黃巧娟,黃林華,孫志高*,郝靜梅,郭 莉
(西南大學(xué)柑桔研究所,重慶 400712)
檸檬烯的安全性研究進(jìn)展
黃巧娟,黃林華,孫志高*,郝靜梅,郭 莉
(西南大學(xué)柑桔研究所,重慶 400712)
檸檬烯是柑橘類水果精油的主要成分,由于其具有抑菌、抗癌等多種生理功能,被廣泛應(yīng)用于食品、藥品等行業(yè)中。本文綜述近些年關(guān)于檸檬烯安全性的研究,包括檸檬烯的毒理學(xué)評(píng)價(jià)、遺傳毒性、細(xì)胞毒性及其對(duì)人、動(dòng)物及環(huán)境的影響,以期為檸檬烯有效、安全利用提供參考。
檸檬烯;安全性;毒性
檸檬烯又稱苧烯、苧烯,其結(jié)構(gòu)式如圖1所示,是一種單萜烯化合物。檸檬烯有3 種異構(gòu)體,即D-檸檬烯、L-檸檬烯和DL-檸檬烯,一般以D-檸檬烯的形式存在。由于檸檬烯具有抑菌、增香、抗癌、止咳、平喘等生理功能,已被廣泛應(yīng)用于食品、香料、日化、醫(yī)藥等行業(yè)[1]。此外,檸檬烯具有較強(qiáng)的溶解能力,可作為烷烴類替代劑應(yīng)用到油脂等成分的提取當(dāng)中[2-4]。
圖1 檸檬烯的結(jié)構(gòu)式Fig.1 Structure of limonene
有關(guān)檸檬烯安全性研究的報(bào)道,與國(guó)內(nèi)相比,國(guó)外研究較多。Langman等[5]綜述了D-檸檬烯的吸收、代謝、排泄情況及D-檸檬烯對(duì)人體及動(dòng)物的影響,他們認(rèn)為盡管D-檸檬烯具有一定的危害,但其作為綠色有機(jī)溶劑替代烷烴類化合物仍具有很大的發(fā)展前景。20世紀(jì)90年代國(guó)際癌癥研究機(jī)構(gòu)(International Agency for Research on Cancer,IARC)及世界衛(wèi)生組織(World Health Organization,WHO)對(duì)D-檸檬烯的安全性及抗癌特性進(jìn)行了綜合評(píng)價(jià),發(fā)現(xiàn)檸檬烯無(wú)基因、免疫及生殖毒性,僅對(duì)成年雄性大鼠具有致癌作用,而對(duì)其他動(dòng)物及人類無(wú)致癌性[6-7]。Kim等[8]也綜述了D-檸檬烯的安全性并對(duì)其進(jìn)行了風(fēng)險(xiǎn)評(píng)估,得出D-檸檬烯的極限暴露比(margin of exposure,MOE)為169,危害指數(shù)(hazard index,HI)為0.592,并認(rèn)為D-檸檬烯雖對(duì)皮膚具有一定的刺激性,但合理使用仍可應(yīng)用于化妝品中。對(duì)于檸檬烯安全性的研究已有較長(zhǎng)時(shí)間,本文綜述近些年人們對(duì)檸檬烯安全性的研究,以期為檸檬烯的安全使用提供一定參考。
早在20世紀(jì)50年代,研究者就已開(kāi)始對(duì)檸檬烯的吸收、分布、代謝等情況進(jìn)行了研究。在不同的物種間,檸檬烯的吸收差異很大,且不同的給藥方式也影響檸檬烯的吸收。檸檬烯經(jīng)口攝入能被胃腸道迅速吸收[9],Api等[10]利用14C同位素示蹤法研究了檸檬烯在大鼠和人體皮膚中的吸收情況,發(fā)現(xiàn)檸檬烯在大鼠皮膚中的吸收量接近12%,而在人皮膚中吸收量不到1%。進(jìn)入機(jī)體的檸檬烯及其代謝產(chǎn)物紫蘇酸均具有很高的生物利用度,能被機(jī)體很快吸收利用[11-12]。D-檸檬烯在人體和動(dòng)物中分布廣泛,主要分布于血漿、腎臟及肝臟中,且一段時(shí)間后幾乎全部消失,不會(huì)在體內(nèi)積累[9,13]。
圖2 檸檬烯的代謝途徑[144--1166]Fig.2 Metabolic pathway of limonene[14-16]
檸檬烯的生物轉(zhuǎn)化過(guò)程主要為甲基基團(tuán)氧化為羥基,進(jìn)一步反應(yīng)生成羧酸衍生物。羥基化反應(yīng)發(fā)生在C6位置上,氧化反應(yīng)發(fā)生在碳碳雙鍵上。此外,甘氨酸及葡糖醛酸與檸檬烯發(fā)生結(jié)合反應(yīng)。D-檸檬烯在哺乳動(dòng)物及人體中可能的分解代謝途徑主要有5 條,如圖2所示[14-16]。途徑1:檸檬烯C6位置發(fā)生氧化及環(huán)氧化作用,生成檸檬烯-6,8,9-三醇;途徑2:檸檬烯C10位置發(fā)生氧化作用,接著進(jìn)一步氧化或與葡萄糖醛酸結(jié)合生成相應(yīng)的葡糖苷酸;途徑3:檸檬烯代謝為紫蘇酸,紫蘇酸可以直接排出體外,或者在尿液中結(jié)合甘氨酸及葡萄糖醛酸生成相應(yīng)的葡糖苷酸,或者進(jìn)一步氧化成紫蘇酸-8,9-二醇,或者經(jīng)水合或加氫生成2-羥基-p-薄荷-8-烯-7-酸及二氫紫蘇酸,后者與葡萄糖醛酸結(jié)合生成相應(yīng)的葡糖苷酸;途徑4:檸檬烯1,2-雙鍵經(jīng)環(huán)氧化及水合作用生成檸檬烯-1,2-二醇;途徑5:檸檬烯8,9-雙鍵進(jìn)行環(huán)氧化作用生成檸檬烯-8,9-二醇,并進(jìn)一步與葡萄糖醛酸結(jié)合生成相應(yīng)的葡糖苷酸。檸檬烯的代謝產(chǎn)物主要為血漿代謝產(chǎn)物,在大鼠血漿中主要為紫蘇酸及二氫紫蘇酸,在人體血漿中除以上兩種物質(zhì)外還有檸檬烯-1,2-二醇[16]。盡管大部分的代謝產(chǎn)物都已在各物種中被檢驗(yàn)出,但各物種的代謝途徑卻存在差異:檸檬烯在大鼠體內(nèi)的代謝主要是通過(guò)紫蘇酸代謝為紫蘇酸-8,9-二醇,此外,檸檬烯在大鼠體內(nèi)還通過(guò)其他途徑進(jìn)行小部分代謝,如通過(guò)途徑1、途徑2及途徑5進(jìn)行代謝;倉(cāng)鼠中檸檬烯主要是通過(guò)紫蘇酸代謝為葡糖苷酸,但其生成紫蘇酸-8,9-二醇的途徑較弱;兔子體內(nèi)檸檬烯主要經(jīng)紫蘇酸生成紫蘇酸-8,9-二醇;豚鼠體內(nèi)檸檬烯主要經(jīng)紫蘇酸生成紫蘇基甘氨酸及經(jīng)檸檬烯-8,9-二醇生成葡糖苷酸;對(duì)于檸檬烯在狗及人體內(nèi)的代謝情況,研究者有不同的觀點(diǎn),Kodama等[14]認(rèn)為檸檬烯代謝為檸檬烯-8,9-二醇及其衍生物,而另有研究者[15]認(rèn)為檸檬烯在人體中主要代謝為紫蘇酸及其衍生物。不同物種中檸檬烯的排泄方式相似,大部分都隨尿液、氣體等排出,少部分隨糞便排出[9-11]。
2.1檸檬烯的毒理學(xué)評(píng)價(jià)
2.1.1急性毒性
Opdyke等[17]給大鼠口服檸檬烯,結(jié)果測(cè)得LD50為5.3 g/kg,屬于實(shí)際無(wú)毒級(jí)。檸檬烯的急性毒性實(shí)驗(yàn)中不同給藥方式下的LD50如表1所示。其中,大鼠口服及兔子皮膚接觸檸檬烯的LD50為5 g/kg左右;小鼠口服檸檬烯的LD50為6 g/kg左右,表明檸檬烯對(duì)齲齒類動(dòng)物具有極低的毒性。
表1 檸檬烯的急性毒性評(píng)價(jià)Table 1 Acute toxicity assessment of limonene
2.1.2亞慢性及慢性毒性
關(guān)于檸檬烯的亞慢性及慢性毒性研究,主要集中在20世紀(jì)70-90年代。檸檬烯對(duì)各齲齒類動(dòng)物的亞慢性及慢性毒性實(shí)驗(yàn)結(jié)果如表2所示,檸檬烯作用的靶器官主要為實(shí)驗(yàn)動(dòng)物的肝臟及腎臟。在給藥一段時(shí)間后,實(shí)驗(yàn)動(dòng)物肝臟及腎臟的質(zhì)量、肝臟中的酶活性、膽汁分泌、膽固醇水平等會(huì)有相應(yīng)的變化。
表2 檸檬烯的亞慢性及慢性毒性評(píng)價(jià)Table 2 Subchronic and chronic toxicity assessment of limonene
在檸檬烯的慢性毒性研究中,很多研究者發(fā)現(xiàn)檸檬烯只對(duì)雄性大鼠具有腎毒性,甚至導(dǎo)致腎癌,他們認(rèn)為這是因?yàn)闄幟氏┩ㄟ^(guò)刺激透明液滴的形成,進(jìn)而促進(jìn)雄性大鼠體內(nèi)特異性α2u-球蛋白的積累,最終導(dǎo)致癌癥發(fā)生[21-23]。但最近Mauro等[24]采用倉(cāng)鼠細(xì)胞V79對(duì)D-檸檬烯進(jìn)行安全性實(shí)驗(yàn),發(fā)現(xiàn)D-檸檬烯作用的靶細(xì)胞為有絲分裂紡錘體微管,暴露的D-檸檬烯通過(guò)影響細(xì)胞分裂中紡錘體的形成導(dǎo)致細(xì)胞死亡,且其對(duì)細(xì)胞的毒性作用呈劑量依賴關(guān)系。因此,檸檬烯是否對(duì)雄性大鼠以外的物種致癌,還有待深入研究。
2.2其他毒性
2.2.1遺傳毒性
WHO對(duì)檸檬烯進(jìn)行安全性評(píng)價(jià)時(shí),未發(fā)現(xiàn)其具有遺傳毒性。美國(guó)國(guó)家毒理學(xué)規(guī)劃處[23]研究檸檬烯的遺傳毒性時(shí),選用鼠傷寒沙門氏菌、小鼠L5178細(xì)胞及倉(cāng)鼠卵巢細(xì)胞進(jìn)行實(shí)驗(yàn),結(jié)果發(fā)現(xiàn)D-檸檬烯對(duì)鼠傷寒沙門氏菌(TA98、TA100、TA1535、TA1537)沒(méi)有致突變性;在小鼠L5178Y細(xì)胞中沒(méi)有增加三氟胸苷耐藥細(xì)胞的數(shù)量;在倉(cāng)鼠卵巢細(xì)胞中未導(dǎo)致染色體畸變及姐妹染色單體交換。Sekihashi等[28]進(jìn)行彗星實(shí)驗(yàn)比較了各種藥物對(duì)小鼠和大鼠的關(guān)鍵器官的影響,未觀察到D-檸檬烯引起任何器官DNA損傷。但近年來(lái)的一些研究卻表明檸檬烯具有一定的遺傳毒性。López等[29]在研究精油對(duì)大腸桿菌PQ37的遺傳毒性時(shí),發(fā)現(xiàn)其主要成分檸檬烯的含量在97~1 549 mmol/L時(shí)對(duì)PQ37具有遺傳毒性,然而這一結(jié)果并未在動(dòng)物及人體中得到驗(yàn)證。Saverini等[30]通過(guò)Ames實(shí)驗(yàn)和彗星實(shí)驗(yàn)研究柑橘?gòu)U水中α-蒎烯、β-蒎烯、蒈烯、檸檬烯等萜烯對(duì)原核及真核細(xì)胞的遺傳毒性,Ames實(shí)驗(yàn)結(jié)果顯示此4 種萜烯單獨(dú)作用未增加沙門氏菌TA100菌株的回復(fù)突變率,而4 種萜烯相結(jié)合則會(huì)增加回復(fù)突變率。彗星實(shí)驗(yàn)結(jié)果顯示這幾種萜烯類單獨(dú)或混合處理倉(cāng)鼠V79細(xì)胞1 h,能增加V79細(xì)胞DNA的損傷。這是首次報(bào)道萜烯類破壞DNA的實(shí)驗(yàn),但該實(shí)驗(yàn)并未證明這些萜烯是直接還是間接地對(duì)DNA造成影響。
2.2.2細(xì)胞毒性
檸檬烯具有抗癌作用,原因之一是它對(duì)腫瘤細(xì)胞具有細(xì)胞毒性[31]。但檸檬烯對(duì)腫瘤細(xì)胞的毒性作用機(jī)理研究還不透徹,它是否對(duì)正常細(xì)胞具有毒性作用還不能確定。Mendanha等[32]利用四甲基偶氮唑藍(lán)法對(duì)比研究了主要萜烯類對(duì)成纖維細(xì)胞的毒性及溶血性等,結(jié)果表明相對(duì)于其他萜烯,檸檬烯具有極低的細(xì)胞毒性、細(xì)胞膜攻擊性及溶血性,且他們認(rèn)為檸檬烯、桉樹(shù)腦等萜烯能較好地促進(jìn)極性及非極性的藥物滲入皮膚。而Vajrabhaya等[33]研究檸檬烯及三氯甲烷等溶劑對(duì)小鼠成纖維細(xì)胞L929的毒性實(shí)驗(yàn)中發(fā)現(xiàn):在溶劑稀釋倍數(shù)為100 倍及400 倍時(shí),三氯甲烷及檸檬烯處理細(xì)胞后,細(xì)胞的存活率相似(檸檬烯組為46.69%,三氯甲烷組為46.20%),但當(dāng)溶劑稀釋倍數(shù)為800 倍時(shí),檸檬烯組的活細(xì)胞數(shù)(97.07%)相對(duì)三氯甲烷組(126.53%)反而更少。
2.3檸檬烯長(zhǎng)期 暴露的安全性
2.3.1檸檬烯暴露對(duì)動(dòng)物及人體的影響
純凈的檸檬烯對(duì)人體及動(dòng)物幾乎沒(méi)有影響,而其在暴露的情況下易與氧氣(O2)、臭氧(O3)、氮氧化合物(NOx)等物質(zhì)反應(yīng),從而對(duì)動(dòng)物、人體及環(huán)境造成一定的影響[34],如檸檬烯對(duì)皮膚的刺激性是由檸檬烯與氧結(jié)合后所引起的[35-37]。Matura等[38]調(diào)查了2 273 名皮炎病人對(duì)氧化后的D-檸檬烯的過(guò)敏頻率,并對(duì)被氧化的D-檸檬烯進(jìn)行補(bǔ)丁測(cè)試,結(jié)果發(fā)現(xiàn)共有63 名皮炎病人補(bǔ)丁測(cè)試呈陽(yáng)性反應(yīng),即氧化的檸檬烯對(duì)皮膚有增敏作用。此后Matura等[39]又證明氧化的(S)-(-)-檸檬烯也會(huì)造成皮炎病人的過(guò)敏性反應(yīng)。此外,檸檬烯氧化物常對(duì)人和動(dòng)物的神經(jīng)系統(tǒng)產(chǎn)生作用,并影響其他器官的反應(yīng),如檸檬烯氧化物能刺激人的三叉神經(jīng),且在臭氧存在下會(huì)對(duì)人眼造成刺激[40]。
檸檬烯和臭氧反應(yīng)能形成氣溶膠及超微顆粒,從而對(duì)動(dòng)物的肺部及呼吸道產(chǎn)生不良影響[41]。Wolkoff等[42]認(rèn)為D-檸檬烯和臭氧反應(yīng)產(chǎn)生的甲醛和殘余的D-檸檬烯是造成人的上呼吸道和肺部傷害的主要原因,而產(chǎn)生的超細(xì)顆粒則對(duì)呼吸道無(wú)明顯影響。Rolseth等[34]研究表明暴露情況下檸檬烯濃度為100 μmmol/L時(shí),對(duì)細(xì)胞沒(méi)有不利作用,只有當(dāng)檸檬烯的濃度達(dá)500 μmmol/L時(shí),才會(huì)對(duì)人體肺部細(xì)胞造成毒害作用,即檸檬烯的濃度對(duì)肺部細(xì)胞的毒性起到關(guān)鍵作用。
2.3.2檸檬烯暴露對(duì)環(huán)境的影響
二次有機(jī)氣溶膠(secondary organic aerosols,SOA)是大氣中揮發(fā)性有機(jī)物與相關(guān)氧化劑(O3、·OH、·ONOO等)發(fā)生大氣氧化反應(yīng),并經(jīng)氣粒分配形成懸浮于大氣中的固體或液體顆粒[43]。SOA是灰霾氣候形成的原因之一,檸檬烯作為主要單萜烯,其在室內(nèi)空氣中每月的平均質(zhì)量濃度為227~513 μg/m3,是形成SOA的重要生物源[44]。Maksymiuk等[45]研究檸檬烯形成SOA的機(jī)理,發(fā)現(xiàn)在低濃度NOx存在的條件下,SOA主要是由殘余的不飽和物通過(guò)非均勻地吸收臭氧而氧化形成的。Walser等[46]研究表明,D-檸檬烯在臭氧環(huán)境中會(huì)產(chǎn)生SOA,進(jìn)一步產(chǎn)生甲醛,且臭氧分解檸檬烯產(chǎn)生的羰基化合物和過(guò)氧化物能吸收紫外光。因此,在工業(yè)生產(chǎn)中應(yīng)盡量避免由于檸檬烯過(guò)度暴露而帶來(lái)的不良影響。
檸檬烯作為一種單萜烯化合物,是柑橘類水果精油中主要的生物活性物質(zhì)。檸檬烯在人體及動(dòng)物組織中代謝迅速,經(jīng)口攝入幾乎能被機(jī)體完全吸收與利用,在尿液中的代謝產(chǎn)物主要為檸檬烯的醇類物質(zhì)及檸檬烯與甘氨酸、葡萄糖醛酸的結(jié)合物質(zhì)等。
近些年對(duì)檸檬烯安全性的研究尚未發(fā)現(xiàn)其對(duì)人體健康有明顯影響,因此,檸檬烯通常被認(rèn)為可安全運(yùn)用到食品、化工、醫(yī)藥等行業(yè)中。GB 2760—2011《食品安全國(guó)家標(biāo)準(zhǔn) 食品添加劑使用標(biāo)準(zhǔn)》已規(guī)定D-檸檬烯為允許使用的香料之一,同時(shí)D-檸檬烯也是規(guī)定中允許使用的檸檬油萜烯和甜橙油萜烯的主要成分。聯(lián)合國(guó)糧食與農(nóng)業(yè)組織(Food and Agriculture Organization,F(xiàn)AO)/ WHO對(duì)D-檸檬烯每日允許攝入量未做限制性規(guī)定,且認(rèn)為在目前的食用量下(歐洲:660 μg/(kg·d);美國(guó):210 μg/(kg·d)),D-檸檬烯沒(méi)有安全性問(wèn)題[47-48]。目前國(guó)家食品藥品監(jiān)督管理局已批準(zhǔn)了部分檸檬烯為主要成分的藥物,如檸檬烯:國(guó)藥準(zhǔn)字H51023440;檸檬烯膠囊:國(guó)藥準(zhǔn)字H20094075、H20066154、H51023345、H51023297、H51023597等。
檸檬烯在食品、藥品領(lǐng)域的應(yīng)用已較為廣泛,并得到相關(guān)部門的許可,但研究者對(duì)于檸檬烯的安全性仍存在不同的觀點(diǎn),如:檸檬烯是否具有遺傳毒性、致癌性、細(xì)胞毒性等尚存爭(zhēng)議。此外,空氣中暴露的檸檬烯因與氧氣等發(fā)生化學(xué)反應(yīng),其產(chǎn)物會(huì)對(duì)人體、動(dòng)物及環(huán)境造成一定的影響。這些研究結(jié)果也應(yīng)引起足夠重視。因此,后續(xù)研究仍需對(duì)檸檬烯的安全性進(jìn)行更廣泛而深入的研究,進(jìn)一步論證其潛在危害,為檸檬烯的風(fēng)險(xiǎn)評(píng)估提供依據(jù),從而促進(jìn)檸檬烯更加安全合理地應(yīng)用到工業(yè)生產(chǎn)中。
[1] 王偉江. 天然活性單萜: 檸檬烯的研究進(jìn)展[J]. 中國(guó)食品添加劑,2005(1): 33-37.
[2] MOHAMMAD A. Green solvents I: properties and applications in chemistry[M]. Germany: Springer Science & Business Media, 2012:175-186.
[3] FAURE K, BOUJU E, SUCHET P, et al. Use of limonene in countercurrent chromatography: a green alkane substitute[J]. Analytical Chemistry, 2013, 85(9): 4644-4650.
[4] TANZI C D, VIAN M A, CHEMAT F. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process[J]. Bioresource Technology, 2013, 134: 271-275.
[5] LANGMAN J M. d-Limonene: is it a safe, effective alternative to xylene?[J]. Journal of Histotechnology, 1995, 18(2): 131-137.
[6] International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risk to humans vol. 73[M]. Geneva: World Health Organization, 1999: 135-162.
[7] World Health Organization. Concise international chemical assessment document (5. Limonene)[R]. Geneva: WHO, 1998.
[8] KIM Y W, KIM M J, CHUNG B Y, et al. Safety evaluation and risk assessment of d-limonene[J]. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 2013, 16(1): 17-38.
[9] IGIMI H, NISHIMURA M, KODAMA R, et al. Studies on the metabolism of d-limonene (p-mentha-1,8-diene). I. The absorption,distribution and excretion of d-limonene in rats[J]. Xenobiotica, 1974,4(2): 77-84.
[10] API A M, RITACCO G, HAWKINS D R. The fate of dermally applied [14C] d-limonene in rats and humans[J]. International Journal of Toxicology, 2013, 32(2): 130-135.
[11] CHOW H H S, SALAZAR D, HAKIM I A. Pharmacokinetics of perillic acid in humans after a single dose administration of a citrus preparation rich in d-limonene content[J]. Cancer Epidemiology Biomarkers & Prevention, 2002, 11(11): 1472-1476.
[12] MILLER J A, THOMPSON P A, HAKIM I A, et al. Safety and feasibility of topical application of limonene as a massage oil to the breast[J]. Journal of Cancer Therapy, 2013, 3(5): 1-10.
[13] CROWELL P L, LIN Shouzhong, VEDEJS E, et al. Identification of circulating metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth[J]. Cancer Chemotherapy and Pharmacology, 1992, 31(3): 205-212.
[14] KODAMA R, YANO T, FURUKAWA K, et al. Studies on the metabolism of d-limonene (p-mentha-1,8-diene). IV. Isolationand characterization of new metabolites and species differences in metabolism[J]. Xenobiotica, 1976, 6(6): 377-389.
[15] World Health Organization. Safety evaluation of certain food additives[R]. Geneva: WHO, 2006.
[16] CROWELL P L, ELSON C E, BAILEY H H, et al. Hum an metabolism of the experimental cancer therapeutic agent d-limonene[J]. Cancer Chemotherapy Pharmacology, 1994, 35(1): 31-37.
[17] OPDYKE D L J. Monographs on fragrance raw materials[J]. Food and Cosmetics Toxicology, 1981, 19(2): 237-254.
[18] TSUJI M, FUJISAKI Y, YAMACHIKA K, et al. Studies on d-limonene, as gallstone solubilizer (I): general pharmacological studies[J]. Oyo Yakuri, 1974, 8(10): 1439-1459.
[19] TSUJI M, FUJISAKI Y, ARIKAWA Y, et al. Studies on d-limonene,as a gallstone solubilizer(III): chronic toxicities in rats[J]. Oyo Yakuri,1975, 9(3): 403-412.
[20] de ALMEIDA A, COSTA J P, de CARVALHO R B, et al. Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action[J]. Brain Research, 2012, 1448: 56-62.
[21] KANERVA R L, RIDDER G M, LEFEVER F R, et al. Comparison of shortterm renal effects due to oral administration of decalin or d-limonene in young adult male Fischer-344 rats[J]. Food and Chemical Toxicology, 1987, 25(5): 345-353.
[22] WEBB D, RIDDER G, ALDEN C. Acute and subchronic nephrotoxicity of d-limonene in Fischer 344 rats[J]. Food and Chemical Toxicology, 1989, 27(10): 639-649.
[23] National Toxicology Program. Toxicology and carcinogenesis studies of d-limonene (CAS No. 5989-27-5) in F344/N rats and B6C3F1 mice(gavage studies)[R]. America: National Toxicology Program, 1990.
[24] MAURO M, CATANZARO I, NASELLI F, et al. Abnormal mitotic spindle assembly and cytokinesis induced by d-limonene in cultured mammalian cells[J]. Mutagenesis, 2013, 28(6): 631-635.
[25] ARIYOSHI T, ARAKAKI M, IDEGUCHI K, et al. Studies on the metabolism of d-limonene (p-mentha-1, 8-diene). III. Effects of d-limonene on the lipids and drug-metabolizing enzymes in rat livers[J]. Xenobiotica, 1975, 5(1): 33-38.
[26] TSUJI M, FUJISAKI Y, ARIKAWA K, et al. Studies on d-limonene,as gallstone solubilizer(IV): chronic toxicity in dogs[J]. Oyo Yakuri,1975, 9(5): 775-808.
[27] WEBB D R, KANERVA R L, HYSELL D K, et al. Assessment of the subchronic oral toxicity of d-limonene in dogs[J]. Food and Chemical Toxicology, 1990, 28(10): 669-675.
[28] SEKIHASHI K, YAMAMOTO A, MATSUMURA Y, et al. Comparative investigation of multiple organs of mice and rats in the comet assay[J]. Mutation Research, 2002, 517(1/2): 53-75.
[29] L?PEZ M A, STASHENKO E E, FUENTES J L. Chemical composition and antigenotoxic properties of Lippia alba essential oils[J]. Genetics and Molecular Biology, 2011, 34(3): 479-488.
[30] SAVERINI M, CATANZARO I, SCIANDRELLO G, et al. Genotoxicity of citrus wastewater in prokaryotic and eukaryotic cells and efficiency of heterogeneous photocatalysis by TiO2[J]. J ournal of Photochemistry and Photobiology B: Biology, 2012, 108(1): 8-15.
[31] RUSSO R, CIOCIARO A, BERLIOCCHI L, et al. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells[J]. Fitoterapia, 2013, 89:48-57.
[32] MENDANHA S A, MOURA S S, ANJOS J L, et al. Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity[J]. Toxicology in Vitro,2013, 27(1):323-329.
[33] VAJRABHAYA L O, SUWANNAWONG S K, KAMOLROONGWARAKUL R,et al. Cytotoxicity evaluation of gutta-percha solvents: chloroform and GP-solvent (limonene)[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodonlogy, 2004, 98(6): 756-759.
[34] ROLSETH V, DJURHUUS R, SVARDAL A M. Additive toxicity of limonene and 50% oxygen and the role of glutathione in detoxification in human lung cells[J]. Toxicology, 2002, 70(1/2): 75-88.
[35] KARLBERG A T, BASKETTER D, GOOSSENS A, et al. Regulatory classification of substances oxidized to skin sensitizers on exposure to air[J]. Contact Dermatitis, 1999, 40(4): 183-188.
[36] CHRISTENSSON J B, FORSSTR?M P, WENNBERG A M, et al. Air oxidation increases skin irritation from fragrance terpenes[J]. Contact Dermatitis, 2009, 60(1): 32-40.
[37] WEI Qingjun, HARADA K, OHMORI S, et al. Toxicity study of the volatile constituents of myoga utilizing acute dermal irritation assays and the Guinea-pig maximization test[J]. Journal of Occupational Health, 2006, 48(6): 480-486.
[38] MATURA M, GOOSSENS A, BORDALO O, et al. Oxidized citrus oil (R-limonene): a frequent skin sensitizer in Europe[J]. Journal of the American Academy of Dermatology, 2002, 47(5): 709-714.
[39] MATURA M, SK?LD M, B?RJE A, et al. Not only oxidized R-(+)- but also S-(-)-limonene is a common cause of contact allergy in dermatitis patients in Europe[J]. Contact Dermatitis, 2006, 55(5): 274-279.
[40] N?JGAARD J K, CHRISTENSEN K B, WOLKOFF P. The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein[J]. Toxicology Letters, 2005, 156(2): 241-251.
[41] ROHR A C, WILKINS C K, CLAUSEN P A, et al. Upper airway and pulmonary effects of oxidation products of (+)-alpha-pinene,d-limonene, and isoprene in BALB/c mice[J]. Inhalation Toxicology,2002, 4(7): 663-684.
[42] WOLKOFF P, CLAUSEN P A, LARSEN K, et al. Acute airway effects of ozone-initiated d-limonene chemistry: importance of gaseous products[J]. Toxicology Letters, 2008, 181(3): 171-176.
[43] SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics:from air pollution to climate change[M]. 2nd ed. America: Wiley InterScience, 2006: 25-41.
[44] KRóL S, NAMIESNIK J, ZABIEGALA B. α-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: the impact on air quality and human exposure[J]. Science of the Total Environment, 2014,468/469: 985-995.
[45] MAKSYMIUK C S, GAYAHTRI C, GIL R R, et al. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2009,11(36): 7810-7818.
[46] WALSER M L, PARK J, GOMEZ A L, et al. Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene[J]. Journal of Physical Chemistry A, 2007, 111(10): 1907-1913.
[47] World Health Organization. Evaluation of certain food additives:sixty-third report of the joint FAO/WHO expert committee on food additives[R]. Geneva: WHO, 2005.
[48] Food and Agriculture Organization of the United Nations, World Health Organization. Summary and conclusions of the sixty-third meeting[C]//Sixty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva: WHO, 2004: 1-18.
Progress in Understanding the Safety of Limonene
HUANG Qiaojuan, HUANG Linhua, SUN Zhigao*, HAO Jingmei, GUO Li
(Citrus Research Institute, Southwest University, Chongqing 400712, China)
Limonene is one of the main ingredients in citrus essential oils. It has been widely used in food and pharmaceutical industries due to its antibacterial and anticancer bioactivities. This paper reviews recent progress in understanding the safety of limonene from the perspectives of toxicological assessment, genotoxicity, cytotoxicity and its infl uence on human, animals and environment. We hope that this review could provide
for the effective and safe application of limonene.
limonene; safety; toxicology
TS201.6
A
1002-6630(2015)15-0277-05
10.7506/spkx1002-6630-201515051
2014-09-22
2012年度國(guó)家星火計(jì)劃項(xiàng)目(2012GA811001);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(XDJK2013C100)
黃巧娟(1989—),女,碩士研究生,研究方向?yàn)楣δ苄猿煞值奶崛?。E-mail:hqj1027003283@163.com
孫志高(1964—),男,副研究員,本科,研究方向?yàn)檗r(nóng)產(chǎn)品貯藏與加工。E-mail:cpro@cric.cn