亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Multilinear Fractional Integral Operators on Morrey Spaces with Variable Exponent on Bounded Domain

        2015-11-03 11:42:44WangMinQuMenganDShuLisheng

        Wang Min,Qu Meng anD Shu Li-sheng

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu,Anhui,241003)

        Communicated by Ji You-qing

        Multilinear Fractional Integral Operators on Morrey Spaces with Variable Exponent on Bounded Domain

        Wang Min,Qu Meng anD Shu Li-sheng*

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu,Anhui,241003)

        Communicated by Ji You-qing

        We prove the boundedness of multilinear fractional integral operators on products of the variable exponent Morrey spaces on bounded domain.

        multilinear fractional integral operator,variable exponent Morrey space,bounded domain

        2010 MR subject classification:46E30,42B20

        Document code:A

        Article ID:1674-5647(2015)03-0253-08

        1 Introduction

        Let ? be an open set in the n-dimensional Euclidean space Rnwith|?|>0,and

        be the m-fold product space of ?.The multilinear fractional integrals on ? are defined by

        Theorem 1.1[7]Suppose that m∈N,0<β<mn,

        and

        with 1<pi≤qi<∞for i=1,2,···,m.Then there exists a constant C>0 such that

        In this article,our main aim is to extend one of Tang's work to the variable exponent case.In recent twenty years,variable exponent spaces have been generating interest because of its connection with the study of variational integrals and partial differential equations with a non-standard growth condition(see[8-9]).

        We first recall the definitions of Lebesgue spaces with variable exponent Lp(·)(?)(see[10]).

        Let p(·):?→[1,∞)be a measurable function.The variable exponent Lebesgue space Lp(·)(?)is defined by

        We denote

        Let P(?)be the set of measurable function p(·)on ? with value in[1,∞)such that

        We say that p(·)is log-H¨older continuous at infinity,and denote this by p(·)∈LH∞,if there exists a constant C such that for all x,y∈?,|y|≥|x|,

        Next we introduce the variable exponent Morrey spaces.

        where R:=diam(?),B?(x,r)=B(x,r)?.

        It is easy to see that if p(·)=q(·),thenWhen p(x)≡p and q(x)≡q are constants,the spacecoincides with the classical Morrey space

        The following theorem is the extension of Tang's result(see[7])to variable exponent case where ? is a bounded domain.

        and

        Remark 1.1Almeida et al.[12]obtained the boundedness of Iβon variable exponent Morrey space on a bounded domain,even β is variable.Theorem 1.2 is just the corresponding result of[12],where m=1 and β is a constant.Recently,Ho[13]studied the boundedness of Iβon Morrey space with variable exponent on unbounded domains,which indicates that Theorem 1.2 is corrected when m=1 for global case.

        It is an interesting problem that whether Theorem 1.2 can be extended to global case for m>1.We also note that our proof of Theorem 1.2 share some ideas of[7],[14]and references therein.Tao et al.[14]obtained the boundedness of multilinear Calder′on-Zygmund operators on variable exponent Morrey spaces over domains.

        2 Proof of Theorem 1.2

        In order to prove our result,we need some conclusions as follows.

        Lemma 2.1[12]Let ? be a bounded domain,p(·)∈P(?)and p(·)∈LH0.Then

        with C>0 independent of x∈? and r>0.

        Lemma 2.2[10]If p(·)∈P(?),then for alland all,we have

        where

        Lemma 2.3[15]Let p(·),p1(·),p2(·)∈P(?)such that

        Then there exists a constant Cp,p1independent of the functions f and g such that

        Then we have

        Proof of Theorem 1.2Without loss of generality,we only consider the case m=2.For x∈?,0<r<R,denote

        By the definition of the multilinear fractional integrals,we have

        Applying the inequality(see[17])

        we obtain

        If we denote

        then

        By using(2.1)and Lemma 2.3,we have

        Now we consider the estimate of I1,

        First we estimate D1.Since p1(·)∈LH0and p1(·)∈LH∞imply r1(·)∈LH0and r1(·)∈LH∞.By virtue of Lemma 2.4,we have

        Next we estimate D2.We need the fact that if

        then

        By using Lemma 2.2,we obtain

        Since p1(·)∈LH0implies)∈LH0,by virtue of Lemma 2.1,we have∫

        Since

        by the upper two inequalities,we have∫

        It follows that

        Hence

        By a similar arguments to that for I1we get that

        Then we obtain

        with the constant C independent of f1and f2.The proof of Theorem 1.2 is completed.

        References

        [1]Kenig C,Stein E M.Multilinear estimates and fractional integration.Math.Res.Lett.,1999,6:1-15.

        [2]Grafakos L,Kalton N.Some remarks on multilinear maps and interpolation.Math.Ann.,2001,319:151-180.

        [3]Moen K.Weighted inequalities for multilinear fractional integral operators.Collect.Math.,2009,60:213-238.

        [4]Hu G,Lin C C.Weighted norm inequalities for multilinear singular integral operators and applications.arXiv:1208.6346[math.FA].Submitted on 31 Aug.2012.

        [5]Tao X,He S.The boundedness of multilinear operators on generalized Morrey spaces over the quasi-metric space of non-homogeneous type.J.Inequal.Appl.,2013,1:1-15.

        [6]Iida T,Sato E,Sawano Y,Tanaka H.Multilinear fractional integrals on Morrey spaces.Acta Math.Sinica,2012,28:1375-1384.

        [7]Tang L.Endpoint estimates for multilinear of fractional integrals.J.Aust.Math.Soc.,2008,84:419-429.

        [8]Antontsev S,Shmarev S.Elliptic equations and systems with nonstandard growth conditions:existence,uniqueness and localization properties of solutions.Nonlinear Anal.,2006,65:728-761.

        [9]Habermann J.Calder′on-Zygmund estimates for higher order systems with p(x)growth.Math. Z.,2008,258:427-462.

        [10]Kov′aˇcik O,R′akosn′?k J.On spaces Lp(x)and Wk,p(x).Czechoslovak Math.J.,1991,41:592-618.

        [11]Kokilashvili V,Meskhi A.Boundedness of maxmial and singular operators in Morrey spaces with variable exponent.Armenian J.Math.,2008,1:18-28.

        [12]Almeida A,Hasanov J,Samko S.Maximal and potential operators in variable exponent Morrey spaces.Georgian Math.J.,2008,15:195-208.

        [13]Ho K-P.The fractional integral operators on Morrey spaces with variable exponent on unbounded domains.Math.Inequal.Appl.,2013,16:363-373.

        [14]Tao X X,Yu X,Zhang H H.Multilinear Calder′on Zygmund operators on variable exponent Morrey spaces over domains.Appl.Math.J.Chinese Univ.,2011,26:187-197.

        [15]Huang A W,Xu J S.Multilinear singular integrals and commutators in variable exponent Lebesgue spaces.Appl.Math.J.Chinese Univ.,2010,25:69-77.

        [16]Capone C,Cruz-Uribe D,S F O,F(xiàn)iorenza A.The fractional maximal operator and fractional integrals on variable Lpspaces.Rev.Mat.Iberoamericana,2007,23(3):743-770.

        [17]Izuki M.Herz and Amalgam spaces with variable exponent,the Haar wavelets and greediness of the wavelet system.East J.Approx.,2009,15:87-109.

        10.13447/j.1674-5647.2015.03.07

        date:Oct.16,2013.

        The NSF(11201003)of China and the Education Committee(KJ2012A133)of Anhui Province.

        .

        E-mail address:15155369968@163.com(Wang M),shulsh@mail.ahnu.edu.cn(Shu L S).of a family of related multilinear fractional integrals.Moen[3]established some weighted inequalities for multilinear fractional integral operators.Hu and Lin[4]got weighted norm inequalities for multilinear singular integral operators and applications.Tao and He[5]proved the boundedness of multilinear operators on generalized Morrey spaces over the quasi-metric space of non-homogeneous type.Also,many results about multilinear fractional integrals on Morrey spaces have been studied,(see[6-7]).Especially,Tang[7]presented the boundedness of multilinear fractional integral operators on Morrey spaces.One of his results is rewrited as the following theorem:

        丝袜美腿国产一区精品| 久久与欧美视频| 亚洲国产精品色婷婷久久| 亚洲国产一区二区三区精品| 亚洲视频在线观看| 少妇厨房愉情理伦片bd在线观看 | 久久久久88色偷偷| 免费观看又污又黄的网站| 国产精品98视频全部国产| 91久久精品一区二区三区大全| 天天躁日日躁狠狠躁av麻豆| 真人直播 免费视频| 欧美日韩a级a| 中文字幕高清视频婷婷| 亚洲人成网线在线播放va蜜芽 | 国产a√无码专区亚洲av| 一本大道东京热无码| 亚洲人成网站18男男| 中文字幕人妻日韩精品 | 女同视频一区二区在线观看| 挺进朋友人妻雪白的身体韩国电影| 国产精品23p| 亚洲国产线茬精品成av| 亚洲色一区二区三区四区| 国外亚洲成av人片在线观看| 欧美精品v欧洲高清| 日本视频在线播放一区二区| 免费无码av一区二区| 欧美精品区| 国产一级一厂片内射视频播放 | 窝窝影院午夜看片| 激情内射亚洲一区二区| 97精品一区二区三区| 久久夜色精品国产噜噜亚洲av| 久久一日本道色综合久久大香| 日本一区二区三区爱爱视频| 国产精品毛片一区二区三区| 98bb国产精品视频| 人妻少妇激情久久综合| 亚洲精品欧美精品日韩精品| 极品美女扒开粉嫩小泬|