李侃竹,高 品,2*,王 凱,劉振鴻,2,薛 罡,2(.東華大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 20620;2.國(guó)家環(huán)境保護(hù)紡織工業(yè)污染防治工程技術(shù)中心,上海 20620)
污水中抗生素與重金屬對(duì)紅霉素抗藥性基因的選擇性效應(yīng)
李侃竹1,高 品1,2*,王 凱1,劉振鴻1,2,薛 罡1,2(1.東華大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 201620;2.國(guó)家環(huán)境保護(hù)紡織工業(yè)污染防治工程技術(shù)中心,上海 201620)
采用電感耦合等離子體質(zhì)譜(ICP-MS)和固相萃取-高效液相色譜串聯(lián)質(zhì)譜(SPE-HPLC-MS/MS)分別檢測(cè)分析了上海某污水處理廠中6種重金屬和3種抗生素的含量水平和分布特征,采用實(shí)時(shí)熒光定量PCR檢測(cè)分析了7種紅霉素抗藥性基因(ERY-ARGs)在污水處理廠中的分布變化.結(jié)果表明,抗生素磺胺甲惡唑(SMX)、紅霉素(ERY)和四環(huán)素(TC)在污水處理廠中均被檢出,兩段A/O工藝對(duì)其去除效果較差,去除率為3%(ERY)~36%(TC).重金屬Cr、Cu、Zn和Pb在污水中被檢出,濃度范圍分別為136.9~235.5、7.1~37.4、18.1~98.4和143.1~383.0μg/L,兩段A/O工藝對(duì)Zn基本完全去除,但對(duì)Cu、Pb和Cr的去除率分別為48%、43%和18%.目標(biāo)ERY-ARGs在污水處理廠中均被檢出,其在原水中的濃度為9.28×103(ermA)~1.83×108(ereA)copies/L,兩段A/O工藝對(duì)其具有較好的去除效果,降低幅度可達(dá)1.19~3.97個(gè)對(duì)數(shù)濃度.通過(guò)相關(guān)性分析可知, ERY-ARGs與ERY之間具有顯著相關(guān)性(P<0.05),而酯酶基因ereA與Cu、Zn和Pb之間也呈現(xiàn)出較好的顯著相關(guān)性(P<0.05),表明污水中ERY對(duì)ERY-ARGs的演變產(chǎn)生具有重要影響,而重金屬對(duì)ERY-ARGs也可能存在潛在的選擇性作用.
污水;抗藥性基因;抗生素;重金屬;選擇性效應(yīng)
近年來(lái),環(huán)境中細(xì)菌抗藥性基因(ARGs)的產(chǎn)生和散播受到廣泛關(guān)注[1].目前普遍認(rèn)為,ARGs的演變產(chǎn)生是由抗生素藥物產(chǎn)生的持續(xù)選擇性壓力所引起的[2-3].通常情況下,抗生素藥物進(jìn)入人體和動(dòng)物體內(nèi)后只能被部分代謝吸收,未被代謝的則會(huì)隨著排泄物進(jìn)入污水中,最終進(jìn)入城市污水處理廠進(jìn)行處理[4].在生物處理過(guò)程中,細(xì)菌與抗生素藥物持續(xù)混合,這為細(xì)菌抗藥性的產(chǎn)生和傳播創(chuàng)造了合適的環(huán)境[5].此外,污水中其他污染物如重金屬等也可能會(huì)對(duì)抗藥性細(xì)菌產(chǎn)生共選擇效應(yīng)[6].有研究指出,當(dāng)金屬的濃度超過(guò)細(xì)菌可利用量時(shí),作為其SOS(Save our soul)應(yīng)答反應(yīng)中的部分抵抗機(jī)制可能會(huì)被誘發(fā)以減輕重金屬所帶來(lái)的毒性作用[7].因此,深入研究污水處理廠中抗生素藥物及重金屬等污染物對(duì)抗藥性基因產(chǎn)生的選擇誘導(dǎo)作用對(duì)于控制ARGs的產(chǎn)生和傳播具有重要意義.
紅霉素(ERY)是一種常用的大環(huán)內(nèi)酯類抗生素,其結(jié)構(gòu)穩(wěn)定,難以被生物降解去除,因此在城市污水和地表水中被頻繁檢出[8-10].通常情況下,細(xì)菌微生物對(duì)ERY的抵抗機(jī)制主要包括3種[11]:通過(guò)外排泵機(jī)制將ERY排出體外;通過(guò)改變或修飾ERY在核糖體上的結(jié)合作用位點(diǎn);直接破壞ERY的分子結(jié)構(gòu)使其失去抗菌作用.然而,要實(shí)現(xiàn)對(duì)ERY的有效降解,相關(guān)降解微生物對(duì)其必須具有抵抗性.有研究表明[12],污水中抗藥性酯酶基因ereA的存在和增殖是ERY得以降解的重要原因.
本研究根據(jù)細(xì)菌微生物對(duì)ERY抵抗機(jī)制的不同,共選取7種ERY-ARGs(包括ereA、ereB、mefA/mefE、ermA、ermB、ermC和msrA/ msrB)作為研究對(duì)象,考察其在污水處理過(guò)程中濃度分布和去除特征,其中mefA/mefE和msrA/msrB為ERY外排泵基因,ermA、ermB和ermC為ERY核糖體甲基化酶基因,ereA和ereB為酯酶基因[13-14].此外,通過(guò)對(duì)污水中3種抗生素和6種重金屬進(jìn)行檢測(cè)分析,探討其與ERY-ARGs之間的相關(guān)關(guān)系,為揭示污水處理系統(tǒng)中ARGs演變和散播機(jī)制及其影響因素提供科學(xué)依據(jù).
1.1 儀器與試劑
分析儀器:微波消解儀(MARS 5,CEM)、電感耦合等離子體質(zhì)譜儀(iCAP-Q ICP-MS,Thermo Fisher)、固相萃取裝置(Supelco)、HLB固相萃取小柱(500mg/6mL,Waters)、恒溫水浴氮?dú)獯蹈蓛x(Organomation Associates)、高效液相色譜串聯(lián)雙質(zhì)譜儀(HPLC-MS/MS,VARIAN 310)、臺(tái)式高速離心機(jī)(Thermo Scientific)、實(shí)時(shí)熒光定量PCR儀(Rotor-Gene 3000qPCR,Corbett)、核酸蛋白測(cè)定儀(NanoDrop 2000C,Thermo Scientific).
藥品與試劑:磺胺甲惡唑(SMX,純度為99%)、ERY(純度為99.8%)和鹽酸四環(huán)素(TC,純度為99%)標(biāo)準(zhǔn)品均購(gòu)自德國(guó)Dr. Ehrenstorfer公司.甲醇和乙腈均為色譜純,購(gòu)自美國(guó)Honeywell Burdick & Jackson公司;其它化學(xué)試劑均為分析純,購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司.
1.2 樣品采集
污水樣采自上海某城市污水處理廠,該廠污水處理采用兩段式A/O工藝,采樣點(diǎn)位置包括:原水進(jìn)水(W1)、曝氣沉砂池出水(W2)、一級(jí)A/O出水(W3)、中間沉淀池出水(W4)、二級(jí)A/O出水(W5)和最終二沉池出水(W6).采樣時(shí)間為2013年12月~2014年3月,共采集3次,每次取2個(gè)平行樣,采集體積為1L,水樣裝入聚丙烯瓶后放入裝有冰袋的冷卻箱內(nèi),然后迅速運(yùn)回實(shí)驗(yàn)室進(jìn)行預(yù)處理.
1.3 檢測(cè)分析方法
1.3.1 目標(biāo)抗生素藥物檢測(cè)方法 污水樣先經(jīng)0.45μm的濾膜過(guò)濾,濾液收集后加入500mg/L Na2EDTA,采用0.1mol/L的磷酸將水樣pH值調(diào)至5后進(jìn)行固相萃取.固相萃取小柱先用6mL甲醇和6mL超純水預(yù)活化,然后將水樣通過(guò)固相萃取小柱進(jìn)行富集,流速為5mL/min.富集完成后,加入10mL超純水淋洗固相萃取小柱以去除一些殘留的無(wú)機(jī)離子,然后真空干燥,干燥后采用6mL甲醇對(duì)富集的目標(biāo)抗生素藥物進(jìn)行洗脫,洗脫液使用氮?dú)獯蹈?,最后使用甲醇定容?mL,裝入2mL琥珀色進(jìn)樣小瓶待測(cè).
目標(biāo)抗生素藥物采用HPLC-MS/MS檢測(cè),色譜柱為Welch Ultimate XB-C18柱(150mm× 2.1mm,3μm),流速0.2mL/min,進(jìn)樣量20μL,柱溫30oC.質(zhì)譜檢測(cè)為電噴霧離子源正離子模式,流動(dòng)相分別為含0.1%甲酸的水溶液(相A)和100%乙腈(相B).采用梯度洗脫模式,每個(gè)梯度完成后平衡時(shí)間為5min.檢測(cè)模式為多離子反應(yīng)檢測(cè)(MRM)掃描模式.
水樣中目標(biāo)抗生素藥物濃度采用外標(biāo)法進(jìn)行計(jì)算,檢測(cè)分析方法的回收率為86.4%~108.5%.
1.3.2 重金屬檢測(cè)方法 水樣消解預(yù)處理方法參照美國(guó)環(huán)境保護(hù)署推薦方法(USEPA 3015A)[15].首先,取5mL經(jīng)0.45μm濾膜過(guò)濾后的水樣置于聚四氟乙烯消解管中,分別加入1.5mL濃HNO3和1mL 飽和H2O2,混合后靜置30min,然后放入微波消解儀中進(jìn)行消解,微波消解過(guò)程參數(shù)[16]見(jiàn)表1.消解完成后,將消解液轉(zhuǎn)至10mL的容量瓶中,使用體積分?jǐn)?shù)為1% 的HNO3進(jìn)行定容.檢測(cè)時(shí),先將樣品溶液在10000r/min轉(zhuǎn)速下離心10min,上清液經(jīng)0.45μm濾膜過(guò)濾后采用ICP-MS測(cè)定溶液中Cr、Ni、Cu、Zn、Cd和Pb等重金屬的含量,每次檢測(cè)做3個(gè)平行樣. ICP-MS主要檢測(cè)條件參數(shù)見(jiàn)表2.
表1 微波消解條件參數(shù)Table 1 Optimized parameters for microwave digestion process
1.3.3 ERY-ARGs檢測(cè)方法 采用TIANamp Soil DNA Kit (TIANGEN)提取樣品DNA,操作步驟參照試劑盒說(shuō)明書,所提取的DNA使用1%瓊脂糖凝膠電泳和NanoDrop 2000C核酸蛋白測(cè)定儀分別檢測(cè)其純度和濃度.結(jié)果顯示,所提取DNA的OD260/OD280值均大于1.8,純度符合要求.
目標(biāo)ERY-ARGs包括ereA、ereB、mefA/mefE、ermA、ermB、ermC和msrA/msrB,所使用的擴(kuò)增引物序列見(jiàn)文獻(xiàn)[17].qPCR反應(yīng)體系(20μL)包括:10μL SuperReal Premix Plus(2×)(TIANGEN),上下游引物(10μmol/L)各1μL,DNA模板1μL,ddH2O 7μL.qPCR反應(yīng)程序:95oC預(yù)變性15min,95oC變性10s,58℃退火30s,72℃延伸32s,共反應(yīng)40個(gè)循環(huán).每個(gè)樣品做3個(gè)平行樣,同時(shí)采用無(wú)菌水作為陰性對(duì)照.
表2 ICP-MS檢測(cè)條件參數(shù)Table 2 Operating parameters for ICP-MS detection
1.4 數(shù)據(jù)分析
目標(biāo)抗生素藥物、ARGs和重金屬含量數(shù)據(jù)分析均采用3次采樣的檢測(cè)平均值.利用SPSS 19.0統(tǒng)計(jì)分析軟件對(duì)檢測(cè)數(shù)據(jù)進(jìn)行處理,計(jì)算因變量和自變量之間的皮爾遜相關(guān)系數(shù)(R)和P值.P≤0.05認(rèn)為變量之間具有顯著相關(guān)性,反之則認(rèn)為相關(guān)性不顯著.
2.1 目標(biāo)抗生素藥物在污水處理過(guò)程中的含量水平
圖1 抗生素藥物在污水處理過(guò)程中的濃度水平(n=6)Fig.1 Concentration of antibiotics during the sewage treatment process (n=6)
圖1為目標(biāo)抗生素藥物在污水處理過(guò)程中的濃度分布情況.由圖1可以看出, SMX、ERY和TC三種抗生素在污水處理廠中均被檢出,濃度范圍分別為24.5~38.7,47.5~49.2和43.1~85.4ng/L. Chang等[18]在重慶某污水處理廠最終出水中檢出SMX、ERY和TC的濃度分別為2020、206和118ng/L,均要高于本研究檢測(cè)結(jié)果,分析原因可能是不同區(qū)域抗生素藥物的使用情況不同.此外,通過(guò)數(shù)據(jù)分析可知,兩段A/O工藝對(duì)目標(biāo)抗生素藥物的去除效果普遍較差,去除率僅為3%(ERY)~36%(TC),大部分去除效果主要發(fā)生在一級(jí)A/O處理段,而初級(jí)處理工藝(格柵+曝氣沉砂池)對(duì)其去除效果微乎其微.與此同時(shí),由圖1分析可以發(fā)現(xiàn),ERY在整個(gè)污水處理流程中的濃度水平基本保持不變,表明ERY分子結(jié)構(gòu)穩(wěn)定,在傳統(tǒng)活性污泥系統(tǒng)中難以被有效去除.Rosal等[19]在西班牙一家城市污水處理廠中檢測(cè)發(fā)現(xiàn)了類似結(jié)果.
2.2 重金屬在污水處理過(guò)程中的分布特征
在污水樣中共檢出Cr、Cu、Zn和Pb四種重金屬元素,其在整個(gè)污水處理過(guò)程中的分布變化特征如圖2所示.重金屬檢出濃度由高到低的排列順序?yàn)镻b>Cr>Zn>Cu,濃度范圍分別為143.1~383.0、136.9~235.5、18.1~98.4和7.1~37.4μg/L.Karvelas等[20]在希臘塞薩洛尼基一家污水處理廠同樣檢測(cè)出Cr、Cu、Zn和Pb等重金屬元素,濃度高低順序?yàn)閆n>Cu>Pb>Cr,濃度范圍分別為270~470、33~79、27~39和20~40μg/L,其中Zn和Cu的濃度高于本研究結(jié)果,而Pb和Cr則相反.這可能是由于不同地區(qū)污水處理廠所接納的污水水質(zhì)、周邊環(huán)境重金屬污染狀況等不同所造成的.
由圖2分析可知,兩段A/O工藝對(duì)Zn的總體去除效果最好,對(duì)Cu和Pb的去除率分別約為48%和43%,但對(duì)Cr的去除效果較差,去除率僅為18%.üstün[21]在土耳其布爾薩一家城鎮(zhèn)污水處理廠檢測(cè)結(jié)果顯示,活性污泥系統(tǒng)對(duì)Cr、Cu、Zn和Pb等重金屬的去除率可達(dá)47%~95%.由于活性污泥處理工藝的設(shè)計(jì)主要是針對(duì)有機(jī)污染物的去除[22],并且污水成分相對(duì)復(fù)雜,其中腐殖酸等物質(zhì)與重金屬之間還會(huì)發(fā)生吸附螯合作用,導(dǎo)致重金屬在污水處理過(guò)程中的去除變化較大[23].通過(guò)圖2進(jìn)一步分析可知,污水中重金屬的去除主要發(fā)生在物理處理階段(曝氣沉砂池和中間沉淀池),初級(jí)處理工藝對(duì)Cr、Cu、Zn和Pb的去除幅度約為21%(Pb)~36%(Zn).在生物處理階段,活性污泥由于靜電作用實(shí)現(xiàn)對(duì)重金屬的吸附,這些與活性污泥結(jié)合的重金屬最終通過(guò)剩余污泥的排出得到去除,檢測(cè)結(jié)果顯示,中間沉淀池對(duì)Cr、Cu、Zn和Pb等重金屬的去除率可達(dá)39%(Cr)~73%(Zn).
圖2 重金屬在污水處理過(guò)程中的濃度水平(n=6)Fig.2 Concentration of heavy metals during the sewage treatment process (n=6)
2.3 污水處理過(guò)程中ERY-ARGs的濃度分布和去除特征
圖3為污水處理過(guò)程中目標(biāo)ERY-ARGs的濃度分布情況.由圖3可知,目標(biāo)ERY-ARGs和16S rRNA基因在原水中均被檢出,其中ereA濃度最高,達(dá)1.83×108copies/L,而ermA的濃度最低,為9.28×103copies/L.此外,ereB、mefA/mefE和ermB在原水中的濃度也相對(duì)較高,均超過(guò)107copies/L.從圖3還可以看出,目標(biāo)ERY-ARG在整個(gè)污水處理工藝流程中呈現(xiàn)出逐步降低的趨勢(shì),表明兩段A/O工藝對(duì)目標(biāo)ERY-ARGs具有較好的去除效果,去除幅度可達(dá)1.19~3.97個(gè)對(duì)數(shù)濃度,其中一級(jí)A/O工藝段對(duì)目標(biāo)ERY-ARGs具有顯著去除效果(P<0.05),去除幅度為0.88(ermB)~3.12(ermA)個(gè)對(duì)數(shù)濃度,而二級(jí)A/O段對(duì)ermA去除效果顯著,在最終處理出水中未檢出,但對(duì)其他目標(biāo)ERY-ARGs未發(fā)現(xiàn)具有明顯的去除效果(ermB除外).
2.4 目標(biāo)抗生素與ERY-ARGs之間相關(guān)性分析
據(jù)報(bào)道,抗生素藥物產(chǎn)生的持續(xù)選擇性壓力是細(xì)菌抗藥性出現(xiàn)的主要原因[24],但也有研究表明[25-26],當(dāng)抗生素藥物的選擇性壓力消失或減弱時(shí),相應(yīng)ARGs并未隨之消失或減少.目前,關(guān)于抗生素藥物對(duì)其ARGs演變產(chǎn)生的選擇性機(jī)制尚不清楚[27].
表3為目標(biāo)抗生素與ERY-ARGs之間的相關(guān)性分析數(shù)據(jù),可以發(fā)現(xiàn),SMX作為一種磺胺類抗生素藥物,與ERY-ARGs之間無(wú)顯著相關(guān)性,而TC為四環(huán)素類抗生素藥物,與ERY-ARGs之間也無(wú)顯著相關(guān)性(msrA/msrB除外).盡管如此,表3數(shù)據(jù)顯示,ERY與目標(biāo)ERY-ARGs(除ermA)之間均呈現(xiàn)出顯著相關(guān)性(0.859≤R≤0.963,P<0.05),而且與酯酶基因ere總和、核糖體甲基化酶基因erm總和、外排泵基因mef/msr總和,以及ERY-ARGs總和之間具有極高顯著相關(guān)性(0.865≤R≤0.975,P<0.05),這在一定程度上表明污水中ERY對(duì)其相應(yīng)ARGs的誘導(dǎo)產(chǎn)生和散播具有一定促進(jìn)作用.Gao等[28]研究發(fā)現(xiàn),活性污泥系統(tǒng)中磺胺類抗生素濃度與其相應(yīng)ARGs sulI之間具有顯著的線性相關(guān)性(R2=0.97, P<0.05).
作為ARGs的直接選擇壓力,環(huán)境中ARGs的豐度與其對(duì)應(yīng)的抗生素濃度應(yīng)存在一定的相關(guān)性.然而有研究顯示,環(huán)境中ARGs的豐度與非同族抗生素之間可能也存在良好的相關(guān)性.Chad等[29]研究發(fā)現(xiàn)養(yǎng)殖場(chǎng)附近磺胺類抗生素與四環(huán)素類ARGs之間的相關(guān)性要高于四環(huán)素類抗生素與四環(huán)素類ARGs之間的相關(guān)性,同時(shí)也高于其與磺胺類ARGs之間的相關(guān)性,這可能是環(huán)境中抗生素對(duì)ARGs共選擇的結(jié)果.在其它族抗生素的選擇性壓力下,可移動(dòng)遺傳因子上可能會(huì)同時(shí)攜帶一種或多種ARGs,從而使得環(huán)境中的ARGs豐度升高,并導(dǎo)致ARGs與不同族抗生素之間的相關(guān)性不斷增強(qiáng)[30-31].
表3 目標(biāo)抗生素與ERY-ARGs之間相關(guān)性分析Table 3 Correlation analysis between concentrations of the target antibiotics and ERY-ARGs
2.5 檢出重金屬與ERY-ARGs之間相關(guān)性分析
ERY對(duì)ERY-ARGs的演變產(chǎn)生具有一定的誘導(dǎo)作用.Ji等[32]對(duì)養(yǎng)殖場(chǎng)周邊的農(nóng)田土壤檢測(cè)分析發(fā)現(xiàn),四環(huán)素類和磺胺類抗生素與其相應(yīng)ARGs之間沒(méi)有顯著相關(guān)性,而與重金屬Cu、Zn和Hg之間呈現(xiàn)出較好的顯著相關(guān)性,這表明重金屬的存在對(duì)細(xì)菌微生物抗性的產(chǎn)生和傳播可能也具有非常重要的作用.
由表4中數(shù)據(jù)分析可知,酯酶基因ereA與重金屬Cu、Zn和Pb之間均呈現(xiàn)出較好的顯著相關(guān)性(0.826≤R≤0.886,P<0.05),其它ERY-ARGs與重金屬Cr、Cu、Zn和Pb之間也呈現(xiàn)出一定的正相關(guān)性(R值在0.491~0.886之間),但并不顯著(P>0.05),表明重金屬的存在可能是污水處理過(guò)程中ERY-ARGs豐度變化的一個(gè)重要因素. Knapp等[33]研究發(fā)現(xiàn),在使用抗生素之前,土壤中的ERY-ARGs(ermB、ermC、ermE和ermF)就與重金屬(Co、Cr、Cu、Ni、Pb、Zn和Fe)存在一定的相關(guān)性,其中ermB和ermF與重金屬Cu之間具有顯著相關(guān)性.事實(shí)上,有研究表明[34],重金屬能夠誘導(dǎo)細(xì)菌微生物對(duì)抗生素藥物產(chǎn)生抵抗性或加強(qiáng)其抗性.Mcarthur等[35]在研究地表河流中鏈霉素和卡那霉素抗性細(xì)菌的空間分布時(shí)發(fā)現(xiàn),抗藥性細(xì)菌出現(xiàn)頻率最高的地方是在一個(gè)接納核反應(yīng)堆和工業(yè)中心污水的支流與河流的匯合處,并隨著匯合點(diǎn)往上游方向增加.此外,細(xì)菌抗藥性與沉積物中Hg的含量呈現(xiàn)顯著相關(guān)性(R2=0.54,P=0.023),表明重金屬Hg可通過(guò)間接的選擇性壓力增強(qiáng)細(xì)菌微生物對(duì)相應(yīng)抗生素藥物的抵抗性.Stepanauskas等[36]研究發(fā)現(xiàn),抗生素藥物氨芐青霉素和四環(huán)素,以及重金屬Cd和Ni均會(huì)顯著提高具有多重抗藥性菌群的檢出頻率,表明重金屬暴露對(duì)抗藥性菌群具有共選擇效應(yīng).
雖然低濃度的重金屬元素對(duì)細(xì)菌微生物的生理和生化過(guò)程是必不可少的,然而高濃度的重金屬可能會(huì)對(duì)其產(chǎn)生毒害作用,破壞其DNA和細(xì)胞膜結(jié)構(gòu).此外,這部分不能被細(xì)菌所利用的重金屬可能會(huì)誘發(fā)細(xì)菌SOS反應(yīng)中的抵抗機(jī)制,以減輕重金屬對(duì)生物體的毒害作用.值得注意的是,抗生素藥物在水環(huán)境中的濃度相對(duì)較低,通常不足以影響微生物的正常生命活動(dòng),但重金屬污染卻已非常普遍,而且呈現(xiàn)出日益加劇的趨勢(shì).重金屬在活細(xì)菌體內(nèi)的存在非常持久,尤其是在一些非生命體或是生命跡象消失的生物體中,因此能夠產(chǎn)生長(zhǎng)期的選擇性壓力[37].與此同時(shí), ARGs通常位于細(xì)胞質(zhì)粒和轉(zhuǎn)座子上,而質(zhì)粒和轉(zhuǎn)座子在微生物種內(nèi)甚至是種間的水平轉(zhuǎn)移是人體病原微生物獲得對(duì)抗生素藥物抵抗性的重要途徑[38].因此,重金屬暴露對(duì)抗藥性菌群的共選擇壓力在一定程度上會(huì)促進(jìn)ARGs在人體病原微生物上的轉(zhuǎn)移和傳播,對(duì)生態(tài)環(huán)境和人體健康具有潛在的危害.
表4 檢出重金屬與ERY-ARGs之間相關(guān)性分析Table 4 Correlation analysis between concentrations of the detected heavy metals and ERY-ARGs
3.1 抗生素藥物SMX、ERY和TC在污水處理廠中均被檢出,濃度范圍分別為24.5~38.7,47.5~49.2和43.1~85.4ng/L.在污水中共檢出Cr、Cu、Zn和Pb等4種重金屬元素,濃度由高到低順序?yàn)镻b>Cr>Zn>Cu.目標(biāo)ERY-ARGs在污水處理廠中也均被檢出,在原水中的濃度范圍為9.28×103(ermA)~1.83×108(ereA)copies/L.
3.2 ERY與目標(biāo)ERY-ARGs(除ermA)之間均具有顯著相關(guān)性,與ERY-ARGs的總和之間也呈現(xiàn)出極高的顯著相關(guān)性,表明ERY對(duì)ERY-ARGs的產(chǎn)生和散播具有重要影響.
3.3 酯酶基因ereA與重金屬Cu、Zn和Pb之間呈現(xiàn)出較好的顯著相關(guān)性,一定程度上表明重金屬暴露可能對(duì)ERY-ARGs具有共選擇性作用.
[1]Hsu J T, Chen C Y, Young C W, et al. Prevalence of sulfonamideresistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan [J]. Journal of Hazardous Materials, 2014,227:34-43.
[2]Livermore D. Can better prescribing turn the tide of resistance?[J]. Nature Reviews Microbiology, 2004,2(1):73-78.
[3]邰義萍,莫測(cè)輝,李彥文,等.長(zhǎng)期施用糞肥土壤中喹諾酮類抗生素的含量和分布特征 [J]. 中國(guó)環(huán)境科學(xué), 2010,30(6):816-821.
[4]Elmund G K, Morrison S M, Grant D W, et al. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste [J]. Bulletin of Environmental Contamination Toxicology, 1971,6(2):129-132.
[5]Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007,41(5):1143-1151.
[6]Wright M S, Peltier G L, Stepanauskas R, et al. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams [J]. FEMS Microbiology Ecology, 2006,58(2):293-302.
[7]Beaber J W, Hochhut B, Waldor M K. SOS response promotes horizontal dissemination of antibiotic resistance genes [J]. Nature, 2003,427(6969):72-74.
[8]Li W, Shi Y, Gao L, et al. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China [J]. Science of the Total Environment, 2013,445:306-313.
[9]Jiang H, Zhang D, Xiao S, et al. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China [J]. Environmental Science and Pollution Research, 2013,20(12):9075-9083.
[10]Gao P, Ding Y, Li H, et al. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes [J]. Chemosphere, 2012,88(1):17-24.
[11]李凌凌,張部昌,馬清鈞.紅霉素抗菌作用及細(xì)菌產(chǎn)生紅霉素抗性的機(jī)制 [J]. 國(guó)外醫(yī)藥:抗生素分冊(cè), 2004,25(1):12-16.
[12]Fan C A, He J Z. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O [J]. Water Research, 2011,45(10):3098-3106.
[13]Amin M M, Zilles J L, Greiner J, et al. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater [J]. Environmental Science and Technology, 2006, 40(12):3971-3977.
[14]Wright G D. Bacterial resistance to antibiotics: enzymatic degradation and modification [J]. Advanced Drug Delivery Reviews, 2005,57(10):1451-1470.
[15]EPA method 3015A. Microwave assisted acid digestion of aqueous samples and extracts. U.S. EPA, 1998.
[16]高利娟,劉善江,孫欽平,等.土壤樣品重金屬統(tǒng)一消解法的探討[J]. 安徽農(nóng)業(yè)科學(xué), 2010,38(36):20693-20695.
[17]李侃竹,吳立樂(lè),黃圣琳,等.污水處理廠中紅霉素抗藥性基因的污染特征及其選擇性因子 [J]. 環(huán)境科學(xué), 2014,35(17):175-181.
[18]Chang X, Meyer M T, Liu X, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5):1444-1450.
[19]Rosal R, Rodríguez A, Perdigón-Melón J A, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation [J]. Water Research, 2010,44(2):578-588.
[20]Karvelas M, Katsoyiannis A, Samara C. Occurrence and fate of heavy metals in the wastewater treatment process [J]. Chemosphere, 2003,53(10):1201-1210.
[21]üstün G E. Occurrence and removal of metals in urban wastewater treatment plants [J]. Journal of Hazardous Materials, 2009,172(2):833-838.
[22]Neufeld R D, Hermann E R. Heavy metal removal by acclimated activated sludge [J]. Water Pollution Control Federation, 1975: 310-329.
[23]Da Silva Oliveira A, Bocio A, Trevilato T M B, et al. Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant [J]. Environmental Science and Pollution Research-International, 2007,14(7):483-489.
[24]Peak N, Knapp C W, Yang R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies [J]. EnvironmentalMicrobiology, 2007,9(1):143-151.
[25]Tamminen M, Karkman A, L?hmus A, et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure [J]. Environmental Science and Technology, 2010,45(2):386-391.
[26]McKinney C W, Loftin K A, Meyer M T, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence [J]. Environmental Science and Technology, 2010,44(16):6102-6109.
[27]Pruden A, Larsson D G J, Amézquita A, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment [J]. Environmental Health Perspectives, 2013,121(8):878-885.
[28]Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant [J]. Science of the Total Environment, 2012,421: 173-183.
[29]Chad, Keith, Michael, et al. tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence [J]. Environmental Science and Technology, 2010,44:6102-6109.
[30]Binh C T, Heuer H, Gomes N C, et al. Short-term effects of amoxicillin on bacterial communities in manured soil [J]. FEMS Microbiology Ecology, 2007,62:290-302.
[31]Wardwedd L H, Jude B A, Moody J P, et al. Co-selection of mercury and antibiotic resistance in sphagnum core samples dating back 2000years [J]. Geomicrobiol Journal, 2009,26:351-360.
[32]Ji X, Shen Q, Liu F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China [J]. Journal of Hazardous Materials, 2012,235:178-185.
[33]Knapp C W, McCluskey S M, Singh B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils [J]. Plos One, 2011,6(11):e27300.
[34]Deredjian A, Colinon C, Brothier E, et al. Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa [J]. Research in Microbiology, 2011,162(7):689-700.
[35]McArthur J V, Tuckfield R C. Spatial patterns in antibiotic resistance among stream bacteria: effects of industrial pollution[J]. Applied and Environmental Microbiology, 2000,66(9):3722-3726.
[36]Stepanauskas R, Glenn T C, Jagoe C H, et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms [J]. Environmental Microbiology, 2006,8(9):1510-1514.
[37]Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance [J]. Environmental Science and Technology, 2002,36(6):1202-1211.
[38]Wilson B A, Salyers A. Is the evolution of bacterial pathogens an out-of-body experience? [J]. Trends Microbial, 2003,11:347-350.
Selective pressure of antibiotics and heavy metals on erythromycin resistance genes in wastewater.
LI Kan-zhu1,GAO Pin1,2*, WANG Kai1, LIU Zhen-hong1,2, XUE Gang1,2(1.College of Environmental Science and Engineering,Donghua University, Shanghai 201620, China;2.State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China). China Environmental Science,2015,35(3):889~896
Occurrence and distribution of six heavy metals and three antibiotics were investigated in a sewage treatment plant in Shanghai using inductively coupled plasma mass spectrometer (ICP-MS) and solid-phase extraction combined with high-performance liquid chromatograph tandem mass spectrometer (SPE-HPLC-MS/MS), respectively. Quantitative PCR (qPCR) was used to determine the distribution and removal of seven erythromycin resistance genes(ERY-ARGs) during the wastewater treatment process. The results showed that sulfamethoxazole (SMX), erythromycin(ERY) and tetracycline (TC) were detected, and their respective removal efficiency was low in the range from 3%(ERY) to 36% (TC). Heavy metals of Cr、Cu、Zn and Pb were detected with concentrations in the ranges of 136.9~235.5, 7.1~37.4, 18.1~98.4 and 143.1~383.0μg/L, respectively. Almost completely removal of Zn was found by the two-stage anoxic/oxic (A/O) process, while the elimination rates for Cu, Pb and Cr were 48%, 43% and 18%,respectively. Additionally, all ERY-ARGs were detected in the range between 9.28×103copies/L (ermA) and 1.83×108copies/L (ereA) in raw influent and were significantly reduced (1.19~3.97logs) in the wastewater treatment process. Based on the correlation analyses, the concentrations of ERY-ARGs exhibited significantly positive correlation (P<0.05) with ERY. Also, the concentration of ereA genes was strongly correlated with those of Cu, Zn and Pb (P<0.05), indicating that the presence of ERY played an important role in the evolution of ERY-ARGs, while heavy metals possibly exert selective pressures on the ERY-ARGs.
wastewater;antibiotic resistance gene;antibiotic;heavy metal;selective pressure
X52,R944.6
A
1000-6923(2015)03-0889-08
李侃竹(1990-),女,湖南株洲人,上海東華大學(xué)環(huán)境工程專業(yè)碩士研究生,主要從事水質(zhì)安全與環(huán)境健康研究.
2014-07-10
國(guó)家自然科學(xué)基金項(xiàng)目(51208086,51178093);上海市浦江人才計(jì)劃項(xiàng)目(13PJ1400100);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(14D111312);東華大學(xué)"勵(lì)志計(jì)劃"項(xiàng)目(14D211301)
* 責(zé)任作者, 副教授, pingao@dhu.edu.cn