亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Co-splitting of Simple Lie Algebras of Type A,D,E

        2015-11-03 11:42:39ZhaoYu
        關(guān)鍵詞:深港金融中心內(nèi)陸

        Zhao Yu-e

        (School of Mathematics,Qingdao University,Qingdao,Shandong,266071)

        Communicated by Du Xian-kun

        Co-splitting of Simple Lie Algebras of Type A,D,E

        Zhao Yu-e

        (School of Mathematics,Qingdao University,Qingdao,Shandong,266071)

        Communicated by Du Xian-kun

        In this paper,through a meticulous description of finite root system,a concrete comultiplication with an explicit action on the basis elements of finite dimensional simple Lie algebras of type A,D,E is constructed.Then any finite dimensional simple Lie algebra of type A,D,E is endowed with a new generalized Lie coalgebra splitting.This construction verifies the known existence of a co-split Lie structure on any finite dimensional complex simple Lie algebra.

        Lie coalgebra,co-splitting,finite-dimensional simple Lie algebra

        2010 MR subject classification:17B62,17B05

        Document code:A

        Article ID:1674-5647(2015)03-0229-13

        1 Introduction

        During the past decade,a great number of papers study Lie bialgebras.It is well-known that a Lie bialgebra is a vector space endowed simultaneously with a Lie algebra structure and a Lie coalgebra structure,together with a certain compatibility condition,which was suggested by a study of Hamiltonian mechanics and Poisson Lie groups(see[1]).

        Recently,Xia and Hu[2]introduced a new concept“co-split Lie algebra”which is a new[Lie algebra]-[Lie coalgebra]structure,and proved that any finite dimensional complex simple Lie algebra L can be endowed with a co-split Lie structure,i.e.,a co-splitting Lie coalgebra structure such that the composition[·,·]?δ of the two structure maps δ:L→L?CL and[·,·]:L?CL→ L coincides with the identity.Using the concept“co-split Lie algebra”,the Lie algebra structure on the dual space of a semi-simple Lie algebra can be easily studied from another point of view.Moreover,F(xiàn)arnsteiner[3]elicited the conceptual sources of[2],starting from the observation that the coalgebra maps defined in[2]are infact homomorphisms of L-modules,and for Lie algebras affording non-degenerate symmetric associative forms,such coalgebra maps naturally arise by dualizing the Lie multiplication,also several equivalent characterizations of co-splitting of a Lie algebra are given.For the cosplit Lie algebra L of type Al,Xia and Hu[2]have shown an explicit action of the coalgebra map δ on the basis elements of L.For the co-split Lie algebra L of another type,δ is obtained via embedding L→sln(C)and the action of δ on the basis elements of L is not explicitly shown,and may be complicated.In this paper,a co-split Lie algebra structure is given,which generalizes the construction in Theorem 4.2 in[2],on any complex simple Lie algebra L of type Al(l≥1),Dl(l≥4)or Ek(k=6,7,8),and the coalgebra map δ has an explicit action on the basis elements of L.See Theorem 4.1 in this paper for details.

        2 Basic Definitions and Notations

        A Lie algebra is a pair(L,[·,·]),where L is a linear space and[·,·]:L?CL→L is a bilinear map(in fact,it is a linear map from L?CL to L)satisfying

        (L1)[a,b]+[b,a]=0;

        (L2)[a,[b,c]+[b,[c,a]+[c,[a,b]=0.

        For any spaces U,V,W,define linear maps τ:U?CV→V?CU by τ(u?v)=v?u,and ξ:U?CV?CW→V?CW?CU by ξ(u?v?w)=v?w?u.A Lie coalgebra is a pair(L,δ),where L is a linear space and δ:L→L?CL is a linear map satisfying

        (Lc1)(1+τ)?δ=0;

        (Lc2)(1+ξ+ξ2)?(1?δ)?δ=0.

        A Lie bialgebra is a triple(L,[·,·],δ)such that

        (Lb1)(L,[·,·])is a Lie algebra;

        (Lb2)(L,δ)is a Lie coalgebra;

        (Lb3)For any x,y∈L,δ([x,y])=x·δ(y)-y·δ(x).

        The compatibility condition(Lb3)shows that δ is a derivation map.In this case,[·,·]?δ is a derivation of L.Xia and Hu[2]replaced the above(Lb3)with the condition[·,·]?δ=idLand give the following new concept“co-split Lie algebra”.

        Definition 2.1Suppose that(L,[·,·])is a Lie algebra and(L,δ)is a Lie coalgebra. A triple(L,[·,·],δ)is called a co-split Lie algebra if[·,·]?δ=idL.

        3 Several Properties of Simple Lie Algebras of Type A,D,E

        Let Q be the root lattice of type Al,Dl,or El,and let(·|·)be the bilinear symmetric form on Q such that the root system Φ={α∈Q|(α|α)=2}.Let ε:Q×Q→{±1}be an asymmetry function satisfying the bimultiplicativity condition

        and the condition

        An asymmetry function ε can be constructed as follows:choose an orientation of the Dynkin diagram,and let

        Define a bracket on L as follows:

        By Proposition 7.8 in[4],L is the simple Lie algebra of type Al,Dl,or El.Denote Π ={α1,α2,···,αl}by a simple root system of Φ.For any i=1,2,···,l,there is a fundamental reflection rαion Φ defined by rαi(β)=β-(β|αi)αifor any β∈Φ.

        Lemma 3.1If α,β∈Q,and(α|β)=±1,then

        (1)ε(α,β)=-ε(β,α);

        (2)ε(β,α-β)ε(α,-β)=1,and ε(β,α-β)ε(-β,α)=-1;

        (3)ε(β,α-β)=ε(-α,β)=ε(α-β,-α).

        (2)Let g denote the dual Coxeter number of the simple root system Φ.Then

        Lemma 3.2For any α∈Φ,the following statements hold:

        (1)If α1∈P1α,then α,-α1∈,α,α1-α∈,and-α,-α1+α∈

        (2)Define Υα={(α1,α2)|α1∈,α2∈-{α,-α1}}.If(β,γ)∈Υα,then(β,α-β-γ)∈Υα.Moreover,either(γ,α-β-γ),(γ,β)∈Υα,or(α-β-γ,β),(α-β-γ,γ)∈Υα;

        (3)Define Ξα={(α1,α2)|α1∈,α2∈-{-α,α-α1}},={(α1,α2)| α1∈,α2∈-{α,α1-α}}.If(β,γ)∈Ξα,then(β,-γ)∈.Moreover,either(β+γ,-β)∈Ξα,(β+γ,β)∈,or(-γ,β+γ)∈Ξα,(-γ,-β-γ)∈

        Proof.(1)By easy calculation,we omit the details.

        (2)If(β,γ)∈Υα,then(α|β)=(γ|α-β)=1,and γ/=α,-β.Since(α-β-γ| α-β)=1,then α-β-γ∈.Assume that α-β-γ=α(resp.,-β).Then γ=-β(resp.,γ=α),a contradiction.Thus(β,α-β-γ)∈Υα.

        Next we consider(α|γ).At first,γ/=α implies that(α|γ)/=2.Assume that(α|γ)=-2(resp.,-1).Then(γ|β)=(γ|α)-(γ|α-β)=-3(resp.,-2),a contradiction.So(α|γ)/=-2 or-1.Therefore(α|γ)must be equal to 1 or 0.We prove(2)in the following two cases:

        5.加強(qiáng)深港金融業(yè)的合作。隨著CEPA的深入實(shí)施,內(nèi)陸與港澳地區(qū)的聯(lián)系不斷加強(qiáng),尤其是深港兩地通關(guān)能力不斷提高,深港金融一體化趨勢越來越明顯。深圳可以借助毗鄰香港的地理優(yōu)勢,發(fā)展成為香港國際金融中心在內(nèi)陸的延伸。因此,深圳應(yīng)積極加快金融創(chuàng)新力度,加強(qiáng)深港金融業(yè)合作,盡快與香港金融業(yè)對接,在為雙方的貿(mào)易活動(dòng)提供各項(xiàng)金融服務(wù)的同時(shí),合作關(guān)系范圍也應(yīng)積極拓展到保險(xiǎn)、外匯、證券等各個(gè)方面,進(jìn)一步銜接深港兩地的金融市場,促使深港金融最終實(shí)現(xiàn)一體化,多渠道、多方面、多層次展開深港金融服務(wù)業(yè)合作,從而與香港共建“深港國際金融中心”。

        Case 1.(α|γ)=1.

        Case 2.(α|γ)=0.

        In this case,(α-β-γ|α)=1,so α-β-γ∈By calculation,(γ|β+γ)=1. Thus γ∈,i.e.,γ∈Since(α|γ)=0,then γ/= α.Assume that γ=-(α-β-γ).Then α=β,a contradiction.Thus γ/=-(α-β-γ).Therefore,(α-β-γ,γ)∈Υα.Moreover,by the preceding proof of(2),(α-β-γ,α-(α-β-γ)-γ)also belongs to Υα,i.e.,(α-β-γ,β)∈Υα.

        (3)By condition,(α|β)=(γ|-β)=1,and γ/=-α,α-β.So(-γ|β)=1,i.e.,-γ∈,and-γ/=α,or β-α.Thus(β,-γ)∈

        Next we consider(α|γ).First γ/=-α implies that(α|γ)/=-2.Assume that(α|γ)=2.Then γ=α,and(γ|-β)=(α|-β)=-1,a contradiction.So(α|γ)/=2. Assume that(α|γ)=1.Then(γ|α-β)=2,and so γ=α-β,a contradiction.So(α|γ)/=1.Therefore,(α|γ)must be equal to-1 or 0.We prove(3)in the following two cases:

        Case 1.(α|γ)=0.

        In this case,(α|β+γ)=1,so β+γ∈.And(-β|-β-γ)=1,so-β∈Since(-α|-β)=1,then-β/=-α.Assume that-β=α-(β+γ).Then α=γ,acontradiction to that(α|γ)=0.Thus-β∈-{-α,α-(β+γ)}.Therefore,(β+γ,-β)∈Ξα,which implies that(β+γ,β)∈by the preceding proof of(3).

        Case 2.(α|γ)=-1.

        4 The Main Result

        Theorem 4.1Let(L,[·,·])be a simple Lie algebra of type Al(l≥1),Dl(l≥4),Ek(k=6,7,8).Define a linear map δ:L→L?CL by

        for any α∈Φ,where Pα1is defined in Proposition 3.1(4).Then the triple(L,[·,·],δ)is a co-split Lie algebra.

        We prove the main theorem via a series of lemmas and propositions.

        Proposition 4.1(1+τ)?δ=0.

        Proof.For any α∈Φ,

        Obviously,α1∈if and only if α-α1∈.Then∑

        For α1∈,(α1|α-α1)=-1,then by Lemma 3.1(1),ε(α1,α-α1)=-ε(α-α1,α1). Thus

        and so

        It is easy to see that

        Thus the proposition holds by the linearity of τ and δ.

        Lemma 4.1((1+ξ+ξ2)?(1?δ)?δ)(eα)=0 for any α∈Φ.

        Proof.For any α∈Φ,

        We prove that the action of 1+ξ+ξ2on the above equality is equal to zero by the following three steps(1)-(3):

        (1)By definition of ξ,for any x,y,z∈L,

        Similarly,

        Thus

        (3)Denote

        By(1)and(2),we need to prove(1+ξ+ξ2)(R)=0.Denote

        where Υαis defined in Lemma 3.2(2).So

        For any α1∈,(α|α1)=1,then by Lemma 3.1(2),

        Then

        In the above equality(4.1),if(β,γ)∈Υα,then by Lemma 3.3(2),either

        or

        Set

        where

        or

        Next we prove that

        in the following two cases:

        Case 1.S={(β,γ),(β,α-β-γ),(γ,α-β-γ),(γ,β)}.

        In the above equality(4.2),there are four summands respectively corresponding to(β,γ),(β,α-β-γ),(γ,α-β-γ),(γ,β),i.e.,

        (i)ε(β,α-β)ε(γ,α-β-γ)eβ?eγ?eα-β-γ;

        (ii)ε(β,α-β)ε(α-β-γ,γ)eβ?eα-β-γ?eγ;

        (iii)ε(γ,α-γ)ε(α-β-γ,β)eγ?eα-β-γ?eβ;

        (iv)ε(γ,α-γ)ε(β,α-β-γ)eγ?eβ?eα-β-γ.

        By calculation,

        then

        Thus

        Case 2.S={(β,γ),(β,α-β-γ),(α-β-γ,β),(α-β-γ,γ)}.

        In the above equality(4.2),there are the following four summands:

        By calculation,

        then

        Thus

        Since Υαis a finite set,we have

        Lemma 4.2((1+ξ+ξ2)?(1?δ)?δ)(hα)=0 for any α∈Φ.

        Proof.For any α∈Φ,

        By definition of ξ,

        Denote

        Then

        We only need to prove that(1+ξ+ξ2)(R′)=0.For convenience,we denote

        where Ξα,are defined in Lemma 3.2(3),and denote

        By calculation,ε(-α,α1)=ε(α-α1,-α)=ε(α1,α-α1),then

        Similarly,

        By computation,ε(α,α1)=ε(-α1-α,α)=ε(α1,-α-α1),then

        So it remains to show that(1+ξ+ξ2)(?R′)=0.

        If(β,γ)∈Ξα,then by Lemma 3.2(3),either

        or

        So

        where either

        or

        Next we prove that

        in the following two cases:

        Case 1.S1={(β,γ),(β+γ,-β)},and S2={(β,-γ),(β+γ,β)}.

        In this case,ε(γ,-β-γ)=ε(β,γ),ε(-β,-γ)=ε(-γ,β+γ).Therefore,

        Case 2.S1={(β,γ),(-γ,β+γ)},and S2={(β,-γ),(-γ,-β-γ)}.

        It is easy to see that ε(γ,-β-γ)=ε(-β-γ,β),ε(-γ,β+γ)=ε(β+γ,-β).Thus

        Therefore

        by induction.

        Proof of Theorem 4.1By Lemmas 4.1,4.2 and Proposition 4.1,(L,δ)is a Lie coalgebra.

        For any α∈Φ,

        By Lemma 3.2(3),([·,·]?δ)(eα)=eα.And

        By Proposition 3.1(4),

        So

        Therefore,(L,[·,·],δ)is a co-split Lie algebra.

        Remark 4.1We give an example to explain that the construction in Section 4 in[2]is a special case of our construction.Suppose that L is a complex simple Lie algebra of type Al,l≥1.It can be realized as the special linear Lie algebra sll+1(C)with basis{Ei,j,-Ej,i,Ei,i-Ej,j|1≤i<j≤l+1}.Set η be the set spanned by the basis elements{Ei,i-Ej,j|1≤i<j≤l+1}.Then η is a Cartan subalgebra of L.Correspondingly,

        We choose a fixed Chevalley basis as follows:

        Then the action of the comultiplication δ on eα,e-α,hαunder our definition in Theorem 4.1 is exactly that in Theorem 4.2 in[2].

        References

        [1]Etingof P,Schiffmann O.Lectures on Quantum Groups.Boston:Internat.Press,1998.

        [2]Xia L,Hu N.Introduction to co-split Lie algebras.Algebra Represent.Theory,2011,14:191-199.

        [3]Farnsteiner R.Lie algebras with a coalgebra splitting.Algebra Represent.Theory,2011,14:87-96.

        [4]Kac V G.Infinite Dimensional Lie Algebras(third edition).Combridge:Cambridge Univ.Press,1990.

        [5]Suter R.Coxeter and dual coxeter number.Comm.Algebra,1999,26:147-153.

        10.13447/j.1674-5647.2015.03.05

        date:Sept.8,2013.

        The Anhui Province College Excellent Young Talents Fund(2013SQRL071ZD).

        E-mail address:blueskyyu2004@aliyun.com(Zhao Y E).

        猜你喜歡
        深港金融中心內(nèi)陸
        佛山萬科金融中心
        解讀:70年,重慶從內(nèi)陸變?yōu)橹袊鴮ν忾_放的前沿
        上海外灘金融中心空中健身會館
        滬港通、深港通統(tǒng)計(jì)
        滬港通、深港通5日統(tǒng)計(jì)
        滬港通、深港通5日統(tǒng)計(jì)
        滬港通、深港通統(tǒng)計(jì)
        內(nèi)陸移民(外二首)
        天津詩人(2017年2期)2017-11-29 01:24:16
        100噸吸內(nèi)陸漁政船
        中國船檢(2017年3期)2017-05-18 11:43:21
        構(gòu)建昆明市面向沿邊離岸金融中心的探究
        中國市場(2016年12期)2016-05-17 05:10:01
        中文成人无字幕乱码精品区| 免费视频一区二区三区美女| 加勒比东京热一区二区| 日本真人做爰免费视频120秒 | 欧美激情内射喷水高潮| 国产av专区一区二区三区| 亚洲天堂一二三四区在线| 久久午夜av一区二区三区| 婷婷亚洲久悠悠色悠在线播放| 中文毛片无遮挡高潮| 亚洲国产黄色在线观看| 精品久久有码中文字幕| 午夜成人鲁丝片午夜精品| 久久亚洲道色宗和久久| 日本久久一级二级三级| 亚洲黄色天堂网站在线观看禁18 | 日本精品久久性大片日本| 久久精品国产免费一区二区三区| 亚洲乱码国产乱码精品精| 成在人线av无码免费| 蜜桃视频中文在线观看| 一区二区三区四区草逼福利视频| 国产精品理论片| 高清在线亚洲中文精品视频| 国产av熟女一区二区三区老牛| 高级会所技师自拍视频在线| 国产在线精品成人一区二区三区| 欧美日韩亚洲一区二区精品| 日本一区二区三区一级片| 亚洲av午夜福利精品一区| 国产精品内射后入合集| 日本av一区二区播放| 久久久精品国产性黑人| 国产av无码专区亚洲awww| 国产精品美女AV免费观看| 国产精品女同av在线观看| 国产精品成人免费视频一区| 国产无码夜夜一区二区| 国产精品一区二区久久毛片| 包皮上有一点一点白色的| 最近中文字幕mv在线资源|