亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

        2015-11-14 07:09:42MASonglinWANGXuejun
        巢湖學(xué)院學(xué)報(bào) 2015年3期

        MA Song-linWANG Xue-jun

        (1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

        (2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

        STRONG LAW OF LARGE NUMBERS AND GROWTH RATE FOR NOD SEQUENCES

        MA Song-lin1WANG Xue-jun2

        (1 College of Applied Mathematics,Chaohu College,Chaohu Anhui 238000)

        (2 School of Mathematical Sciences,Anhui University,Hefei Anhui 230039)

        In the paper,we get the precise results of Hájek-Rényi type inequalities for the partial sums of negatively orthant dependent sequences,which improve the results of Theorem 3.1 and Corollary 3.2 in Kim(2006)and the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

        negatively orthant dependent sequences;strong law of large numbers growth rate

        I Introduction

        We use the following notations.Letbe a sequence of random variables defined on a fixed probability space.Denote

        Hájek-Rényi(1955)proved the following important inequality.Ifis a sequence of independent random variables with mean zero,andis a nondecreasing sequence of positive real numbers, then for any ε>0 and any positive integer m<n,

        In the paper,we will further study Hájek-Rényi type inequality for negatively orthant dependent sequences and give the better coefficient(4ε-2(log3n+2)2)than that(8ε-2(log3n+2)2)in Kim(2006)and the condition<∞in Kim(2006)can be removed.In addition we obtain the the strong law of large numbers and strong growth rate for negatively orthant dependent sequences.

        Definition 1.1

        A finite collection of random variables X1,X2,…,Xnis said to be negatively upper orthant dependent(NUOD),if for all real numbers x1,x2,…,xn,

        and negatively lower orthant dependent(NLOD)if for all real numbers x1,x2,…,xn,

        A finite collection of random variables X1,X2,…,Xnis said to be negatively orthant dependent(NOD)if they are both NUOD and NLOD.

        Lemma 1.1 (cf.Bozorgnia et al.,1996).Letbe a sequence of NOD random variables, f1,f2… be all nondecreasing(or all nonincreasing)functions,thenis still a sequence of NOD.

        Lemma 1.2 (cf.Kim,2006).Let X1,X2,…,Xnbe NOD random variables with EXn=0 and EX2n<∞for all n≥1.Then we have

        for all integers m,p≥1,m+p≤n.Moreover,we have

        By Lemma 1.1 and Lemma 1.2,we can get the following corollary.

        Lemma 1.3(cf.Hu,et al.,2008,Lemma 1.5).Letbe a random variables.Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,… be nonnegative numbers.Let r and C be fixed positive numbers.Assume that for each n≥1

        Lemma 1.4 (cf. Fazekas and Klesov,2001,Corollary 2.1).Letbe a nondecreasing unbounded sequence of positive numbers and α1,α2,…be nonnegative numbers.Denote.Let r be a fixed positive number Satisfying(1.7).If

        then(1.9)-(1.14)hold.

        II Hájek-Rényi type inequalities for NOD

        In this section,we will give Hájek-Rényi type inequalities for NOD sequences,which improve the results of Kim(2006).

        III SLLN AND GROWTH RATE FOR NOD

        Assume that

        That is to say(1.15)holds.By Remark 2.1 in Fazekas and Klesov(2001),(1.15)implies(1.16).By Lemma 1.4,we can obtain(3.12)-(3.17)immediately.

        Remark 3.1. In this section,not only the strong laws of large numbers are obtained,but also the strong growth rate are given.So our results improve some corresponding results for NOD sequences in Kim(2006).

        [1]Bozorgnia,A.,Patterson,R.F.,Taylor,R.L..Limit theorems for dependent random variables[C].World Congress Nonlinear Analysts’92,1996:1639-1650.

        [2]Christofides,T.C..Maximal inequalities for demimartingales and a strong law of large numbers[J].Statist.Probab.Lett.,2000,(50):357-363.

        [3]Fazekas,I.,Klesov,O..A general approach to the strong law of large numbers[J].Theory Probab.Appl.,2001,(45):436-449.

        [4]Gan,S.X..The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach space[J].Statist. Probab.Lett.,1997,(32):245-248.

        [5]Hájek-Rényi,A..A generalization of an inequality of Kolmogorov[J].Acta Math.Acad.Sci.Hungar.,1955,(6):281-284.

        [6]Hu,S.H.,Chen,G.J.,Wang,X.J..On extending the Brunk-Prokhorov strong law of large numbers for martingale differences[J]. Statist.Probab.Lett.,2008,(78):3187-3194.

        [7]Hu,S.H.,Wang,X.J.,Yang,W.Z.,Zhao,T..The Hájek-Rényi type inequality for associated random variables[J].Statist. Probab.Lett.,2009,(79):884-888.

        [8]Joag-Dev,K.,Proschan,F(xiàn)..Negative association of random variables with applications[J].Ann.Statist.,1983,(1):286-295.

        [9]Kim,H.C..The Hájek-Rényi inequality for weighted sums of negatively orthant dependent random variables[J].Int.J.Contemp.Math.Sci.,2006,(6):297-303.

        [10]Liu,J.J.,Gan,S.X.,Chen,P.Y..The Hájek-Rényi inequality for NA random variables and its application[J].Statist. Probab.Lett.,1999,(43):99-105.

        陳 侃

        O211.4 Document code:A Article ID:1672-2868(2015)03-0001-06

        Eceived date:2015-03-03

        Fund Project:Foundation of Anhui Educational Committee(No.KJ2013Z225)

        Author:Ma Songlin(1978-),male,Lujiang,Anhui Province,Scool of Applied Mathematics,Chaohu College.Research direction:probability limit theory.

        中文字幕一区二区精品视频 | 亚洲97成人在线视频| 一区二区三区免费看日本| 久久精品成人一区二区三区| 偷拍激情视频一区二区三区| 久久久久无码精品国产app| 国产乱色精品成人免费视频| 欧美情侣性视频| 日韩秘 无码一区二区三区| 日韩av无码成人无码免费| 久久综合给日咪咪精品欧一区二区三| 人妻无码AⅤ不卡中文字幕| 人人妻人人澡av| 日本高清一区二区三区在线| 久久人妻中文字幕精品一区二区| 久久精品免费中文字幕| 国产三级精品三级| 亚洲欧美综合在线天堂| 亚洲午夜成人片| 亚洲一区二区三区在线观看蜜桃| 久久精品国产亚洲av夜夜| 偷拍一区二区三区四区视频| 亚洲色偷偷偷综合网| 激情影院内射美女| 韩日美无码精品无码| 无码AⅤ最新av无码专区| 国产精品成年人毛片毛片| 人妻熟妇乱又伦精品hd| 亚洲av男人的天堂在线观看| 国产亚洲欧美在线| 久久夜色精品亚洲天堂| 国内自拍偷国视频系列| 久久久久久亚洲av无码蜜芽| 丰满人妻熟妇乱又伦精品视| 日韩欧美国产亚洲中文| 美女一区二区三区在线观看视频| 日韩精品人妻视频一区二区三区| 久久久精品国产性黑人| 女人被狂躁到高潮视频免费网站| 日韩视频第二页| 久久久99精品视频|