鄭玥瑤,周俊良*,黃民生(.華東師范大學(xué),河口海岸學(xué)國家重點(diǎn)實(shí)驗(yàn)室,上海 0006;.華東師范大學(xué)生態(tài)與環(huán)境科學(xué)學(xué)院,上海 0006)
污水處理廠中雄激素分布及行為的研究進(jìn)展
鄭玥瑤1,周俊良1*,黃民生2(1.華東師范大學(xué),河口海岸學(xué)國家重點(diǎn)實(shí)驗(yàn)室,上海 200062;2.華東師范大學(xué)生態(tài)與環(huán)境科學(xué)學(xué)院,上海 200062)
人類及生物體內(nèi)在自然代謝及藥物使用過程中產(chǎn)生的甾醇類激素如果在污水處理廠中未能完全去除或是未加處理直接排放,則會污染受納水體,并對其中的魚類等生物造成影響,其中人體內(nèi)產(chǎn)生的雄激素睪酮的濃度比雌激素雌二醇要高1~3個數(shù)量級.本文比較了當(dāng)前各地污水處理廠中的雄激素分布,闡述了污水處理工藝對雄激素的去除效果;其中,格柵、初沉池等初級處理工藝基本不去除雄激素;厭氧-缺氧-好氧等二級處理工藝通過生物降解等作用可以有效去除80%~100%的雄激素;氯消毒、臭氧等三級處理工藝對雄激素的去除效率相差較大,在-66.7%~70%范圍內(nèi)波動;同時也對去除雄激素的新型材料研究及未來研究方向進(jìn)行了展望.
雄激素;污水處理廠;分布;去除;生物降解
近年來,大量研究表明環(huán)境中存在許多會對動物及人體內(nèi)分泌系統(tǒng)產(chǎn)生干擾的物質(zhì),此類物質(zhì)在環(huán)境、食品和日常消費(fèi)品中普遍存在,即使是痕量水平,也能對生物體內(nèi)激素的合成代謝產(chǎn)生干擾,導(dǎo)致有機(jī)體內(nèi)自我平衡的失調(diào)及生殖行為的異常等[1-3],因此被稱為內(nèi)分泌干擾物(EDCs).研究表明,內(nèi)分泌干擾物,尤其是甾醇類物質(zhì),會對野生動物和人類的生長發(fā)育,尤其是內(nèi)分泌、繁殖和免疫系統(tǒng)等造成不良影響[4-6],對生物體內(nèi)分泌系統(tǒng)的功能產(chǎn)生激活或是抑制,破壞體內(nèi)環(huán)境的穩(wěn)定.
人類及生物體在自然代謝及藥物使用過程中均會產(chǎn)生甾醇類激素,雄激素、雌激素、孕激素、糖皮質(zhì)激素等均屬于甾醇類激素[7].在過去的研究中環(huán)境雌激素尤其受到各界的廣泛關(guān)注[8-11],但在水體中,雄激素?zé)o論在數(shù)量上,還是在濃度上均是占主導(dǎo)的激素;如此高的濃度主要是由于人體體內(nèi)環(huán)境及排泄過程中釋放出的雄激素濃度就遠(yuǎn)遠(yuǎn)高于雌激素[12]:成年男性、女性體內(nèi)血漿中Testosterone濃度分別為3000~10000ng/L、200~750ng/L,而17β-oestradiol(E2)的血漿濃度分別為10~60ng/L、30~400ng/L,女性孕期也只能達(dá)到350~400ng/L[13].毒理學(xué)相關(guān)研究顯示:雄激素在環(huán)境中達(dá)到一定濃度時就可對生物,尤其是水生生物產(chǎn)生影響,如:雌魚出現(xiàn)雄性第二性征、種群雄性個體偏多、生殖能力減弱、生殖細(xì)胞壞死、卵黃蛋白原合成受到抑制等[14-16].已有研究證實(shí):大型水蚤在0.31~2.48mg/L的Testosterone環(huán)境下暴露21天會產(chǎn)生生殖能力下降、受精卵壞死現(xiàn)象[17];青鳉魚長期暴露在9.98ng/L的Methyltesterone環(huán)境下會引起生殖能力下降、腹部腫大、雌魚產(chǎn)生雄性特征等癥狀[18];17α-Trenbolone和17β-Trenbolone在7~16ng/L及27ng/L的濃度下,均會對黑頭呆魚的繁殖能力產(chǎn)生危害[14,19-20].
當(dāng)前水環(huán)境中的雄激素來源主要有城市生活污水、畜禽水產(chǎn)養(yǎng)殖污水、造紙廠工業(yè)廢水等的不完全處理[16,21-24].由于大規(guī)模的畜禽水產(chǎn)養(yǎng)殖一般位于不發(fā)達(dá)的農(nóng)村地區(qū),根據(jù)當(dāng)?shù)貙?shí)際情況采用濕地系統(tǒng)等進(jìn)行離散式污水凈化[25],未能建成規(guī)?;奶幚韽S,較難進(jìn)行橫向比較,目前研究也較少.城市作為人類聚集的密集區(qū),城市污水管網(wǎng)會收集居民通過尿液、糞便等釋放出自由態(tài)、結(jié)合態(tài)、代謝物等形態(tài)的甾醇類激素[26-28],并運(yùn)輸至城市污水處理廠進(jìn)行集中化的處理.同時,經(jīng)過造紙廠自身預(yù)處理后的工業(yè)廢水也會匯入城市污水處理廠進(jìn)行進(jìn)一步處理.城市污水處理廠的主要目的是去除常見的傳統(tǒng)污染物,例如:懸浮顆粒物、氮磷、有機(jī)物質(zhì)、重金屬等,同時對于激素等新型污染物也有一定的去除作用,但由于去除新型污染物并非城市污水處理廠的主要目的,依舊會有部分雄激素未被完全去除就排入受納水體[29-31].因此在城鎮(zhèn)內(nèi)及周邊自然水體中,城市污水處理廠的出水排放是水體中雄激素的一個主要來源[31-33],對于水環(huán)境中,尤其是城市污水處理廠中雄激素的研究迫在眉睫.
本文通過對于近年來相關(guān)研究進(jìn)行綜述,總結(jié)了城市污水處理廠中雄激素的分布、行為、歸趨等,對各類初級處理、二級處理、三級處理工藝進(jìn)行縱向及橫向的比較、分析,并闡述了目前研究中所涉及的若干種新型材料對二級出水中雄激素的去除效果,有助于對于城市污水處理廠處理工藝進(jìn)行進(jìn)一步的優(yōu)化,具有重要的現(xiàn)實(shí)意義.
由于各類雄激素的來源(自然、人工合成)不同,理化性質(zhì)各異,可生物降解性不同,其在城市污水處理廠的進(jìn)水、出水濃度也會有較大差異.表1列出了多位研究者對不同國家(省市)污水處理廠(均含有初級處理、二級處理,部分含有三級處理)中雄激素的調(diào)查結(jié)果,選擇了目前研究較為廣泛的、在文獻(xiàn)中報道較多的自然及人工雄激素,對其進(jìn)水濃度、出水濃度及去除效率進(jìn)行了總結(jié).其中自然雄激素包含Testosterone等人體及動物體在自身代謝過程中分泌產(chǎn)生的具有雄激素活性的甾類激素及其衍生物,人工雄激素主要有Trenbolone等興奮劑、促生長劑類藥物,在生物體內(nèi)也能產(chǎn)生雄激素活性[34].
表1 各類雄激素在各地污水廠中的去除效率Table 1 Removal rate of androgens in WWTPs worldwide
續(xù)表1
從表1可見:在污水廠的進(jìn)水中,天然雄激素占主導(dǎo)地位.除NAD未被檢出、DHT在廣東一個污水廠未被檢出外,其余天然雄激素在各地各個污水廠中均有檢出,且其濃度(6.9~6344ng/L)遠(yuǎn)高于人工合成類雄激素(n.d.~18.8ng/L).人工合成類雄激素除SZL及17β-BOL在廣東被檢出外,在其余地點(diǎn)尚未被檢出.在自然雄激素中,不同文獻(xiàn)對某雄激素在相同城市中的濃度報道也有較大差異,例如:AED在北京的污水廠進(jìn)水中的報道濃度分別為:157~330ng/L、802ng/L;EADR在北京的污水廠進(jìn)水中的報道濃度分別為:357~977ng/L、6344ng/L,且這兩篇文獻(xiàn)中的采樣時間均為夏季, 樣品均為24h混合水樣,因此數(shù)據(jù)受到溫度及采樣方式的影響應(yīng)不大,引起差異的原因可能與污水廠服務(wù)區(qū)域周邊居住人數(shù)、來水源是否含除生活污水外的產(chǎn)業(yè)廢水等有關(guān).
雖各種天然雄激素在各地污水廠的進(jìn)水濃度差異較大,但在各地污水廠進(jìn)水中濃度最高的天然雄激素基本一致,為ADR及EADR,一般比其他天然雄激素濃度高1~2個數(shù)量級,有時可達(dá)3個數(shù)量級,與男性每天的雄激素排放量比較,我們發(fā)現(xiàn)其中存在著相似的排序:ADR 3340μg/d, EADR 229μg/d, TTR 56.7μg/d, DHT 14.1μg/d, AED 3.7μg/d.同時也有研究表明在水體中分布的雄激素中,濃度最高的是Testosterone及其一系列的代謝產(chǎn)物,如:Androstenedione, Androstanedione,Androsterone, Epiandrosterone, Dehydrotestosterone等[38].因此作者基本認(rèn)同Liu等的觀點(diǎn):人體排泄所釋放的雄激素及其代謝物可能是城市污水中雄激素的最主要來源[39],但參考其他學(xué)者通過對污水處理廠實(shí)際進(jìn)水檢測值及根據(jù)其服務(wù)人口及人體排放雄激素?cái)?shù)據(jù)計(jì)算得到的預(yù)測數(shù)據(jù)的比較,二者間還是存在一定偏差[28],這一方面可能是由于在污水管網(wǎng)中產(chǎn)生了反應(yīng)、代謝、轉(zhuǎn)化等,另一方面也可能是城市污水處理廠除了人體代謝,還存在其他重要雄激素來源,有待進(jìn)一步研究.
從表1的出水濃度來看,城市污水處理廠對于雄激素的去除有一定效果,部分雄激素出水濃度可達(dá)檢測限以下.對于在進(jìn)水中濃度最高的ADR及EADR,在日本崎玉及中國廣東的污水廠出水中均未被檢出,而在中國北京的部分污水廠中仍有少量檢出(除EADR在北京某污水廠濃度達(dá)133ng/L),與出水中的其他未被去除的雄激素相比,此二者在出水中已不是主要物質(zhì).在出水中濃度較高的是DHT及AED,但其濃度也基本控制在60ng/L以內(nèi).
在整體去除率方面,ADR及EADR在各地的污水廠中表現(xiàn)平穩(wěn),且去除率佳,分別穩(wěn)定在99%~100%及98%~99%之間.其余自然雄激素去除率尚可,在各文獻(xiàn)中報道值有一定浮動,但基本穩(wěn)定在90%左右,不同文獻(xiàn)中同種雄激素去除率差異產(chǎn)生的原因可能有:進(jìn)水濃度、污水廠處理工藝、污水中干擾物、溫度等.對于在進(jìn)水中被檢出的人工雄激素SZL,其在廣東的污水處理廠基本沒有被去除,而在北京的污水廠去除率達(dá)100%±0%,但由于其在北京污水廠中的進(jìn)水濃度僅為0.2ng/L,出水低于檢測限(0.09ng/L),因此其去除率是否有100%±0%有待商榷.
目前,城市污水處理廠對污水的處理基本可分為三大步驟:初級物理處理、二級生化處理及三級深度處理.其中二級生化處理為雄激素的去除做出了主要的貢獻(xiàn)[31,40].表2總結(jié)了目前研究中通過生物或化學(xué)方法對各地含有二級處理的污水廠的進(jìn)水、出水雄激素或雄激素活性的檢測及其相應(yīng)去除率,從中可以看出,各地污水廠對于雄激素的去除效率普遍較好,基本達(dá)90%~100%.其中廣東的一污水處理廠去除率為-66.7%,其原因?qū)⒃诤笪木唧w探討.
2.1 初級處理對雄激素的去除
在初級處理中,一般設(shè)置格柵、沉砂池、初沉池等工藝,以去除水體中的大顆粒固體及懸浮顆粒物.從目前的研究進(jìn)展來看,初級處理對雄激素的去除率非常有限,一般不高于20%,除AED、EADR、TTR在北京某污水廠去除效率為36%~72%[37].對于初級處理中雄激素的去除,一般可歸結(jié)于以下機(jī)理:①溶解在水中的雄激素吸附于顆粒物表面,隨顆粒物一同被去除;②部分沉砂池配置有預(yù)曝氣,在曝氣過程中有機(jī)物質(zhì)會被去除;③在初沉池中會發(fā)生一定程度的水解、酸化,使化合物被去除.
但在很多情況下,雄激素經(jīng)過初級處理的去除率<0,尤其是TTR及AED幾乎在所有污水廠中均出現(xiàn)此現(xiàn)象:由于雄激素是以與葡萄糖苷酸及硫酸鹽等的結(jié)合態(tài)從人體內(nèi)排出的,因此在進(jìn)水時以結(jié)合態(tài)存在,并未被大量檢出,之后在曝氣池內(nèi),結(jié)合態(tài)的雄激素會經(jīng)糞球菌Escherichia coli的作用發(fā)生解離,生成自由態(tài)的雄激素從而被檢出;同時,Mar等[41]通過模擬污水廠實(shí)驗(yàn),針對此現(xiàn)象提出另一種可能解釋:高濃度的雄激素在進(jìn)水時大量吸附于固體表面,而在初沉過程中,他們所加入的人工污水中雄激素濃度僅為進(jìn)水的1/12,致使之前吸附的雄激素從固體表面解吸,進(jìn)入水相;但這一水-固體界面交換引起的濃度變化在實(shí)際城市污水處理廠中發(fā)生的可能性不大,因此前一解釋的可能性更高.
表2 各地污水廠中雄激素或雄激素活性的去除效率Table 2 Removal rate of total androgen concentration or androgenic activity in WWTPs worldwide
2.2 二級處理對雄激素的去除
在二級處理中,生化處理工藝多種多樣,常見的有:活性污泥法、厭氧-缺氧-好氧法、氧化溝法等,目標(biāo)化合物一般為溶解性可生物降解有機(jī)物.對各類處理工藝進(jìn)行比較,可以發(fā)現(xiàn)不同的二級處理工藝對雄激素的去除率較好,且不同工藝對各種雄激素的去除率差異不大,基本可達(dá)到80%~100%.其中部分化合物在二級處理中的去除率(此處及下文中二級處理去除率=(初級處理后出水中雄激素濃度-二級處理出水中雄激素濃度)/污水廠進(jìn)水中雄激素濃度×100%)>100%,同時其初級與二級處理的總?cè)コ剩ù颂幖跋挛闹谐跫壟c二級處理總?cè)コ?(污水廠進(jìn)水中雄激素濃度-二級處理出水中雄激素濃度)/ 污水廠進(jìn)水中雄激素濃度×100%)基本在100%以下(表3),其原因是在初級處理中,其濃度上升,去除率<0,而在二級處理中,這些物質(zhì)再被去除,且去除效果好,因此去除率>100%,如中國廣東一污水處理廠初級處理后DHT濃度較原始進(jìn)水濃度上升,計(jì)算得其初級處理對雄激素的去除率(此處及下文中初級處理去除率=(初級處理后出水中雄激素濃度-污水廠進(jìn)水中雄激素濃度)/污水廠進(jìn)水中雄激素濃度×100%)為-34.4%,隨后的氧化溝工藝去除了幾乎所有DHT,此時初級處理出水與二級處理出水中的DHT濃度差大于原始進(jìn)水中的DHT濃度,因此產(chǎn)生了134%的二級處理去除率,但二級處理出水中的DHT濃度依舊小于原始進(jìn)水中的DHT濃度,因此初級與二級處理總?cè)コ蕿?9.7%,小于100%.
在厭氧-缺氧-好氧工藝中,相比較其他研究,F(xiàn)an等[37]得出的二級處理效率較低,其原因是不同于其他文獻(xiàn)中初級處理的低去除率,某些雄激素在其報道的初級處理中已有7%~73%的去除,因此二級處理去除率相應(yīng)降低.對于SZL,氧化溝及厭氧-缺氧-好氧工藝均無法對其進(jìn)行去除.Huang等[31]發(fā)現(xiàn):同一工藝在不同的污水處理廠中的去除效果也不同,如:厭氧-缺氧-好氧工藝對TTR的去除率最高約可達(dá)97%,最低只有81%,因?yàn)槿コ士赡苁艿剿νA魰r間、污泥停留時間、進(jìn)水水質(zhì)等許多因素的影響[44-47].總體來說,厭氧-缺氧-好氧工藝對雄激素的去除效果佳于氧化溝法、滴濾池、間歇式循環(huán)延時曝氣活性污泥法[13,28,31],而在厭氧-缺氧-好氧工藝中,厭氧池又起到了最重要的作用[28,37].
雄激素在二級處理中,會經(jīng)歷分散、吸附、分配、降解、蒸發(fā)等過程,其中主要的去除機(jī)理是固體吸附及生物降解,蒸發(fā)基本可忽略不計(jì).Chang等[36]通過在實(shí)驗(yàn)污泥中加入HgCl2抑制生物降解,證明了二級處理中生物降解是絕大多數(shù)的雄激素的歸趨;同時Fan等[37]通過對于二級處理出水及污泥中雄激素含量的測定,進(jìn)行質(zhì)量平衡計(jì)算,在驗(yàn)證了Chang等實(shí)驗(yàn)結(jié)果的基礎(chǔ)上,提出了在包含雄激素在內(nèi)的3大類激素中,通過污泥吸附的去除率<10%,而生物降解則占63%~99%,其中除NAD,其余雄激素生物降解的去除率均>90%;這一結(jié)果對于昆明的城市污水處理廠亦符合[31].
表3 不同二級處理工藝對各種雄激素的去除率Table 3 Removal rate of androgens of different secondary treatment
2.3 三級處理對雄激素的去除
三級處理一般使用活性炭吸附、反滲透、氯消毒、UV等方法,是城市污水的最高處理措施,目前并未在所有的城市污水處理廠實(shí)施.從表3的初級+二級處理總?cè)コ手锌梢钥闯?傳統(tǒng)的二級處理雖然能有效去除大部分雄激素,但依舊會排出一定濃度的雄激素[2],這些雄激素如果直接排放入受體水體,就有可能對生物體,尤其是水生生物產(chǎn)生危害.
在目前的研究中,主要涉及的三級處理工藝是氯消毒及UV工藝.對于二次處理出水中的低濃度雄激素,氯消毒有一定的去除效果,值得一提的是對于在初級處理及二級處理中均很難去除的SZL,氯消毒能夠達(dá)到70%的去除率[28].UV對雄激素的去除率在不同的文獻(xiàn)中有較大的差異:在昆明的5個污水處理廠中,各類過濾器與UV對于二級處理出水中大多數(shù)雄激素的去除率在10%以內(nèi),少數(shù)可達(dá)15%~30%[31];在廣東的某污水處理廠中,UV不僅沒有對雄激素的去除作出貢獻(xiàn),反而引起了幾乎所有雄激素的濃度上升,其中DHT及SZL計(jì)算得出的去除率分別達(dá)-63.9%,-66.7%[28];澳大利亞新南威爾士州的幾個污水處理廠中的二級處理出水在經(jīng)過UV工藝后,其雄激素活性比起二級處理后的出水上升了5%~55%,該文獻(xiàn)的作者Coleman提出發(fā)生這一現(xiàn)象的可能原因是之前吸附在污泥中的某些物質(zhì)發(fā)生解吸,重新回到了水相[43],但實(shí)際二沉池后的出水中污泥含量很少,加之二級處理中絕大部分雄激素并不吸附在污泥中,因此這一假說并不一定正確.在UV處理后,引起部分雄激素濃度、雄激素活性上升的原因究竟是部分殘留物在此過程中重新合成,或是別的激素發(fā)生轉(zhuǎn)化,亦或是其他原因,值得進(jìn)一步探究.
根據(jù)前文所述:各地城市污水處理廠對雄激素的去處效率各不相同且差異較大,介于目前的傳統(tǒng)污水處理廠對激素類新型污染物的不完全去除,有必要開發(fā)新型污水處理技術(shù)以更好地去除污染物,減小其對于環(huán)境及生物體的潛在危害.目前的研究主要關(guān)注新型材料對已經(jīng)過一定處理的污水中雄激素的去除.
3.1 吸附材料
有機(jī)黏土(OC)是一種能夠有效吸附親酯類物質(zhì)的固態(tài)基質(zhì)[49].顆粒狀活性炭(GAC)對于內(nèi)分泌干擾物及藥物類有機(jī)物有一定的去除作用[50-52].通過對已經(jīng)過濕地系統(tǒng)處理的乳牛廠污水進(jìn)行實(shí)驗(yàn),Cai等[52]發(fā)現(xiàn)OrganoLoc PM-100OC及AquaSorb 101GAC對二級處理出水中雄激素的去除率均能達(dá)到99%,雖然經(jīng)前者處理后的雄激素量更低,但GAC在起始階段的去除速率更高,能夠在15min內(nèi)將TEQ(Testosterone Equivalent)下降200ng/L,因此對雄激素的去除而言,GAC在實(shí)際污水處理過程中更適用.
3.2 反應(yīng)材料
介于零價鐵(ZVI)在不同的地球化學(xué)情況下具有高適應(yīng)性、使用便捷、維護(hù)低廉等特性,在處理水中污染物方面引起了很高關(guān)注[52-54]. Cai等[52]選取Connelly ZVI及Gotthart Maier ZVI進(jìn)行研究,對已經(jīng)過處理的乳牛廠污水進(jìn)行處理,雄激素的去除率分別達(dá)到99%及95%,出水中TEQ濃度分別降至為(18.69±3.57)ng/L及(57.96±6.09)ng/L.但在同一實(shí)驗(yàn)中,兩種ZVI對雄激素的去除率沒有3.1中提及的吸附材料GAC及OC佳.
六價鐵具有氧化性,同時Fe(OH)3又可作為絮凝劑[55],因此在污水處理中是一種良好的氧化劑.它在有效去除水中低濃度的懸浮顆粒物、磷酸鹽、化學(xué)需氧量、生物需氧量的同時,通過與有機(jī)污染物中的酚基、苯胺基、胺基、烯烴等富電子部分反應(yīng),也能去除各類微污染[56-59]. Yang[60]對14種雄激素進(jìn)行實(shí)驗(yàn),發(fā)現(xiàn)Fe(VI)對不同雄激素的氧化能力不同:對于含有4個共軛雙鍵的雄激素17α-TBL及17β-TBL, Fe(VI)能夠通過親電攻擊,對其進(jìn)行最迅速且有效的去除,在(10.7±2.8)mg·min/L的Fe(VI)暴露下即可達(dá)到大于99.8%的去除率;但隨著共軛體系的削弱,F(xiàn)e(VI)對雄激素的去除效率也會相應(yīng)降低、變緩,對于EADR、ADR等無共軛體系的化合物,不與其發(fā)生反應(yīng).
雄激素作為人及生物體排泄的主要甾醇類激素,其量不可忽視.已有一些學(xué)者對城市污水處理廠中的雄激素進(jìn)行報道:由于相較于雌激素,雄激素的進(jìn)水濃度普遍較高,而目前的城市污水處理廠由于其設(shè)計(jì)的局限性,雖然二級處理能夠去除大部分雄激素,但不能100%去除雄激素;初級處理及三級處理對雄激素的去除也非常有限,同時去除效率也存在著較大的差異,具體的去除機(jī)理研究較少;在二級處理中,雄激素主要是通過生物降解的方式被去除,去除效果最好的是厭氧-缺氧-好氧工藝,其中厭氧池起到了最主要的作用.
雖然城市污水處理廠排放出的出水中依舊含有一定濃度的雄激素,但相較于進(jìn)水中雄激素的濃度,已經(jīng)有了較好的處理效果,尤其是進(jìn)水濃度中最高的ADR及EADR,在出水中的濃度均有了1~3個數(shù)量級的下降.介于城市污水處理廠的工藝設(shè)計(jì)一般著眼于懸浮顆粒物、氮磷、重金屬等的去除,并不包含對新型污染物的去除,因此能夠達(dá)到目前的處理效果已經(jīng)值得肯定.雖然目前城市污水處理廠中的進(jìn)水濃度并沒有達(dá)到能夠在短期內(nèi)對魚類等產(chǎn)生危害的濃度,但如果城市生活污水及產(chǎn)業(yè)廢水等未經(jīng)處理就直接排放,其中的雄激素很有可能使受納水體受到污染,長期暴露在這種受到污染的水體中,對魚類等水生生物的內(nèi)分泌系統(tǒng)等會有潛在的危害,若這些雄激素再通過食物鏈或其他途徑產(chǎn)生生物累積效應(yīng),則可能對人類產(chǎn)生進(jìn)一步威脅.
目前對于環(huán)境中,尤其是污水處理廠中雄激素的研究雖然已經(jīng)起步,但并不豐富,例如:采樣時間短或樣品不具有代表性、機(jī)理方面研究少、工藝研究不透徹等.如何通過吸附材料、反應(yīng)材料、三級處理工藝的開發(fā)、城市污水處理廠工藝的完善以進(jìn)一步提升污水處理廠對于雄激素的去除效率及污水處理廠排放的雄激素對于受納水體的影響值得學(xué)者進(jìn)行更深入的研究.
[1]Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement [J]. Endocrine Reviews, 2009,30(4):293-342.
[2]Kolodziej E P, Gray J L, Sedlak D L. Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent [J]. Environmental Toxicology and Chemistry, 2003,22(11):2622-2629.
[3]龔 劍,黃 文,楊 娟,等.珠江河流膠體中的典型內(nèi)分泌干擾物 [J]. 中國環(huán)境科學(xué), 2015,35(2):617-623.
[4]T C, S V S F, M S A. Developmental effects of endocrinedisrupting chemicals in wildlife and humans [J]. Environmental Health Perspectives, 1993,101:378-384.
[5]A J L, A H R. Effects of estrogenic chemicals on development [J]. Environmental Health Perspectives, 1995,103(Supply7):63-67.
[6]Tsutsumi O. Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction [J]. Journal of Steroid Biochemistry and Molecular Biology, 2005,93(2-5):325-330.
[7]T?lgyesi, Verebey Z, Sharma V K, et al. Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 2010,78(8):972-979.
[8]Bandelj E, Van Den Heuvel M R, Leusch F D, et al. Determination of the androgenic potency of whole effluents using mosquitofish and trout bioassays [J]. Aquatic Toxicology, 2006,80(3):237-248.
[9]Jenkins R, Angus R A, Mcnatt H, et al. Identification of androstenedione in a river containing paper mill effluent [J]. Environmental Toxicology and Chemistry, 2001,20(6):1325-1331.
[10]Chang H, Wan Y, Hu J. Determination and Source Apportionment of Five Classes of Steroid Hormones in Urban Rivers [J]. Environmental Science and Technology, 2009,43(20):7691-7698.
[11]Yamamoto A, Kakutani N, Yamamoto K, et al. Steroid hormone profiles of urban and tidal rivers using LC/MS/MS equipped with electrospray ionization and atmospheric pressure photoionization sources [J]. Environmental Science and Technology, 2006,40(13): 4132-4137.
[12]Shore L S, Shemesh M. Naturally produced steroid hormones and their release into the environment [J]. Pure and Applied Chemistry,2003,75(11/12):1859-1871.
[13]Leusch F D, Chapman H F, Van Den Heuvel M R, et al. Bioassay-derived androgenic and estrogenic activity in municipal sewage in Australia and New Zealand [J]. Ecotoxicology and Environmental Safety, 2006,65(3):403-411.
[14]韓 偉,李艷霞,楊 明,等.環(huán)境雄激素的危害、來源與環(huán)境行為[J]. 生態(tài)學(xué)報, 2010,20(6):1594-1603.
[15]Howell W M, Denton T E. Gonopodial morphogenesis in female mosquitofish, Gambusia affinis affinis, masculinized by exposure to degradation products from plant sterols [J]. Environmental Biology of Fishes, 1989,24(1):43-51.
[16]Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry [J]. Journal of Chromatography A, 2008,1210(1):84-91.
[17]Barbosa I R, Nogueira A J A, Soares A. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna [J]. Ecotoxicology and Environmental Safety,2008,71(3):757-764.
[18]Seki M, Yokota H, Matsubara H, et al. Fish full life-cycle testing for androgen methyltestosterone on medaka (Oryzias latipes) [J]. Environmental Toxicology and Chemistry, 2004,23(3):774-781.
[19]Ankley G T, Jensen K M, Makynen E A, et al. Effects of the androgenic growth promoter 17-beta-trenbolone on fecundity and reproductive endocrinology of the fathead minnow [J]. Environmental Toxicology and Chemistry, 2003,22(6):1350-1360.
[20]Jensen K M, Makynen E A, Kahl M D, et al. Effects of the feedlot contaminant 17alpha-trenholone on reproductive endocrinology of the fathead minnow [J]. Environmental Science and Technology, 2006,40(9):3112-3117.
[21]Jenkins R L, Wilson E M, Angus R A, et al. Production of androgens by microbial transformation of progesterone in vitro: a model for androgen production in rivers receiving paper mill effluent [J]. Environmental Health Perspectives, 2004,112(15): 1508-1511.
[22]Larsson D G J, Adolfsson-Erici M, Thomas P. Characterization of putative ligands for a fish gonadal androgen receptor in a pulp mill effluent [J]. Environmental Toxicology and Chemistry, 2006,25(2):419-427.
[23]Parks L G, Lambright C S, Orlando E F, et al. Masculinization of female mosquitofish in kraft mill effluent-contaminated Fenholloway River water is associated with androgen receptor agonist activity [J]. Toxicological Sciences, 2001,62(2):257-267.
[24]Jenkins R L, Wilson E M, Angus R A, et al. Androstenedione and progesterone in the sediment of a river receiving paper mill effluent [J]. Toxicological Sciences, 2003,73(1):53-59.
[25]Cai K, Elliott C T, Phillips D H, et al. Treatment of estrogens and androgens in dairy wastewater by a constructed wetland system[J]. Water Research, 2012,46(7):2333-2343.
[26]Wasser S K, Papageorge S, Foley C, et al. Excretory fate of estradiol and progesterone in the African elephant (Loxodonataafricana) and patterns of fecal steroid concentrations throughout the estrous cycle [J]. General and Comparative Endocrinology,1996,102(2):255-262.
[27]Heistermann M, Agil M, Buthe A, et al. Metabolism and excretion of oestradiol-17beta and progesterone in the Sumatran rhinoceros (Dicerorhinus sumatrensis) [J]. Animal Reproduction Science, 1998,53(1-4):157-172.
[28]Liu S, Ying G G, Zhao J L, et al. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants [J]. Journal of Environmental Monitoring, 2012,14(2):482-491.
[29]Mnif W, Dagnino S, Escande A, et al. Biological analysis of endocrine-disrupting compounds in Tunisian sewage treatment plants [J]. Archives of Environmental Contamination and Toxicology, 2010,59(1):1-12.
[30]Sun L, Liu Y, Chu X, et al. Trace Analysis of Fifteen Androgens in Environmental Waters by LC-ESI-MS-MS Combined with Solid-Phase Disk Extraction Cleanup [J]. Chromatographia, 2010,71(9/10):867-873.
[31]Huang B, Li X, Sun W, et al. Occurrence, removal, and fate of progestogens, androgens, estrogens, and phenols in six sewage treatment plants around Dianchi Lake in China [J]. Environmental Science and Pollution Research International, 2014,21(22): 12898-12908.
[32]Li J, Wang Z, Ma M, et al. Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents [J]. Bulletin of Environmental Contamination and Toxicology, 2010,84(5):529-535.
[33]Stalter D, Magdeburg A, Wagner M, et al. Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity [J]. Water Research, 2011,45(3):1015-1024.
[34]Liu S, Ying G G, Zhao J L, et al. Trace analysis of 28steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Journal of Chromatography A, 2011,1218(10): 1367-1378.
[35]Chang H, Wu S, Hu J, et al. Trace analysis of androgens and progestogens in environmental waters by ultra-performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of chromatography A, 2008,1195(1/2):44-51.
[36]Chang H, Wan Y, Wu S, et al. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens [J]. Water Research, 2011,45(2):732-740.
[37]Fan Z, Wu S, Chang H, et al. Behaviors of glucocorticoids,androgens and progestogens in a municipal sewage treatment plant: comparison to estrogens [J]. Environmental Science and Technology, 2011,45(7):2725-2733.
[38]Thomas K V, Hurst M R, Matthiessen P, et al. An assessment of in vitro androgenic activity and the identification of environmental androgens in United Kingdom estuaries [J]. Environmental Toxicology and Chemistry, 2002,21(7):1456-1461.
[39]Liu Z H, Kanjo Y, Mizutani S. Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment: a review [J]. The Science of The Total Environment, 2009,407(18):4975-4985.
[40]Svenson A, Allard A-S. Occurrence and Some Properties of the Androgenic Activity in Municipal Sewage Effluents [J]. Journal of Environmental Science and Health, Part A, 2004,39(3): 693-701.
[41]Esperanza M, Suidan M T, Nishimura F, et al. Determination of sex hormones and nonylphenol ethoxylates in the aqueous matrixes of two pilot-scale municipal wastewater treatment plants[J]. Environmental Science and Technology, 2004,38(11): 3028-3035.
[42]Bain P A, Williams M, Kumar A. Assessment of multiple hormonal activities in wastewater at different stages of treatment[J]. Environmental Toxicology and Chemistry, 2014,33(10):2297-2307.
[43]Coleman H M, Khan S J, Watkins G, et al. Fate and analysis of endocrine disrupting chemicals in some sewage treatment plants in Australia [J]. Water Science and Technology, 2008,58(11): 2187-2194.
[44]Clara M, Kreuzinger N, Strenn B, et al. The solids retention time - a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants [J]. Water Research, 2005,39(1):97-106.
[45]Estrada-Arriaga E B, Mijaylova P N. Influence of operational parameters (sludge retention time and hydraulic residence time)on the removal of estrogens by membrane bioreactor [J]. Environmental Science And Pollution Research,2011,18(7):1121-1128.
[46]Joss A, Andersen H, Ternes T, et al. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization [J]. Environmental Science and Technology, 2004,38(11):3047-3055.
[47]Koh Y K K, Chiu T Y, Boobis A R, et al. Influence of Operating Parameters on the Biodegradation of Steroid Estrogens and Nonylphenolic Compounds during Biological Wastewater Treatment Processes [J]. Environmental Science and Technology,2009,43(17):6646-6654.
[48]Bellet V, Hernandez-Raquet G, Dagnino S, et al. Occurrence of androgens in sewage treatment plants influents is associated withantagonist activities on other steroid receptors [J]. Water Research,2012,46(6):1912-1922.
[49]Gianotti V, Benzi M, Croce G, et al. The use of clays to sequestrate organic pollutants. Leaching experiments [J]. Chemosphere, 2008,73(11):1731-1736.
[50]Kim S D, Cho J, Kim I S, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Research, 2007,41(5):1013-1021.
[51]Zhang Y P, Zhou J L. Removal of estrone and 17beta-estradiol from water by adsorption [J]. Water Research, 2005,39(16):3991-4003.
[52]Cai K, Phillips D H, Elliott C T, et al. Removal of natural hormones in dairy farm wastewater using reactive and sorptive materials [J]. The Science of The Total Environment, 2013,461-462(1-9.
[53]Phillips D H, Van Nooten T, Bastiaens L, et al. Ten Year Performance Evaluation of a Field-Scale Zero-Valent Iron Permeable Reactive Barrier Installed to Remediate Trichloroethene Contaminated Groundwater [J]. Environmental Science and Technology, 2010,44(10):3861-3869.
[54]Noubactep C, Care S. Dimensioning metallic iron beds for efficient contaminant removal [J]. Chemical Engineering Journal,2010,163(3):454-460.
[55]Jun M, Wei L. Effectiveness of ferrate (VI) preoxidation in enhancing the coagulation of surface waters [J]. Water Research,2002,36(20):4959-4962.
[56]Jiang J Q, Wang S, Panagoulopoulos A. The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment [J]. Chemosphere, 2006,63(2):212-219.
[57]Jiang J Q, Stanford C, Alsheyab M. The online generation and application of ferrate (VI) for sewage treatment-A pilot scale trial[J]. Separation and Purification Technology, 2009,68(2):227-231.
[58]Lee Y, Zimmermann S G, Kieu A T, et al. Ferrate (Fe(VI))Application for Municipal Wastewater Treatment: A Novel Process for Simultaneous Micropollutant Oxidation and Phosphate Removal [J]. Environmental Science and Technology,2009,43(10):3831-3838.
[59]Lee Y, Von Gunten U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate(VI), and ozone) and non-selective oxidants(hydroxyl radical) [J]. Water Research, 2010,44(2):555-566.
[60]Yang B, Ying G G, Zhao J L, et al. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate (VI) treatment of secondary wastewater effluents [J]. Water Research, 2012,46(7):2194-2204.
Research progress on the occurrence and behaviour of androgens in wastewater treatment plants.
ZHENG Yue-yao1,ZHOU Jun-liang1*, HUANG Min-sheng2(1.State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China;2.School of Ecological and Environmental Sciences, East China Normal University,Shanghai 200062, China). China Environmental Science, 2015,35(12):3653~3662
If steroid hormones produced from human and animal due to their metabolism and intake of pharmaceuticals are not completely removed in wastewater treatment plants (WWTPs), they are likely to contaminate the receiving water,thus having adverse impacts on the aquatic organisms. Among steroid hormones, the concentration of testosterone is 1~3orders of magnitude higher than the concentration of estradiol. This paper summarized the studies on the occurrence of androgens in WWTPs. It is shown that primary treatments in municipal WWTPs rarely remove androgens; secondary treatments can remove 80%~100% of androgens, and the Anaerobic-Anoxic-Oxic process is the most effective technology; and the removal rate during tertiary treatments range from -66.7% to 70%. In addition, the new materials development and further research were also involved.
androgens;wastewater treatment plants;occurrence;removal;biodegradation
X703
A
1000-6923(2015)12-3653-10
鄭玥瑤(1992-),女,上海人,碩士研究生,主要從事水環(huán)境中雄激素的分布、遷移及歸趨研究.
2015-05-06
* 責(zé)任作者, 教授, jlzhou@sklec.ecnu.edu.cn