亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

        2015-11-14 07:09:42MASonglinWANGXuejun
        巢湖學(xué)院學(xué)報(bào) 2015年3期

        MA Song-linWANG Xue-jun

        (1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

        (2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

        STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

        MA Song-lin1WANG Xue-jun2

        (1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

        (2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

        In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1 and Corollary 3.2 in Kim(2006)and the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

        negatively orthant dependent sequences;strong law of large numbers growth rate

        I Introduction

        We use the following notations.Letbe a sequence of random variables defined on a fixed probability space.Denote

        Hájek-Rényi(1955)proved the following important inequality.Ifis a sequence of independent random variables with mean zero,andis a nondecreasing sequence of positive real numbers, then for any ε>0 and any positive integer m<n,

        In the paper,we will further study Hájek-Rényi type inequality for negatively orthant dependent sequences and give the better coefficient(4ε-2(log3n+2)2)than that(8ε-2(log3n+2)2)in Kim(2006)and the condition<∞in Kim(2006)can be removed.In addition we obtain the the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

        Definition 1.1

        A finite collection of random variables X1,X2,…,Xnis said to be negatively upper orthant dependent(NUOD),if for all real numbers x1,x2,…,xn,

        and negatively lower orthant dependent(NLOD)if for all real numbers x1,x2,…,xn,

        A finite collection of random variables X1,X2,…,Xnis said to be negatively orthant dependent(NOD)if they are both NUOD and NLOD.

        Lemma 1.1 (cf.Bozorgnia et al.,1996).Letbe a sequence of NOD random variables, f1,f2… be all nondecreasing(or all nonincreasing)functions,thenis still a sequence of NOD.

        Lemma 1.2 (cf.Kim,2006).Let X1,X2,…,Xnbe NOD random variables with EXn=0 and EX2n<∞for all n≥1.Then we have

        for all integers m,p≥1,m+p≤n.Moreover,we have

        By Lemma 1.1 and Lemma 1.2,we can get the following corollary.

        Lemma 1.3(cf.Hu,et al.,2008,Lemma 1.5).Letbe a random variables.Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,… be nonnegative numbers.Let r and C be fixed positive numbers.Assume that for each n≥1

        Lemma 1.4 (cf. Fazekas and Klesov,2001,Corollary 2.1).Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,…be nonnegative numbers.Denote.Let r be a fixed positive number Satisfying(1.7).If

        then(1.9)-(1.14)hold.

        II Hájek-Rényi type inequalities for NOD

        In this section,we will give Hájek-Rényi type inequalities for NOD sequences,which improve the results of Kim(2006).

        III SLLN AND GROWTH RATE FOR NOD

        Assume that

        That is to say(1.15)holds.By Remark 2.1 in Fazekas and Klesov(2001),(1.15)implies(1.16).By Lemma 1.4,we can obtain(3.12)-(3.17)immediately.

        Remark 3.1. In this section,not only the strong laws of large numbers are obtained,but also the strong growth rate are given.So our results improve some corresponding results for NOD sequences in Kim(2006).

        [1]Bozorgnia,A.,Patterson,R.F.,Taylor,R.L..Limit theorems for dependent random variables[C].World Congress Nonlinear Analysts’92,1996:1639-1650.

        [2]Christofides,T.C..Maximal inequalities for demimartingales and a strong law of large numbers[J].Statist.Probab.Lett.,2000,(50):357-363.

        [3]Fazekas,I.,Klesov,O..A general approach to the strong law of large numbers[J].Theory Probab.Appl.,2001,(45):436-449.

        [4]Gan,S.X..The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach space[J].Statist. Probab.Lett.,1997,(32):245-248.

        [5]Hájek-Rényi,A..A generalization of an inequality of Kolmogorov[J].Acta Math.Acad.Sci.Hungar.,1955,(6):281-284.

        [6]Hu,S.H.,Chen,G.J.,Wang,X.J..On extending the Brunk-Prokhorov strong law of large numbers for martingale differences[J]. Statist.Probab.Lett.,2008,(78):3187-3194.

        [7]Hu,S.H.,Wang,X.J.,Yang,W.Z.,Zhao,T..The Hájek-Rényi type inequality for associated random variables[J].Statist. Probab.Lett.,2009,(79):884-888.

        [8]Joag-Dev,K.,Proschan,F(xiàn)..Negative association of random variables with applications[J].Ann.Statist.,1983,(1):286-295.

        [9]Kim,H.C..The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables[J].Int.J.Contemp.Math.Sci.,2006,(6):297-303.

        [10]Liu,J.J.,Gan,S.X.,Chen,P.Y..The Hájek-Rényi inequality for NA random variables and its application[J].Statist. Probab.Lett.,1999,(43):99-105.

        陳 侃

        O211.4 Document code:A Article ID:1672-2868(2015)03-0001-06

        Eceived date:2015-03-03

        Fund Project:Foundation of Anhui Educational Committee(No.KJ2013Z225)

        Author:Ma Songlin(1978-),male,Lujiang,Anhui Province,Scool of Applied Mathematics,Chaohu College.Research direction:probability limit theory.

        久久无码潮喷a片无码高潮| 最新永久免费AV网站| 色婷婷亚洲一区二区在线| 国产成人亚洲一区二区| 无码字幕av一区二区三区| 艳妇乳肉豪妇荡乳av无码福利| 亚洲一区二区精品久久岳| 色999欧美日韩| 色婷婷久久99综合精品jk白丝| 邻居美少妇张开腿让我爽了一夜| 娇妻在交换中哭喊着高潮| 男女男在线精品网站免费观看| 挑战亚洲美女视频网站| 刚出嫁新婚少妇很紧很爽| 国产精品激情| 久久这里只精品国产99热| 精品一区二区三区长筒靴| 偷拍夫妻视频一区二区| 天干天干天啪啪夜爽爽av| 中年人妻丰满AV无码久久不卡| 精品自拍偷拍一区二区三区| 蜜芽亚洲av无码精品色午夜| 久久综合九色综合网站| 午夜福利不卡无码视频| 亚洲一区二区蜜桃视频| av狠狠色丁香婷婷综合久久| 国产午夜精品理论片| 精品99在线黑丝袜| 亚洲精品国产av成人网| 亚洲av乱码一区二区三区林ゆな| 亚洲av永久精品爱情岛论坛| 久久久久中文字幕无码少妇| 国产大片在线观看91| 性无码一区二区三区在线观看| 亚洲欧美日韩在线一区| 国产亚洲高清在线精品不卡| 丰满人妻中文字幕一区三区| 少妇性荡欲视频| 国产午夜视频免费观看| 国产精品亚洲综合久久系列| 亚洲国产精品成人综合色|