鄭照明,楊函青,馬 靜,趙白航,陳光輝,李 軍(北京工業(yè)大學(xué)水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程北京市重點(diǎn)實(shí)驗(yàn)室, 北京 100124)
SNAD反應(yīng)器中顆粒污泥和絮體污泥脫氮特性
鄭照明,楊函青,馬 靜,趙白航,陳光輝,李 軍*(北京工業(yè)大學(xué)水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程北京市重點(diǎn)實(shí)驗(yàn)室, 北京 100124)
通過(guò)血清瓶批試研究了溫度為30℃時(shí), SNAD(simultaneous partial nitrification, anaerobic ammonium oxidization and denitrification)反應(yīng)器內(nèi)的顆粒污泥R1(1~2.5mm)和絮體污泥R2(0~0.25mm)的脫氮特性. 結(jié)果表明,顆粒污泥的好氧氨氮和好氧亞硝態(tài)氮氧化活性分別為0.166,0kgN/(kg VSS.d).厭氧氨氧化、亞硝態(tài)氮反硝化、硝態(tài)氮反硝化總氮去除速率分別為0.158,0.105,0.094kgN/(kg VSS.d).絮體污泥的好氧氨氮氧化活性和好氧亞硝態(tài)氮氧化活性分別為 0.180,0kgN/(kg VSS.d).厭氧氨氧化、亞硝態(tài)氮反硝化、硝態(tài)氮反硝化總氮去除速率分別為0.026,0.096,0.108kgN/(kg VSS.d).顆粒污泥和絮體污泥都具有良好的亞硝化性能和反硝化性能.顆粒污泥的厭氧氨氧化性能良好,絮體污泥的厭氧氨氧化性能較差.掃描電鏡顯示,在SNAD顆粒污泥的表面主要是一些短桿菌和球狀菌.在SNAD顆粒污泥中心區(qū)域主要為火山口狀細(xì)菌.在絮體污泥中,同時(shí)存在短桿菌,球狀菌和火山口狀細(xì)菌.
厭氧氨氧化;亞硝化;反硝化;顆粒污泥;絮體污泥
傳統(tǒng)生物脫氮通常采用硝化和反硝化工藝.為了保證反硝化的充分進(jìn)行,需要額外投加有機(jī)碳源,不僅增加運(yùn)行成本,還會(huì)導(dǎo)致污泥產(chǎn)量增加.短程硝化反硝化工藝可以減少25%的曝氣量和40%的碳源[1].厭氧氨氧化菌能夠在厭氧條件下將和轉(zhuǎn)化為氮?dú)?,無(wú)需有機(jī)碳源[2-3].SNAD工藝是指控制合適的條件,使亞硝化菌,厭氧氨氧化菌,反硝化菌在一個(gè)反應(yīng)器中共存, 實(shí)現(xiàn)總氮的高效去除.陳慧慧等[4]采用人工配水,溫度控制為35℃,在生物轉(zhuǎn)盤(pán)反應(yīng)器內(nèi)實(shí)現(xiàn)了SNAD工藝.徐崢勇等[5]采用間歇曝氣的方式,控制溫度為30℃,在SBR反應(yīng)器中啟動(dòng)了處理垃圾滲濾液的SNAD工藝.但是,針對(duì)城市生活污水開(kāi)展的SNAD工藝研究鮮有報(bào)道.本課題組在SBR反應(yīng)器中控制溫度為30℃,實(shí)現(xiàn)了處理城市生活污水的SNAD顆粒污泥工藝[6].厭氧氨氧化菌生長(zhǎng)緩慢,倍增時(shí)間長(zhǎng)達(dá)11d[7],采用顆粒污泥工藝有助于提高反應(yīng)器對(duì)微生物的持流能力,保證反應(yīng)器的穩(wěn)定運(yùn)行[8].劉常敬等[9]的研究表明,以anammox顆粒污泥為核心的UASB反應(yīng)器可以抵抗苯酚的毒性,實(shí)現(xiàn)厭氧氨氧化和反硝化的耦合脫氮.厭氧氨氧化菌對(duì)氧氣非常敏感[10],顆粒污泥粒徑對(duì)溶解氧的傳質(zhì)影響很大[11-12],可以緩解氧氣對(duì)厭氧氨氧化菌的抑制.但是絮體污泥具有更好的傳質(zhì)效率和更大的比表面積,更有利于物質(zhì)的交換[13].明確顆粒污泥和絮體污泥在SNAD反應(yīng)器中的脫氮特性對(duì)于SNAD反應(yīng)器的優(yōu)化運(yùn)行具有重要的意義.本實(shí)驗(yàn)采用篩網(wǎng)對(duì)SNAD反應(yīng)器內(nèi)的污泥進(jìn)行篩選,得到顆粒污泥(1~2.5mm)和絮體污泥(0~ 0.25mm),研究顆粒污泥和絮體污泥的脫氮特性,從而為SNAD工藝的工程應(yīng)用提供指導(dǎo)作用.
1.1 SNAD污泥與進(jìn)水
SNAD反應(yīng)器的運(yùn)行情況參照文獻(xiàn)[6].經(jīng)過(guò)74d,反應(yīng)器表現(xiàn)出良好的脫氮性能,在第75d,從反應(yīng)器中取出污泥進(jìn)行污泥特性研究.SNAD顆粒污泥表面為一些灰色絮體,顆粒污泥內(nèi)部為鮮紅色.SNAD反應(yīng)器進(jìn)水為北京工業(yè)大學(xué)家屬區(qū)生活污水,試驗(yàn)階段主要水質(zhì)指標(biāo)如下: CODCr200~300mg/L;60~80mg/L;<1mg/L;<1mg/L; TOC 50~60mg/L; TN 100~140mg/L; pH為7.5~8.0;堿度300~400mg/L.
1.2 SNAD污泥反應(yīng)器運(yùn)行工況
SNAD反應(yīng)器采用SBR形式,裝置如圖1所示.反應(yīng)器為圓柱形結(jié)構(gòu),高62cm,直徑38cm,總體積為90L,有效容積為70.3L;在底部設(shè)置曝氣盤(pán),采用轉(zhuǎn)子流量計(jì)調(diào)節(jié)曝氣量;反應(yīng)器中安裝攪拌器(轉(zhuǎn)速200r/min)來(lái)進(jìn)行混合,以加強(qiáng)傳質(zhì)效果;采用溫度控制箱在線監(jiān)測(cè)并控制反應(yīng)器內(nèi)水溫;排水口設(shè)置在底部以上20cm處,排水比為67.7%;
SNAD反應(yīng)器運(yùn)行條件為:控制反應(yīng)器內(nèi)溫度為30℃,曝氣量為40L/h,周期內(nèi)溶解氧為0.15~1.4mg/L,pH值不控制,控制反應(yīng)周期為9h,每個(gè)周期包括進(jìn)水(5min),曝氣(528min),沉淀(6min),排水(6min).反應(yīng)器的進(jìn)水總氮負(fù)荷為0.14kg N/(m3.d),總氮去除負(fù)荷為0.11kg N/(m3.d).
圖1 SBR反應(yīng)器示意Fig.1 The schematic diagram of SBR reactor
1.3 分析方法
掃描電鏡(SEM)樣品制備主要步驟:固定、沖洗、脫水、置換、干燥、粘樣、鍍膜.取出少量顆粒污泥,清洗2~3次后,經(jīng)2.5%戊二醛固定1.5h,使用PBS清洗3遍,隨后經(jīng)體積分?jǐn)?shù)分別為50%,70%,80%,90%和100%的乙醇進(jìn)行梯度脫水,每次脫水10~15min,然后用乙酸異戊酯置換,置換后的樣品于37℃干燥.干燥后,在樣品表面鍍上一層厚度為1500nm的金屬膜,使用Hitachi S-4300型掃描電鏡對(duì)樣品進(jìn)行觀察.
1.4 批試實(shí)驗(yàn)
1.4.1 批試污泥 從SNAD反應(yīng)器取出污泥,于燒杯中靜置沉淀,倒去上清液,加入自來(lái)水?dāng)嚢杈鶆颍o置沉淀倒去上清液,重復(fù)3次以去除污泥中的殘留基質(zhì),然后采用不銹鋼篩網(wǎng)過(guò)濾得到顆粒污泥R1(1~2.5mm)和絮體污泥R2(0~0.25mm).絮體污泥4000r/min離心2min,取離心后的濃縮絮體污泥進(jìn)行批試活性測(cè)定.
1.4.2 批試試驗(yàn)水質(zhì) 試驗(yàn)采用人工配水,主要氮素成分為NH4Cl,NaNO2,KNO3,碳源為乙酸鈉,堿度采用NaHCO3調(diào)節(jié).各脫氮活性測(cè)定時(shí)的配水組分見(jiàn)表1.
表1 脫氮活性測(cè)定時(shí)的主要配水組分(mg/L)Table 1 The synthetic wastewater used for measuring nitrogen removal performance (mg/L)
1.4.3 批試試驗(yàn)裝置和程序 批試試驗(yàn)采用500mL血清瓶.污泥濃度的確定:用分析天平稱(chēng)取20g左右濕污泥,將污泥和模擬配水一起放入有效容積為500mL血清瓶中.同時(shí)取5g左右濕污泥用濾紙包好,經(jīng)烘箱和馬弗爐處理,烘干時(shí)間及溫度同常規(guī)污泥濃度測(cè)量條件相同,得到干物質(zhì)/濕泥、揮發(fā)性物質(zhì)/濕泥的比值,然后反算血清瓶中相應(yīng)的MLSS,MLVSS.厭氧氨氧化活性數(shù)值的測(cè)定方法參照文獻(xiàn)[14-15],為了保證顆粒污泥的厭氧氨氧化活性,進(jìn)行如下操作:配置泥水混合液;啟動(dòng)恒溫磁力攪拌器,轉(zhuǎn)速為200r/min,蓋緊瓶塞,通氮?dú)?0min(氮?dú)饧兌?9.999%);停止通氮?dú)?,將血清瓶將連同磁力攪拌器放入30 ℃的恒溫培養(yǎng)箱中,每隔1h取樣測(cè)定主要組分濃度,每次取樣體積5mL.亞硝態(tài)氮和硝態(tài)氮反硝化活性測(cè)定:操作方法同厭氧氨氧化活性的測(cè)定.好氧氨氮氧化活性和亞硝態(tài)氮氧化活性測(cè)定:配置泥水混合液;往血清瓶中鼓入空氣,曝氣量控制為250mL/min(周期內(nèi)DO大于6mg/L),啟動(dòng)恒溫磁力攪拌器,轉(zhuǎn)速為200r/min,將血清瓶將連同磁力攪拌器放入30℃的恒溫培養(yǎng)箱中,每隔1h取樣測(cè)定主要組分濃度,每次取樣體積5mL.
2.1 好氧氨氮氧化活性
如圖2所示,在底物濃度充足的情況下,顆粒污泥和絮體污泥對(duì)的轉(zhuǎn)化均表現(xiàn)出較好的線性關(guān)系.對(duì)底物轉(zhuǎn)化線性階段進(jìn)行直線擬合,求得顆粒污泥和絮體的轉(zhuǎn)化速率分別為0.166,0.180kgN/(kg VSS.d).
圖2 R1和R2的好氧氨氮氧化活性Fig.2 The aerobic ammonium oxidation activity of R1, R2
研究表明,絮體污泥比顆粒污泥具有更好的傳質(zhì)效率和更大的比表面積,可以展現(xiàn)更好的生物活性[13].顆粒污泥粒徑對(duì)溶解氧傳質(zhì)有很大的阻礙作用,而絮體污泥對(duì)溶解氧的阻礙作用較小,對(duì)硝化作用更有利. Philips等[11]的研究結(jié)果表明,當(dāng)溶液中的DO為3.3mg/L時(shí),在生物膜表面以?xún)?nèi)30μm處,DO降低為0mg/L. Rathnayake等[12]的研究表明,當(dāng)溶液中的DO為2mg/L時(shí),在顆粒污泥表面以?xún)?nèi)300μm處, DO降低為0mg/L.因此當(dāng)溶液中的DO很高時(shí),在顆粒污泥內(nèi)部存在很大的低DO區(qū)域,在低溶解氧區(qū)域的AOB的活性將受到抑制.但是批試結(jié)果表明,顆粒污泥的好氧氨氮氧化活性?xún)H比絮體污泥低了8.4%.可能的原因是,雖然絮體污泥在傳質(zhì)效率和溶解氧的傳遞上比顆粒污泥更具有優(yōu)勢(shì),但是顆粒污泥有助于提高微生物的持流能力[16-17],在顆粒污泥表面的AOB不易流失,AOB不斷得到富集,在數(shù)量上占絕對(duì)優(yōu)勢(shì),顆粒污泥表面的AOB利用溶解氧進(jìn)行好氧氨氮氧化,而絮體污泥中AOB容易隨出水流失,占總菌的數(shù)量較小,從而表現(xiàn)為顆粒污泥和絮體污泥的好氧氨氮氧化活性相差不大.
2.2 好氧亞硝態(tài)氮氧化活性
圖3 R1和R2 的好氧亞硝態(tài)氮氧化活性Fig.3 The aerobic nitrite oxidation activity of R1, R2
如圖3所示,顆粒污泥和絮體污泥都無(wú)好氧亞硝態(tài)氮氧化能力.反應(yīng)器內(nèi)基質(zhì)的缺乏和低濃度溶解氧是NOB活性受到抑制的主要原因. Wiesmann等[18]的研究表明AOB和NOB的氧飽和動(dòng)力學(xué)常數(shù)分別為0.3,1.1mg/L,在SNAD反應(yīng)周期內(nèi),溶解氧濃度為0.15~1.4mg/L,NOB的活性受到限制.由于顆粒污泥對(duì)溶解氧傳質(zhì)的影響,在顆粒污泥表面的NOB受到的溶解氧限制作用比絮體污泥更大.SNAD顆粒污泥所在SBR反應(yīng)器周期內(nèi)濃度為0~5.4mg/L. van der Star等[19]的研究發(fā)現(xiàn), NOB對(duì)于的半飽和常數(shù)為12~955mmol/L,而厭氧氨氧化菌對(duì)的半飽和常數(shù)為0.2~3mmol/L,厭氧氨氧化菌對(duì)的親和能力更強(qiáng).同時(shí)在顆粒污泥內(nèi)部低DO區(qū)域,反硝化菌能夠利用碳源將還原為氮?dú)?,因此顆粒污泥內(nèi)的NOB受到的限制比絮體污泥更大.
2.3 厭氧氨氧化活性
圖4 R1和R2 的厭氧氨氧化活性Fig.4 The specific anammox activity of R1, R2
如圖4所示,顆粒污泥和絮體污泥的厭氧氨氧化的總氮去除速率分別為0.158,0.026kgN/(kg VSS.d),去除速率分別為0.051,0kgN/(kg VSS.d).顆粒污泥具有良好的厭氧氨氧化能力,絮體污泥厭氧氨氧化能力較差,絮體污泥的總氮主要是通過(guò)內(nèi)源反硝化去除的.
當(dāng)氧分壓超過(guò)0.5%的空氣飽和度時(shí),厭氧氨氧化菌的厭氧氨氧化活性將會(huì)受到抑制[10]. SNAD反應(yīng)器周期內(nèi)的溶解氧濃度為0.15~ 1.4mg/L,對(duì)絮體污泥中的厭氧氨氧化菌的活性將起到抑制作用.顆粒污泥表面的AOB利用溶解氧將氧化為,有助于降低顆粒污泥表面的溶解氧濃度,緩解氧氣對(duì)厭氧氨氧化菌的抑制作用.其次,顆粒污泥粒徑對(duì)溶解氧傳質(zhì)的阻礙導(dǎo)致顆粒污泥內(nèi)部存在很大的厭氧區(qū)域,有助于厭氧氨氧化的進(jìn)行.厭氧氨氧化菌富集培養(yǎng)物只有在細(xì)菌密度高達(dá)1010個(gè)/mL以上時(shí),才能顯現(xiàn)出厭氧氨氧化活性[20].本實(shí)驗(yàn)中的顆粒污泥內(nèi)部聚集了紅色的厭氧氨氧化菌,細(xì)胞密度較高,有助于厭氧氨氧化的發(fā)生.絮體污泥內(nèi)的細(xì)菌較為分散,厭氧氨氧化菌的密度較低,不利于厭氧氨氧化的發(fā)生.
2.4 反硝化活性
圖5 R1和R2的亞硝態(tài)氮反硝化活性Fig.5 The denitrification activity over nitrite of R1, R2
圖6 R1和R2的硝態(tài)氮反硝化活性Fig.6 The denitrification activity over nitrate of R1, R2
2.5 污泥掃描電鏡
圖7 顆粒污泥表面(A)和內(nèi)部(B)及絮體污泥(C)掃描電鏡Fig.7 The SEM images: granular sludge surface (A) and internal part(B), floc sludge (C)
如圖7所示,在SNAD顆粒污泥的表面(圖7A)主要是一些短桿菌和球狀菌,短桿菌大小約為0.5μm×2μm,球狀菌直徑為0.8~1.0μm,結(jié)合反應(yīng)器的脫氮特性和批試結(jié)果,這些細(xì)菌可能為AOB和反硝化菌的復(fù)合體.在SNAD顆粒污泥中心區(qū)域(圖7B)主要為火山口狀細(xì)菌,直徑為0.8~1.2μm,應(yīng)為厭氧氨氧化菌,和Kartal等[21]的研究一致.在絮體污泥中(圖7C),同時(shí)存在短桿菌,球狀菌和火山口狀細(xì)菌.郭建華等[22]的研究得到的AOB形態(tài)主要為短桿菌.彭安等[23]的研究表明,anammox顆粒污泥表面的AOB主要為球狀菌.Zhong等[24]的研究表明厭氧氨氧化反硝化耦合脫氮顆粒污泥表面的反硝化菌主要為短桿狀.污泥中微生物的種類(lèi)有待于分子生物學(xué)技術(shù)的進(jìn)一步驗(yàn)證.
3.1 SNAD反應(yīng)器中的顆粒污泥和絮體污泥具有良好的亞硝化性能,好氧氨氮氧化活性分別為0.166,0.180kgN/(kg VSS.d),相差不大,無(wú)好氧亞硝態(tài)氮氧化能力.顆粒污泥有助于提高AOB的持流能力,使得顆粒污泥表面的AOB得到富集,從而緩解由于溶解氧傳質(zhì)阻礙對(duì)硝化性能造成的不利影響.
3.2 顆粒污泥的厭氧氨氧化,亞硝態(tài)氮反硝化,硝態(tài)氮反硝化總氮去除速率分別為0.158,0.105,0.094kgN/(kg VSS.d).絮體污泥的厭氧氨氮氧化,亞硝態(tài)氮反硝化,硝態(tài)氮反硝化總氮去除速率分別為0.026,0.096,0.108kgN/(kg VSS.d).顆粒污泥和絮體污泥都具有良好的反硝化性能.顆粒污泥表現(xiàn)出良好的的厭氧氨氧化性能,絮體污泥的厭氧氨氧化性能較差.
3.3 在SNAD顆粒污泥的表面主要是一些短桿菌和球狀菌,短桿菌大小約為0.5μm×2μm,球狀菌直徑為0.8~1.0μm,結(jié)合反應(yīng)器的脫氮特性和批試結(jié)果,這些細(xì)菌可能為AOB和反硝化菌的復(fù)合體.在SNAD顆粒污泥中心區(qū)域主要為火山口狀細(xì)菌,應(yīng)為厭氧氨氧化菌.在絮體污泥中,同時(shí)存在短桿菌,球狀菌和火山口狀細(xì)菌.
[1]Fux C, Velten S, Carozzi V, et al. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading [J]. Water Research, 2006,40(14):2765-2775.
[2]Mulder A, Vandegraaf A A, Robertson L A. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor [J]. Fems Microbiology Ecology. 1995,16(3):177-183.
[3]Li Y, Huang Z X, Ruan W Q, et al. ANAMMOX performance,granulation, and microbial response under COD disturbance [J]. Journal of Chemical Technology and Biotechnology, 2015,90(1):139-148.
[4]Chen H H, Liu S T, Yang F L, et al. The development of simultaneous partial nitrification,anammox and denitrification(SNAD) process in a single reactor for nitrogen removal [J]. Bioresource Technology, 2009,100(4):1548-1554.
[5]Xu Z Y, Zeng G M, Yang Z H, et al. Biological treatment of landfill leachate with the integration of partial nitrification,anaerobic ammonium oxidation and heterotrophic denitrification[J]. Bioresource Technology, 2010,101(1):79-86.
[6]鄭照明,李澤兵,劉常敬,等.城市生活污水SNAD工藝的啟動(dòng)研究 [J]. 中國(guó)環(huán)境科學(xué), 2015,35(4):1072-1081.
[7]van de Graaf AA, Debruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology, 1996,142(8):2187-2196.
[8]鄭照明,劉常敬,鄭林雪,等.不同粒徑的厭氧氨氧化顆粒污泥脫氮性能研究 [J]. 中國(guó)環(huán)境科學(xué), 2014,34(12):3078-3085.
[9]劉常敬,李澤兵,鄭照明,等.苯酚對(duì)厭氧氨氧化工藝耦合反硝化的啟動(dòng)及脫氮性能的影響 [J]. 中國(guó)環(huán)境科學(xué), 2014,34(5):1145-1151.
[10]Strous M, Vangerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing(Anammox) sludge [J]. Applied and Environmental Microbiology,1997,63(6):2446-2448.
[11]Philips S, Laanbroek H J, Verstraete W. Origin, causes and effects of increased nitrite concentrations in aquatic environments[J]. Environ. Sci. Biotechnol, 2002,1(2):115-141.
[12]Rathnayake R M L D, Song Y, Tumendelger A, et al. Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor [J]. Water Research, 2013,47(19):7078-7086.
[13]Zheng Y M, Yu H Q, Sheng G P. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor [J]. Process Biochemistry, 2005,40(2):645-650.
[14]汪彩華,鄭 平,唐崇儉,等.間歇性饑餓對(duì)厭氧氨氧化菌混培物保藏特性的影響 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2013,33(1):36-43.
[15]Tang C J, Zheng P, Mahmood Q, et al. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge [J]. Journal of Industrial Microbiology and Biotechnology,2009,36(8):1093-1100.
[16]Fernandez I, Vazquez-Padin J R, Mosquera-Corral A, et al. Biofilm and granular systems to improve Anammox biomass retention [J]. Biochemical Engineering Journal, 2008,42(3):308-313.
[17]Vazquez-Padin J R, Figueroa M, Campos J L, et al. Nitrifying granular systems: A suitable technology to obtain stable partial nitrification at room temperature [J]. Separation and Purification Technology, 2010,74(2):178-186.
[18]Wiesmann U. Biological nitrogen removal from wastewater [J]. Advances in Biochemical Engineering Biotechnology, 1994(51):113-154.
[19]van der Star W, Miclea A I, van Dongen U, et al. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering, 2008,101(2):286-294.
[20]Strous M, Fuerst J A, Kramer E, et al. Missing lithotroph identified as new planctomycete [J]. Nature, 1999,400(6743):446-449.
[21]Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology, 2007,30(1):39-49.
[22]Guo J, Peng Y Z, Wang S Y, et al. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure [J]. Bioresource Technology, 2009,100(11):2796-2802.
[23]An P, Xu X C, Yang F L, et al. Comparison of the characteristics of anammox granules of different sizes [J]. Biotechnology and Bioprocess Engineering, 2013,18(3):446-454.
[24]Zhong Y M, Jia X S. Simultaneous ANAMMOX and denitrification (SAD) process in batch tests [J]. World Journal of Microbiology and Biotechnology, 2013,29(1):51-61.
The nitrogen removal performance of granules and flocs in SNAD reactor.
ZHENG Zhao-ming, YANG Han-qing,MA Jing, ZHAO Bai-hang, CHEN Guang-hui, LI Jun*(Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China). China Environmental Science, 2015,35(10):2996~3002
The nitrogen removal performance of granules R1 (1~2.5mm) and flocs R2 (0~0.25mm) retrieved from SNAD(simultaneous partial nitrification, anaerobic ammonium oxidization and denitrification)reactor was investigated by serum bottle batch tests under 30℃. To the granules, the aerobic ammonium and aerobic nitrite oxidation activity were 0.166and 0kgN/(kg VSS.d), respectively. The specific anammox activity, denitrification activity over nitrite, denitrification activity over nitrate were 0.158, 0.105, 0.094kgN/(kg VSS.d), respectively. To the flocs, the aerobic ammonium and aerobic nitrite oxidation activity were 0.180 and 0kgN/(kg VSS.d), respectively. The specific anammox activity, denitrification activity over nitrite, denitrification activity over nitrate were 0.026, 0.096, 0.108kgN/(kg VSS.d), respectively. Both granules and flocs exhibited good partial nitrification activity and denitrification activity. The specific anammox activity of granules was obvious while the flocs showed little specific anammox activity. The SEM indicated that the bacteria in the outer part of the SNAD granule were mainly short rod-shaped and spherical. In the inner part of the SNAD granule, the bacteria were mainly crater-shaped. In flocs, the bacteria were mainly short rod-shaped, spherical and crater-shaped.
anammox;nitritation;denitrification;granules;flocs sludge
X703.5
A
1000-6923(2015)10-2996-07
鄭照明(1989-),男,浙江嵊州市人,北京工業(yè)大學(xué)碩士研究生,主要研究厭氧氨氧化,亞硝化脫氮工藝.發(fā)表論文2篇.
2015-03-07
國(guó)家水體污染控制與治理科技重大專(zhuān)項(xiàng)(2014ZX 07201-011);北京市自然科學(xué)基金資助項(xiàng)目(8122005);國(guó)家自然科學(xué)基金青年基金(51308010);北京市教委面上項(xiàng)目(KM201210005028)
* 責(zé)任作者, 教授, jglijun@bjut.edu.cn
中國(guó)環(huán)境科學(xué)2015年10期