角概念混淆時計算容易出錯[1-5]。對目前所有測量書籍和相關(guān)資料分析,不難看出,基本上從三角函數(shù)關(guān)系(標(biāo)量)的角度分析坐標(biāo)方位角的計算方法。這些推導(dǎo)過程和計算公式(含統(tǒng)一數(shù)學(xué)模型)不便于理解與掌握。
本文將向量內(nèi)積、外積引入到直線坐標(biāo)方位角的計算公式的推導(dǎo)過程中,為坐標(biāo)方位角的推算提供一種新思路,同樣是對反余弦函數(shù)計算坐標(biāo)方位角做出的新解釋。
方位角是指從起始方向北端算起,順時針旋轉(zhuǎn)至某方向線間的水平角度[6]。根據(jù)起始方向的選取不同,方位角具體分為真方位角、磁方位角和坐標(biāo)方位角。其中,坐標(biāo)方位角的起始方向為坐標(biāo)縱線。坐標(biāo)方位角的取值范圍是0°~360°。
在傳統(tǒng)的坐標(biāo)方位角計算中,引入了象限角概念。象限角是指由標(biāo)準(zhǔn)方向的北端(或南端)順時針(或逆時針)旋轉(zhuǎn)至某一直線的水平銳角。象限角的取值范圍是0°~90°。
已知測站點和放樣點的坐標(biāo)分別為A(XA,YA)、B(XB,YB),則兩點坐標(biāo)增量△XAB=XB-XA,△YAB=YB-YA,AB兩點距離,象限角RAB為:
坐標(biāo)方位角與象限角是兩種不同的概念,傳統(tǒng)的坐標(biāo)方位角計算方法是基于象限角來進行的。根據(jù)△XAB和△YAB的正負性,通過添加常數(shù)項將象限角轉(zhuǎn)換為坐標(biāo)方位角αAB。這種計算方法不僅比較繁瑣,而且△XAB為0時需要特殊處理。
距離沒有方向性,需要借助X、Y增量的正負性來判斷坐標(biāo)方位角所在象限。然而向量既代表大小,又代表方向,可以直接斷定坐標(biāo)方位角所在象限。選取坐標(biāo)縱軸(正北方向)的單位向量=(1,0),向量與向量夾角為θ。向量夾角θ∈[0°,180°],而坐標(biāo)方位角α∈[0°,360°),兩者之間存在著某種固定轉(zhuǎn)換關(guān)系。各象限中坐標(biāo)方位角α與向量夾角θ的關(guān)系如圖1所示。
圖1 坐標(biāo)方位角與向量夾角關(guān)系
由圖1易得,當(dāng)α在第一、二象限時,α=θ;當(dāng)α在第三、四象限時,α=360°-θ。其中,θ可由向量內(nèi)積定義求得,向量夾角θ為:
坐標(biāo)方位角所在象限判定的定量表達成為問題的關(guān)鍵。從向量角度出發(fā),引入了向量外積[7]。
綜上所述,直線的坐標(biāo)方位角α為:
當(dāng)△YAB=0即位于X軸時,式(4)同樣成立??梢詫⑹剑?)合并為統(tǒng)一的表達式:
從矢量角度出發(fā),借助向量內(nèi)積、外積推導(dǎo)直線坐標(biāo)方位角的計算公式,該方法具有形象直觀,容易理解和掌握的優(yōu)點,為進一步理解直線坐標(biāo)方位角的計算提供一種新思路。內(nèi)外積分析法同樣可用于解決道路路線的轉(zhuǎn)角問題。
[1]譚家兵,劉星.利用坐標(biāo)反算直線坐標(biāo)方位角的最佳數(shù)學(xué)模型[J].江蘇測繪,2001,24(3):24-25,27.
[2]高俊強,鄭國才.測量學(xué)教學(xué)中坐標(biāo)方位角的計算[J].現(xiàn)代測繪,2005,28(5):47-48.
[3]陳德標(biāo).坐標(biāo)方位角計算實用通式[J].測繪通報,2006(2):30-31,69.
[4]王健,李小光,宋利杰.直線坐標(biāo)方位角的簡明算法[J].礦山測量,2010(2):62-63,65.
[5]涂群生.距離和坐標(biāo)方位角計算的簡易方法[J].測繪通報,2006(7):43-44.
[6]鄭平元,楊武年,楊容浩.輔助角法在坐標(biāo)方位角反算中的應(yīng)用[J].測繪與空間地理信息,2012,35(7):44-45.
[7]李香清.基于對話框編寫實現(xiàn)坐標(biāo)方位角正算與反算的程序[J].城市勘測,2013(5):137-139.