尚 飛,劉崢君,解習(xí)農(nóng),樊中海,郭來(lái)源
(1.中國(guó)地質(zhì)大學(xué)a.構(gòu)造與油氣資源教育部重點(diǎn)實(shí)驗(yàn)室;b.資源學(xué)院,武漢430074;2.中國(guó)石化河南油田分公司勘探開(kāi)發(fā)研究院,河南南陽(yáng)473132)
泌陽(yáng)凹陷核三段主力富有機(jī)質(zhì)頁(yè)巖層地球化學(xué)特征
尚飛1a,1b,劉崢君2,解習(xí)農(nóng)1a,1b,樊中海2,郭來(lái)源1a,1b
(1.中國(guó)地質(zhì)大學(xué)a.構(gòu)造與油氣資源教育部重點(diǎn)實(shí)驗(yàn)室;b.資源學(xué)院,武漢430074;2.中國(guó)石化河南油田分公司勘探開(kāi)發(fā)研究院,河南南陽(yáng)473132)
泌陽(yáng)凹陷中部深凹區(qū)古近系核桃園組發(fā)育多套含油氣頁(yè)巖層。采用ICP-MS分析法對(duì)第5套頁(yè)巖層稀土元素和微量元素特征進(jìn)行了分析,討論了泥頁(yè)巖地球化學(xué)特征、沉積環(huán)境及其有機(jī)質(zhì)富集機(jī)制。結(jié)果表明,B、Sr和Th含量及B/Ga值與古鹽度呈正相關(guān),顯示該套頁(yè)巖層為咸水湖泊沉積,縱向上古鹽度逐漸降低,這與藻類含量及組合特征反映的古鹽度一致。各樣品稀土元素分異明顯,輕稀土富集而重稀土虧損,(La)N/(Yb)N值明顯大于1,δCe值為0.93~1.17,平均0.99,Ce異常性不明顯或?yàn)檎惓#从吵练e物沉積速率相對(duì)較低。V/(V+Ni)值為0.71~0.84,Ce異常指數(shù)均大于-0.1,顯示為還原環(huán)境。綜合研究認(rèn)為,核三段第5套富有機(jī)質(zhì)頁(yè)巖層形成于干旱—半干旱氣候條件下緩慢沉積的咸水湖泊環(huán)境。
泌陽(yáng)凹陷;核三段;頁(yè)巖;地球化學(xué)特征;微量元素;稀土元素
泌陽(yáng)凹陷是一個(gè)典型的富油凹陷,中部深凹區(qū)核二段—核三段可劃分出5套富有機(jī)質(zhì)頁(yè)巖層[1]。已在AS1井和BYHF1井第5套頁(yè)巖層中獲得工業(yè)油流。前人雖研究了第5套頁(yè)巖層巖相、有機(jī)質(zhì)豐度、儲(chǔ)集層物性等特征,但尚未對(duì)其進(jìn)行系統(tǒng)的地球化學(xué)研究。本文通過(guò)對(duì)BYHF1井第5套頁(yè)巖層取心段的稀土元素和微量元素特征分析,探討其沉積環(huán)境及有機(jī)質(zhì)富集機(jī)制,旨在為頁(yè)巖油氣勘探提供有價(jià)值信息。
泌陽(yáng)凹陷由南部陡坡帶、中部深凹帶和北部斜坡帶3個(gè)次級(jí)構(gòu)造單元組成(圖1)。古近系核桃園組是該區(qū)主要的含油層系,自下而上可劃分為核三段、核二段和核一段,其中核三段主要為灰黑色—深灰色泥巖夾泥質(zhì)白云巖、白云巖和砂巖,頂部夾薄層天然堿和油頁(yè)巖及鈣質(zhì)頁(yè)巖,是主要烴源巖和儲(chǔ)集層,并可進(jìn)一步劃分為核三上亞段和核三下亞段。
研究樣品取自泌陽(yáng)凹陷東南部BYHF1井核三上亞段2 415.0—2 451.4 m泥頁(yè)巖層,顏色普遍較深,以灰褐色、灰色為主,共采集35個(gè)樣品。樣品稀土元素和微量元素含量是在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室采用電感耦合等離子體質(zhì)譜分析法(ICP-MS)測(cè)試完成,為監(jiān)控測(cè)試精度和準(zhǔn)確度,進(jìn)行了重復(fù)樣與標(biāo)樣分析,結(jié)果表明元素的相對(duì)偏差小于5%,說(shuō)明測(cè)試結(jié)果可靠。
圖1 南襄盆地構(gòu)造劃分(a)及研究區(qū)位置(b)
(1)稀土元素從圖2和表1可得出:BYHF1井取心段泥頁(yè)巖的稀土元素總量(ΣZREE)變化范圍大,為112.67~587.01 μg/g,平均286.87 μg/g,遠(yuǎn)高于全球大陸地殼稀土元素平均含量(146.4 μg/g)、澳大利亞太古宙后頁(yè)巖(183.0 μg/g)和北美頁(yè)巖(173.2 μg/g)的稀土元素總量[2-4]。其中ΣZLREE均值為267.02 μg/g,占93.08%;ΣZHREE均值為19.85 μg/g,占6.92%;ΣZLREE/ ΣZHREE值為7.64~23.11,平均12.96;(La)N/(Yb)N值為8.69~40.34,平均17.24;(La)N/(Sm)N值為3.23~7.29,平均5.03;(Gd)N/(Yb)N值為1.52~4.06,平均2.11.
(2)微量元素以大陸地殼的微量元素平均含量作為參考標(biāo)準(zhǔn)[2],用標(biāo)準(zhǔn)化后的富集系數(shù)代表元素X的富集程度,若富集系數(shù)大于1,表明該元素富集,反之則虧損[3]。相對(duì)于大陸地殼平均含量,取心段元素富集系數(shù)從大到小依次為Mo(13.0),Bi(8),U(3.18),Mn(3.7),Th(2.5),Sr(2.35),La(2.3),Ce(2.1),Cu(2.1),Nd(1.9),Zn(1.7),Co(1.6),Ga(1.5),Ba(1.38),Ta(1.36),V(1.2),Ni(0.9),Sn(0.55),Zr(0.5),Hf(0.48),Cd(0.001),其中Ni,Sn,Zr,Hf和Cd虧損,其他元素富集。
圖2 BYHF1井第5套頁(yè)巖層稀土元素地球化學(xué)參數(shù)
4.1古鹽度特征
(1)硼及相當(dāng)硼含量研究表明,硼含量與沉積水體的鹽度呈正線性關(guān)系。研究區(qū)硼含量為44~ 464 μg/g,平均189 μg/g,71%樣品的硼含量高于陸相鹽湖平均值(135 μg/g)[5],硼含量自下而上變小,顯示水體鹽度降低,但仍屬于干旱—半干旱的鹽湖沉積環(huán)境。
T.D.Walker(1963)提出了“校正硼含量”和“相當(dāng)硼含量”兩個(gè)概念,并認(rèn)為后者可作為古鹽度指標(biāo)[6]。結(jié)果表明,僅深度為2 450.15 m的樣品相當(dāng)硼含量低于200 μg/g,其余樣品相當(dāng)硼含量為272.14~968.98 μg/g,表明研究區(qū)為半咸水—咸水湖泊。取心段下部相當(dāng)硼含量大小相差懸殊,向上逐漸降低且相對(duì)穩(wěn)定,反映古湖水下部存在咸度差異,上部咸度變小但仍大于200 μg/g,表明仍為咸水湖泊。下部較高相當(dāng)硼含量的泥頁(yè)巖與石膏共生(圖3),進(jìn)一步說(shuō)明了通過(guò)該方法估算古鹽度具有較高的可信度。
(2)B/Ga值B/Ga值與古鹽度呈正相關(guān)性,可較好指示古鹽度變化特征。B/Ga值小于3.3時(shí)為淡水環(huán)境,B/Ga值為3.3~4.5時(shí)為半咸水環(huán)境,B/Ga值大于4.5時(shí)為咸水環(huán)境[7]。研究區(qū)B/Ga值普遍大于4.5,其值在縱向上呈現(xiàn)出下部偏高但波動(dòng)大,而上部偏低且較穩(wěn)定的變化趨勢(shì),反映古鹽度總體逐漸降低,這與通過(guò)硼及相當(dāng)硼含量判斷的古鹽度特征一致。
(3)Sr和Th元素特征Th元素在酸性條件下形成穩(wěn)定絡(luò)合物易溶于水,而在弱堿性溶液中可水解成氧化物或氫氧化物而沉淀。通常,在現(xiàn)代海水和鹽湖中Sr元素含量為0.05%~0.10%,而在淡水湖中含量為0.01%~0.03%[8]。實(shí)測(cè)樣品Th元素富集,Sr元素含量大多為0.029%~0.105%,且在縱向上表現(xiàn)出向上降低趨勢(shì),也說(shuō)明了古水體鹽度逐漸降低但仍為咸湖。
通過(guò)富有機(jī)質(zhì)泥頁(yè)巖樣品中相當(dāng)硼含量、B/Ga值和微量元素特征分析表明,研究區(qū)第5套頁(yè)巖層整體為咸水沉積,縱向上水體鹽度向上逐漸降低。同樣,研究區(qū)云1井、云2井核三上亞段藻類含量及組合特征也反映出區(qū)內(nèi)該頁(yè)巖層沉積期水體高鹽度的特征[9]。
4.2氧化還原條件
(1)U,V,Mo和NiU,V,Mo,Ni等微量元素對(duì)氧化還原條件比較敏感。U元素在富氧環(huán)境中一般以易溶的[UO2(CO3)3]4-形式存在,而在缺氧條件下,有機(jī)物分解形成的腐殖酸將高價(jià)U還原成溶解度較低的UO2而沉淀[10];V元素在氧化條件下以H2VO2-4和HVO-4的形式存在,在弱還原環(huán)境下,易通過(guò)表面吸附作用或與有機(jī)金屬絡(luò)合物的形式被沉積物吸收[11],在強(qiáng)還原環(huán)境易形成氧化物(V2O3)或氫氧化物[V(OH)3]沉淀;Ni元素在氧化環(huán)境中相對(duì)富集,隨著還原程度增強(qiáng),其吸附性及富集性均降低[12];Mo含量為5~40 μg/g,可以指示還原環(huán)境[13]。因此可以根據(jù)這些元素的富集程度重建古沉積環(huán)境。
實(shí)測(cè)樣品的Mo含量為5.04~39.19μg/g,U,V和Ni的富集系數(shù)平均值分別為3.18,1.2和0.9,U和V富集而Ni不富集,指示缺氧的沉積環(huán)境。
(2)V/(V+Ni)值V/(V+Ni)值是反映沉積水體氧化還原條件和分層性的良好指標(biāo)。V/(V+Ni)值小于0.46為富氧環(huán)境,0.46~0.60為弱分層的貧氧環(huán)境,0.54~0.82為中等分層的厭氧環(huán)境,大于0.84為強(qiáng)分層的還原環(huán)境[14]。實(shí)測(cè)樣品V/(V+Ni)值為0.71~ 0.84,說(shuō)明泥頁(yè)巖沉積時(shí)水體分層性中等,以厭氧環(huán)境為主。
(3)Ce異常指數(shù)稀土元素Ce異常指數(shù)能較好地反映沉積水體的氧化還原條件。文獻(xiàn)[15]提出Ce異常指數(shù)大于-0.1代表還原環(huán)境,Ce異常指數(shù)小于-0.1代表氧化環(huán)境。研究區(qū)樣品的Ce異常指數(shù)均大于-0.1,反映了泥頁(yè)巖沉積時(shí)水體處于還原環(huán)境,這與微量元素及V/(V+Ni)值判斷的水體性質(zhì)相吻合。
另外,上述沉積環(huán)境分析也可從前人對(duì)生物標(biāo)志化合物研究方面得到證實(shí),核三上亞段泥頁(yè)巖樣品Pr/Ph小于0.8,植烷略占優(yōu)勢(shì),伽馬蠟烷含量較高,一般為0.18~0.76,為咸化或高鹽條件下的強(qiáng)還原環(huán)境[16]。
4.3古氣候特征
圖3 BYHF1井第5套頁(yè)巖層微量元素環(huán)境參數(shù)
圖4 BYHF1井第5套頁(yè)巖層氣候指數(shù)值分布(氣候劃分標(biāo)準(zhǔn)據(jù)文獻(xiàn)[18])
(2)Sr/Cu值Sr/Cu值是反映古氣候的重要參數(shù)。當(dāng)Sr/Cu值為1.3~5.0時(shí)指示溫濕氣候,大于5.0則指示干熱氣候[19]。泌陽(yáng)凹陷作為小型斷陷湖盆,水體中Sr和Cu含量對(duì)氣候響應(yīng)更為敏感。Sr/Cu值多數(shù)為5.16~20.3,異常高值出現(xiàn)在取心段中部,表明中段沉積期干旱氣候達(dá)到頂峰。
(3)黏土礦物通常伊利石是在干旱條件下由長(zhǎng)石、云母等鋁硅酸鹽礦物風(fēng)化脫鉀形成的,而高嶺石是在潮濕氣候條件下由長(zhǎng)石、云母和輝石經(jīng)強(qiáng)烈淋濾形成[20],因此伊利石和高嶺石的相對(duì)含量反映了氣候的干濕,伊利石/黏土的高值代表干旱氣候,高嶺石/黏土的高值代表潮濕氣候。伊利石/黏土值總體較高,僅兩個(gè)樣品的伊利石/黏土值為20%左右,幾乎所有樣品的高嶺石/黏土值為0,表明泥頁(yè)巖沉積期總體處于干旱氣候。
綜合上述,微量元素和黏土礦物特征研究表明,研究區(qū)第5套頁(yè)巖層沉積期,總體為干旱—半干旱的古氣候。此外,孢粉化石含量及組合特征[20]也說(shuō)明了核三上亞段持續(xù)相對(duì)干旱的氣候特征。
4.4沉積速率
稀土元素通常以吸附于陸源物質(zhì)的懸浮物表面或絡(luò)離子的形式進(jìn)入湖泊,當(dāng)沉積速度較慢時(shí),黏土物質(zhì)吸附輕稀土、重稀土與碳酸和有機(jī)質(zhì)形成絡(luò)合物等化學(xué)反應(yīng)更為徹底,稀土元素分餾程度較高,具體表現(xiàn)為:稀土元素分配模式圖變化顯著,(La)N/(Yb)N值則明顯大于或小于1,Ce在富氧和貧氧環(huán)境下分別為顯著負(fù)異常、無(wú)異?;蛘惓?。當(dāng)沉積速度較快時(shí),稀土元素分餾程度較低,具體表現(xiàn)為:稀土元素分配模式圖平緩,(La)N/(Yb)N值約為1,Ce為弱負(fù)異常或無(wú)異常[21]。實(shí)測(cè)樣品球粒隕石標(biāo)準(zhǔn)化后的稀土元素分配模式均呈現(xiàn)向右傾斜的趨勢(shì)(圖5),輕稀土富集而重稀土虧損,(La)N/(Yb)N為8.67~40.34,平均17.24,δCe為0.93~1.17,平均0.99,Ce異常性不明顯或?yàn)檎惓?,指示沉積速率相對(duì)較低。這可能是高鹽度水體浮力相對(duì)較大、湖泊水體較深所致。
綜上多種地球化學(xué)指標(biāo),結(jié)合實(shí)測(cè)有機(jī)碳含量(1.08%~4.96%,平均2.88%)認(rèn)為,研究區(qū)富有機(jī)質(zhì)泥頁(yè)巖形成于干旱—半干旱還原條件下的緩慢沉積、具有中等—高生產(chǎn)力的咸水湖泊環(huán)境。干旱—半干旱氣候條件下,蒸發(fā)量大于降雨量和陸地徑流量,湖泊水體濃縮、鹽度增大,生物所需的營(yíng)養(yǎng)物富集,促進(jìn)了浮游類生物的繁殖,有利于產(chǎn)生中等—高的原始有機(jī)產(chǎn)率;其次,古水體鹽度存在差異,取心段下部沉積期水體鹽度波動(dòng)較大,易于形成湖水鹽度分層,使底水缺氧而處于還原環(huán)境,抑制了微生物的活動(dòng),即使沉積速率較小,有機(jī)質(zhì)被氧化分解的可能性也比較低,從而使有機(jī)質(zhì)顯著富集。
圖5 BYHF1井第5套頁(yè)巖層球粒隕石標(biāo)準(zhǔn)化稀土元素分布曲線
(1)微量元素B,Sr,Th的質(zhì)量分?jǐn)?shù)和B/Ga值曲線變化特征表明,研究區(qū)古鹽度較高,為咸水湖泊,鹽度向上逐漸降低。
(2)稀土元素分異明顯,輕稀土富集而重稀土虧損,Ce異常指數(shù)均大于-0.1,Ce弱虧損,結(jié)合V/(V+Ni)值及其他微量元素的富集系數(shù)推斷,樣品形成于還原環(huán)境,沉積速率相對(duì)較低。
(3)核三段第5套頁(yè)巖層形成于干旱—半干旱還原條件下的緩慢沉積、具有中等—高生產(chǎn)力的咸水湖泊環(huán)境。
[1]陳祥,王敏,嚴(yán)永新,等.泌陽(yáng)凹陷陸相頁(yè)巖油氣成藏條件[J].石油與天然氣地質(zhì),2011,32(4):568-576.
Chen Xiang,Wang Min,Yan Yongxin,et al.Accumulation condi?tions for continental shale oil and gas in the Biyang sag[J].Oil&Gas Geology,2011,32(4):568-576.
[2]Taylor S R,McLennan S M.The continental crust:its composition and evolution:an examination of the geochemical record preserved in sedimentary rocks[M].Oxford:Blackwell Scientific Publications,1985:1-301.
[3]McLennan S M.Rare earth elements in sedimentary rocks influence of provenance and sedimentary processes[J].Reviews in Mineralo?gy and Geochemistry,1989,21(1):169-200.
[4]Haskin M A,Haskin L A.Rare earth in European shales:a redeter?mination[J].Science,1966,154(4):507-509.
[5]馬素萍,夏燕青,田春桃,等.南襄盆地泌陽(yáng)凹陷湖相碳酸鹽巖烴源巖沉積環(huán)境的元素地球化學(xué)標(biāo)志[J].礦物巖石地球化學(xué)通報(bào),2013,32(4):456-462.
Ma Suping,Xia Yanqing,Tian Chuntao,et al.Elemental Geochemi?cal Indicators for sedimentary environment in lacustrine carbonate source rocks of the Biyang sag,Nanxiang basin[J].Bulletin of Min?eralogy,Petrology and Geochemistry,2013,32(4):456-462.
[6]孫鎮(zhèn)城,楊藩,張枝煥,等.中國(guó)新生代咸化湖泊沉積環(huán)境與油氣生成[M].北京:石油工業(yè)出版社,1997:193-195.
Sun Zhencheng,Yang Fan,Zhang Zhihuan,et al.Sedimentary envi?ronments and hydrocarbon generation of Cenozoic salified lakes in China[M].Beijing:Petroleum Industry Press,1997:193-195.
[7]吳少波.博格達(dá)山前凹陷上二疊統(tǒng)烏拉泊組沉積相及沉積模式[J].沉積學(xué)報(bào),2001,19(3):333-339.
Wu Shaobo.Sedimentary facies and depositional model of Wulabo formation,Upper Permian series in Bogeda piedmont sag,Junggar basin[J].ActaSedimentologicaSinica,2001,19(3):333-339.
[8]劉剛,周東升.微量元素分析在判別沉積環(huán)境中的應(yīng)用——以江漢盆地潛江組為例[J].石油實(shí)驗(yàn)地質(zhì),2007,29(3):307-310.
Liu Gang,Zhou Dongsheng.Application of microelements analysis in identifying sedimentary environment—taking Qianjiang formation in the Jianghan basin as an example[J].Petroleum Geology&Ex?periment,2007,29(3):307-310.
[9]閆存鳳,黃杏珍,王隨繼.泌陽(yáng)凹陷核桃園組湖相碳酸鹽巖系藻類組合及古環(huán)境[J].沉積學(xué)報(bào),1996,12(14):57-62.
Yan Cunfeng,Huang Xingzhen,Wang Suiji.Alga assemblages and palaeoenvironment of Eogene Hetaoyuan formation lacustrine car?bonate rocks in Biyang sag,Henan province[J].Acta Sedimentologi? caSinica,1996,12(14):57-62.
[10]王中剛,于學(xué)遠(yuǎn),趙振華.稀土元素地球化學(xué)[M].北京:科學(xué)出版社,1989:90-93.
Wang Zhonggang,Yu Xueyuan,Zhao Zhenhua.Geochemistry of rare earth elements[M].Beijing:Science Press,1989:90-93.
[11]Emerson S R,Huested S S.Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J].Marine Chemistry,1991,34(3/4):177-196.
[12]許中杰,程日輝,王嘹亮,等.廣東東莞地區(qū)中侏羅統(tǒng)塘廈組凝灰質(zhì)沉積物的元素地球化學(xué)特征及構(gòu)造背景[J].巖石學(xué)報(bào),2010,26(1):352-360.
Xu Zhongjie,Cheng Rihui,Wang Liaoliang,et al.Elemental geo?chemical characteristics of tuffaceous sediments and tectonic set?ting of Tangsha formation of Middle Jurassic in Dongguan,Guang?dongprovince[J].ActaPeteologicaSinica,2010,26(1):352-360.
[13]Piper D Z,Perkins R B.A modern vs.Permian black shale—the hydrography,primary productivity and water?column chemistry of deposition[J].Chemical Geology,2004,39(3):177-197.
[14]Hatch J R,Leventhal J S.Relationship between inferred redox po?tential of the depositional environmental and geochemistry of Up?per Pennsylvanian(Missourian)Stark shale member of the Dennis Limestope Wabaunsee county,Kansas,USA[J].Chemical Geolo?gy,1992,27(1):65-82.
[15]Wright J,Schrader H,Holser W T.Paleoredox variations in an?cient oceans recorded by rare earth elements in fossil apatite[J]. Geochimicaet CosmochimicaActa,1987,51(3):631-644.
[16]董田,何生,林社卿.泌陽(yáng)凹陷核桃園組烴源巖有機(jī)地化特征及熱演化成熟史[J].石油實(shí)驗(yàn)地質(zhì),2013,35(2):187-194.
Dong Tian,He Sheng,Lin Sheqing.Organic geochemical character?istics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan formation of Biyang sag,Nanxiang ba?sin[J].Petroleum Geology&Experiment,2013,35(2):187-194.
[17]趙增義,趙建華,王海靜,等.準(zhǔn)噶爾盆地微量元素的分布特征及其應(yīng)用[J].天然氣勘探與開(kāi)發(fā),2007,30(2):30-32. Zhao Zengyi,Zhao Jianhua,Wang Haijing,et al.Distribution char?acteristics and applications of trace elements in Junggar basin[J]. Natural Gas Exploration&Development,2007,30(2):30-32.
[18]胡受權(quán).古氣候變遷對(duì)泌陽(yáng)斷陷湖盆陸相層序發(fā)育的影響[J].江漢石油學(xué)院學(xué)報(bào),1998,20(1):1-6.
Hu Shouquan.Influence of paleoclimatic changes on development of terrigenous sequence in Biyang fault?depressed lacustrine basin[J].Journal of Jianghan Petroleum Institute,1998,20(1):1-6.
[19]鄧宏文,錢凱.沉積地球化學(xué)與環(huán)境分析[M].蘭州:甘肅科學(xué)技術(shù)出版社,1993:45-113.
Deng Hongwen,Qian Kai.Sedimentary geochemistry and environ?mental analysis[M].Lanzhou:Gansu Science&Technology Press,1993:45-113.
[20]湯艷杰,賈建業(yè),謝先德.粘土礦物的環(huán)境意義[J].地學(xué)前緣,2002,9(2):337-344.
Tang Yanjie,Jia Jianye,Xie Xiande.Environment significance of clay minerals[J].Earth Science Frontiers,2002,9(2):337-344.
[21]Elderfield H,Pagett R.Rare earth elements in ichthyoliths:varia?tions with redox conditions and depositional environment[J].Sci?ence of the Total Environment,1986,49(1):175-197.
Geochemical Characteristics of Organic?Rich Shales of He?3 Member of Hetaoyuan Formation in Biyang Sag
SHANG Fei1a,1b,LIU Zhengjun2,XIE Xinong1a,1b,FAN Zhonghai2,GUO Laiyuan1a,1b
(1.ChinaUniversity of Geosciences a.Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education;b.Faculty of Earth Resources,Wuhan,Hubei 430074,China;2.Research Institute of Exploration and Development of Henan Oil field,Branch Company of SINOPEC,Nanyang,Henan 473132,China)
Several organic?rich shales with oil and gas were developed in the Paleogene Hetaoyuan formation of deep area in Biyang sag. The trace and rare earth elements’contents and indexes from the fifth shale were analyzed using ICP?MS method,including the geochemis?try,the sedimentary environment and the organic?rich mechanism in this area.The results show that the changes in content of B,Sr,Th and B/Gahave apositive correlation with the change of paleosalinity,reflectingthat such shales were deposited in saltwater lakes,and the gradu?al decline of the paleosalinity from bottom to top was consistent with the content and composition characteristics of the algae.The obvious dif?ferentiation of individual rare earth element indicates the enrichment of the light rare earth elements and the loss of the heavy ones,and these facts that the ratio of(La)N/(Yb)Nis obvious greater than 1,the value of δCe ranges from 0.93 to 1.17 with an average of 0.99,beingof unobvious or positive anomaly,which implies relatively low depositonal rate of the deposit.The value of V/(V+Ni)is between 0.71 and 0.84, and the value of Ce anomaly index of larger than-0.1 indicates the reducing environment.It is suggested that the fifth organic?rich shales of He?3 member of Hetaoyuan formation was developed in saltwater lake environment with low depositional rate and semiarid climate.
Biyangsag;He?3 member;shale;geochemical characteristics;trace element;rare earth element
TE112.113
A
1001-3873(2015)01-0042-06DOI:10.7657/XJPG20150108
2014-06-13
2014-11-11
尚飛(1988-),男,河南唐河人,博士研究生,沉積儲(chǔ)層及非常規(guī)油氣地質(zhì),(Tel)027-87481306(E-mail)cug275@163.com.