高潔,朱玉嬋,任占冬,李文陽,全姍姍,劉曄,王又容,柴波
?
Ir0.5Pt0.5O2陽極的電催化活性及氧化電解水制備
高潔,朱玉嬋,任占冬,李文陽,全姍姍,劉曄,王又容,柴波
(武漢輕工大學化學與環(huán)境工程學院,湖北武漢430023)
氧化電解水作為一種新型、高效、環(huán)保的殺菌劑,具有廣闊的應用前景。但目前在氧化電解水制備過程中,其陽極電催化材料存在效率低和使用壽命短等問題。采用亞當斯融合法制備了Ir0.5Pt0.5O2復合氧化物電極。通過XRD表征,其晶型為典型的金紅石型結構。SEM結果表明雖然顆粒之間存在團聚現(xiàn)象,但是可以明顯觀察到大量蜂窩狀結構存在,提高了催化劑的比表面積和電化學面積。進一步的CV表征證明了這一點,同時在CV圖中表現(xiàn)出明顯的鉑銥復合氧化物結構的特征。利用LSV技術分別考察了Ir0.5Pt0.5O2的析氯和析氧極化曲線,發(fā)現(xiàn)其單位表觀面積上析氯活性明顯提高,而析氧活性明顯降低。計算表明Ir0.5Pt0.5O2的析氯反應Tafel斜率為56.3 mV·dec-1,反應機理為Volmer-Heyrovsky機理,速控步驟為電化學脫附步驟;其析氧反應Tafel斜率為126.6 mV·dec-1,控速步驟為催化劑表面氫氧化物的形成。進一步電化學阻抗實驗表明在1 g·L-1NaCl溶液中, Ir0.5Pt0.5O2析氯電催化活性優(yōu)于IrO2,這與前面研究結果一致。在此基礎上,以Ir0.5Pt0.5O2/Ti為陽極制備氧化電解水,在相同條件下,其有效氯含量明顯優(yōu)于IrO2/Ti,同時電解效率也明顯提高,強化試驗壽命是IrO2/Ti的3.14倍,大大提高了電極性能,有利于其商品化使用。
Ir0.5Pt0.5O2復合材料;電解;析氯;析氧;反應動力學
引 言
氧化電解水作為一種新型無毒環(huán)保的殺菌劑,具有殺菌廣譜、迅速、強力、持續(xù)等特點。近年來,隨著對氧化電解水研究的不斷深入,其應用范圍也不斷拓寬,其在醫(yī)療衛(wèi)生[1-8]、食品安全、農(nóng)作物生長[9-20]等多個領域均有應用研究。氧化電解水的制備是通過電解濃度極稀的氯化鈉溶液得到的,與之相類似的體系有氯堿工業(yè)和海水電解,但是三者之間有著明顯的區(qū)別,即氯化鈉在各電解液中的濃度不同。在氯堿工業(yè)中經(jīng)常使用的是飽和氯化鈉溶液,而海水電解中氯化鈉的質(zhì)量分數(shù)也達到2%,但在氧化電解水制備中氯化鈉的質(zhì)量分數(shù)僅為0.05%。如此大的電解質(zhì)濃度差異,造成了電催化反應類型和電解效率的不同。在氯堿工業(yè)中,主要的陽極反應為析氯反應;而在氧化電解水制備過程中,除了析氯反應外,還有大量的析氧反應發(fā)生,如何調(diào)配兩者之間的反應選擇性,提高電解效率,這些都取決于對電極材料的研究。如果仍采用氯堿工業(yè)中常用的Ru基金屬氧化物電催化材料(析氯和析氧電位僅相差100 mV)[21-24],勢必影響其電解效率和電極使用壽命,因為陽極析氧電流較大時會破壞電極表面金屬氧化物涂層的缺氧固溶體結構,在涂層和鈦基體界面產(chǎn)生不導電的TiO2鈍化膜,從而導致了電解效率和電極壽命大大降低。與Ru基等金屬氧化物電極相比,Ir基金屬氧化物的析氯和析氧活性略低,但其電極的使用壽命會大幅度增加[25-28],但仍然很難滿足這種特殊條件下實際使用的需要。而PtO2電極具有較高的析氧過電位[29-30],如果將PtO2引入IrO2中,這樣可以進一步降低電極材料析氧活性,從而提高析氯選擇性,提高電極使用壽命。本文旨在制備鉑銥復合氧化物催化劑,考察其析氯、析氧反應電催化活性,并考察其制備氧化電解水的性能和電極使用壽命。
1 實驗材料和方法
1.1 Ir0.5Pt0.5O2粉體催化劑的制備
本文采用改進亞當斯融合法[31-32]制備Ir0.5Pt0.5O2粉體催化劑,即在燒杯里加入10 ml等量的H2IrCl6·6H2O和H2PtCl6·6H2O溶液,控制溶液中金屬離子總濃度為0.1 mol·L-1,加入過量30%的硝酸鈉及10 ml異丙醇。將所得溶液在60℃下持續(xù)攪拌直到異丙醇揮發(fā)完全,然后再將混合物在 80℃烘干。將其冷卻后,經(jīng)充分研磨,并在管式爐中500℃下燒結30 min。將混合物冷卻至室溫后,用大量蒸餾水洗滌多次,以便除去所有的氯離子,并用AgNO3溶液檢測洗滌液中無Cl-為止,并在 80℃下干燥完全,得到催化劑粉體。
1.2 Ir0.5Pt0.5O2/Ti的制備
本文通過熱分解法制備鈦基氧化物薄膜電極。即將預處理好的鈦板浸入預先配制好的涂液(0.2 mol·L-1H2PtCl6·6H2O+H2IrCl6·6H2O乙醇異丙醇混合溶液)之中,然后以1 mm·s-1的速度將鈦板平穩(wěn)地從涂液中提拉出來,在黏度和重力作用下基板表面形成一層均勻的液膜,并于80~90℃烘干10 min至表面溶劑全部揮發(fā),然后放入馬弗爐在500℃條件下熱氧化10 min,冷卻至室溫后再次涂膜,此過程重復15次,最后一次熱氧化時間為1 h,并退火至室溫。
1.3 催化劑表征及電化學測試
涂層表面形貌、組成和結構用掃描電鏡(SEM),X射線衍射(XRD)技術分析。X射線衍射型號為Shimadzu XRD-600,Cu-Kα射線源,管電流30 mA,管電壓40 kV,掃描范圍10°~90°,掃描速率4(°)·min-1。掃描電鏡型號為S-3000N,日本HITACHI公司。BET比表面積是在-196℃下的氮氣氛中通過物理吸附測定,儀器型號為Micromeritics ASAP2020。電化學性能的測定在CHI700D電化學工作站上進行,電解池采用三電極體系,輔助電極為碳紙電極,參比電極為可逆氫參比電極或飽和甘汞電極,工作電極為載有Ir0.5Pt0.5O2/GC(表觀面積為0.196 cm2)。在25℃,0.5 mol·L-1H2SO4溶液中測定電極的循環(huán)伏安曲線和析氧極化曲線,在飽和NaCl溶液(6 mol·L-1)中測定電極的析氯極化曲線,在1 g·L-1NaCl溶液中進行電化學阻抗測試,測試的頻率范圍為100 kHz~0.1 Hz, 擾動幅值10 mV,測試電勢為1.3 V(SCE)。
1.4 氧化電解水的制備、性能測試及壽命實驗
在自制離子膜電解槽中,陽極是Ir0.5Pt0.5O2/Ti電極(有效面積1 cm2),陰極為鈦板。中間用陽離子交換膜將電解槽分成陽極區(qū)和陰極區(qū),體積分別為100 ml。電解過程中。添加濃度為1g·L-1的 NaCl溶液作為電解質(zhì),電流密度為100 mA·cm-2,電極間距為4 cm,電解30 min,在陽極區(qū)得到EOW。氧化電解水物性測定,其中有效氯含量采用碘量法滴定;pH和ORP值采用pH酸度計和ORP儀直接測定,美國熱電-奧立龍。氯離子含量測定采用電位滴定法,美國熱電-奧立龍,工作電極為Ag電極,參比電極雙鹽橋飽和甘汞電極。強化實驗壽命測試采用2 cm×2 cm Ti板作為陰極,1 cm×1 cm Ir0.5Pt0.5O2/Ti作為陽極,電解液是0.5 mol·L-1H2SO4,溫度40℃,電流密度200 mA·cm-2。
2 實驗結果與討論
2.1 XRD譜圖分析
由于IrO2和PtO2都是金紅石型晶體,具有相同的對稱性和相近的晶格常數(shù),所以兩者能在廣泛配比范圍內(nèi)形成混晶。圖1是Ir0.5Pt0.5O2和IrO2的XRD譜圖,從圖中可以看出IrO2是典型的金紅石相晶體結構,對比JCPDS15-0870標準卡片,其在27.8°、34.7°、53.9°和66.6°的衍射峰分別是IrO2的(110)、(101)、(211)、(112)晶面的特征峰。而當IrO2中摻入PtO2,形成Ir0.5Pt0.5O2固溶體后,其在34.1°處是明顯(101)晶面衍射峰,這是金紅石型晶體典型特征。另外,在60.6°和71.8°處是其(002)、(301)晶面特征峰。通過Scherrer公式,對它們的(101)晶面進行擬合計算其粒徑,其中IrO2為4.18 nm,而Ir0.5Pt0.5O2的粒徑為3.89 nm,粒徑明顯變小,這將有助于提高電極表面的比表面積,從而提高電催化活性。
圖1 Ir0.5Pt0.5O2和IrO2催化劑的XRD譜圖
2.2 SEM圖分析
圖2是Ir0.5Pt0.5O2和IrO2催化劑的SEM圖,從圖中可以看出兩種催化劑都出現(xiàn)不同程度的團聚現(xiàn)象,這可能是由于在制備過程中,需要高溫退火氧化,所以出現(xiàn)大量顆粒聚集現(xiàn)象。在圖2 (a)中可以看出,排除個別少數(shù)大的顆粒外,IrO2的粒徑大小還是比較均勻,在100~200 nm之間。圖2 (b)是Ir0.5Pt0.5O2的SEM圖,仍然可以觀察到粒徑很大的顆粒,但在圖中方框所標注區(qū)域內(nèi),可以觀察到明顯細小的網(wǎng)狀結構,其晶粒尺寸遠遠小于IrO2粒徑,這將大大有助于提高其比表面積,其BET比表面積達到255.4 m3·g-1,是IrO2的3.1倍。但比表面積是催化劑本身的物理性質(zhì),雖然其提高會有助于提高電催化活性,但其電化學面積才最能真正反映其電催化活性位點數(shù)目多少,所以以下將利用電化學循環(huán)伏安法來表征其電化學面積。
圖2 Ir0.5Pt0.5O2和IrO2催化劑的SEM圖
2.3 循環(huán)伏安(CV)表征
圖3是Ir0.5Pt0.5O2和IrO2的CV曲線,其表面電量值能夠代表活性位點的多少。圖3 (a)是IrO2的CV曲線,這是典型IrO2循環(huán)伏安曲線,其中電勢在0.9 V是Ir3+/Ir4+的氧化還原;電勢在1.25 V是Ir4+/Ir5+的氧化還原,對其CV曲線進行積分,得到其氧化物表面電量為0.151 mC。當將PtO2摻入IrO2后,其CV特征發(fā)生明顯的變化,結果如圖3 (b)所示。從圖中可以看出在1.0 V出現(xiàn)了明顯氧化峰,其起始電勢為0.75 V,這個氧化峰在純IrO2的CV中沒有觀察到,這代表Pt表面氧化形成Pt-OH,而在0.85 V處是其還原峰。另外,在氫區(qū)(0.03~0.3 V),陰極電流明顯增加,這是由于PtO2在電勢較低情況下很容易被還原得到Pt,而Pt表面的HUPD電流會使陰極電流增加。對其表面電量進行積分,電量為0.4 mC,是純IrO2的2.65倍,說明其表面電化學活性位點增多,這將有利于電催化反應活性的提高。此外,觀察到Ir0.5Pt0.5O2的表面氧化起始電勢比IrO2正移150 mV,說明其表面更難以發(fā)生氧化,這正是PtO2加入的結果,因為PtO2比IrO2析氧活性更差。
圖3 Ir0.5Pt0.5O2和IrO2催化劑的CV曲線
2.4 氯析出(CER)電催化活性
氧化電解水中主要殺菌活性因子是HClO,而其產(chǎn)生是通過陽極析氯反應得到的,所以研究電極材料析氯反應活性是十分重要的,其析氯反應活性越高,產(chǎn)生的HClO含量越高,預示著殺菌活性越好[15]。圖4是Ir0.5Pt0.5O2和IrO2在6 mol·L-1氯化鈉溶液中的極化曲線。從圖4 (a)中可以看出,Ir0.5Pt0.5O2和IrO2兩者的析氯起始電勢很接近,均在1.05 V(SCE)。但隨著極化電勢增加,它們在單位面積上氯析出反應活性有著明顯不同,其中IrO2的析氯活性較差,析氯電流(@1.4 V)僅為40.3 mA·cm-2;但當形成鉑銥復合氧化物后,其析氯活性明顯增大,析氯電流(@1.4 V)達到了86.9 mA·cm-2,是IrO2的2.16倍。這一方面是因為當鉑銥之間形成復合氧化物后,其電化學面積有所增加(見CV表征),從而帶來了電催化活性的提高;另一方面則可能是由于PtO2本身析氧活性較差,所以其加入有利于抑制析氧反應的發(fā)生,從而提高析氯反應的選擇性,提高析氯反應活性。為了明確電極材料組成對析氯反應電催化活性的影響,就必須排除電化學活性面積變化對催化反應活性的影響,所以將它們對其表面電量進行歸一化。圖4 (b)則是Ir0.5Pt0.5O2和IrO2對其表面電量進行歸一化后的析氯活性,從圖中可以看出,兩者析氯反應活性比較接近,說明兩者在每個表面活性位點上的析氯反應活性一樣,并不會因為形成復合氧化物而發(fā)生改變。對比IrO2電極,Ir0.5Pt0.5O2電極在單位表觀面積上析氯反應活性的提高很大程度上是因為其表面活性反應位點的增加。
圖4 Ir0.5Pt0.5O2和IrO2析氯反應的線性伏安曲線
從前面的研究得知Ir0.5Pt0.5O2具有較好的析氯反應活性,下面進一步分析其析氯反應機理。從圖5中可以看出Ir0.5Pt0.5O2的Tafel斜率為56.3 mV·dec-1,其析氯反應機理應為Volmer-Heyrovsky機理[33-36],其反應過程分兩步,其中第2步是其反
應的速控步驟,S代表活性位點。
所以,其析氯反應電流可以寫成
將式(4)代入式(3)中,可以得到式(5),再經(jīng)簡單數(shù)學變換得到式(6)
2.5 氧析出(OER)電催化活性
前面考察了Ir0.5Pt0.5O2的氯析出反應活性,但在制備氧化電解水過程中,除了析氯反應之外,還會伴隨著大量析氧反應的發(fā)生。析氧反應的存在一方面會降低析氯反應效率,另一方面會使電極表面金屬氧化物涂層的缺氧固溶體結構發(fā)生破壞,涂層和鈦基體界面產(chǎn)生不導電的TiO2鈍化膜,從而大大降低電解效率和電極壽命,所以盡量避免析氧反應的發(fā)生。圖7 (a)是單位表觀面積上的析氧極化曲線,從圖中可以看出,與析氯活性不同,Ir0.5Pt0.5O2的析氧活性與其本身的電化學面積并不呈正比。其中IrO2電化學面積小于Ir0.5Pt0.5O2,但其氧析出電流卻大于后者。如再將它們的析氧活性對表面電量進行歸一化,排除電化學面積的影響,如圖7 (b)所示,它們析氧活性之間差別則進一步增大。以上研究結果說明析氧反應活性主要受電極組成的影響。由于PtO2本身的析氧活性較差,所以形成復合氧化物后,會使析氧活性減小,而析氧活性的減小正好可以提高析氯反應選擇性以及電極壽命。
圖7 Ir0.5Pt0.5O2和IrO2析氧反應的線性伏安曲線
為了進一步分析析氧反應活性變化的機理,首先做了兩者的Tafel曲線,從圖8中可以看出,IrO2和Ir0.5Pt0.5O2的析氧反應Tafel曲線斜率有很大不同,預示著其析氧反應機理的不同。在酸性體系中,文獻中一般認為析氧反應過程如下[37-39]
為了更清晰地表達析氯和析氧選擇性的變化,選擇在電流密度為20 mA·cm-2下對比兩者的析氯和析氧電勢,結果表明IrO2分別為1.239 V和1.392 V,氯氧電勢差為153 mV;而Ir0.5Pt0.5O2分別為1.154 V和1.432 V,氯氧電勢差為278 mV。Ir0.5Pt0.5O2的氯氧電勢差明顯大于IrO2,意味著析氯反應選擇性增加,電流效率提高。
2.6 電化學阻抗
由于氧化電解水制備時,氯化鈉濃度為1 g·L-1,所以Ir0.5Pt0.5O2和IrO2的電化學阻抗測試在該濃度下進行,設定電極電勢為1.3 V(SCE),其阻抗復平面圖如圖9所示。
圖9 Ir0.5Pt0.5O2和IrO2在1 g·L-1NaCl溶液中阻抗復平面圖
電極電勢為1.3 V(SCE)時,析氯反應已經(jīng)明顯發(fā)生,采用Zview軟件進行擬合,其等效電路設計為s(ff)(ctdl),其中s代表溶液電阻,f代表電極材料膜電阻,ct代表析氯反應時電荷轉移電阻;f代表電極材料膜電容,dl代表電極表面的雙電層電容。從表1中可以看出在1.3 V時,Ir0.5Pt0.5O2的f小于IrO2,說明其導電性更好;而ct明顯變小及dl明顯變大,則說明其析氯反應電催化活性高,這與前面析氯極化曲線等研究結果一致。
表1 Ir0.5Pt0.5O2和IrO2在1g·L-1 NaCl溶液中等效電路擬合阻抗參數(shù)
2.7 氧化電解水制備和電極使用壽命
前面的研究表明形成鉑銥復合氧化物后,其析氯和析氧活性發(fā)生明顯變化。下面考察氧化電解水實際制備中Ir0.5Pt0.5O2電極的性能。表2是分別以Ir0.5Pt0.5O2/Ti、IrO2/Ti作為陽極材料,在自制離子膜電解槽中通過電解1 g·L-1NaCl溶液制備得到氧化電解水,并考察其pH、ORP和有效氯值等性能參數(shù),以及電解后溶液中的氯離子含量及電解效率。如表2中所示,兩種電極制備得到EOW的pH和ORP值相近,但有效氯含量和電解效率上相差較大,說明兩者析氯反應活性有很大差別。其中Ir0.5Pt0.5O2電解得到的EOW中含有較多有效氯,而在前期研究中發(fā)現(xiàn)有效氯越高,氧化電解水的殺菌效率越高[15,40-41]。另外,從電解后溶液中氯離子含量以及電解效率來看,Ir0.5Pt0.5O2也要好于IrO2電極,這些說明Ir0.5Pt0.5O2更適合作為制備EOW的陽極電催化材料。
表2 Ir0.5Pt0.5O2/Ti和IrO2/Ti制備電解水的指標參數(shù)和電解效率
Note:Initial content of chloride ion in solution is 607 mg·L-1, volume of solution is 120 ml, current density is 100 mA·cm-2, electrode area is 1 cm2, electrolytic time is 0.5 h.
前面的研究中Ir0.5Pt0.5O2表現(xiàn)出很好的析氯反應活性和較高的電解效率,下面進一步考察其電極使用壽命,因為使用壽命對于電極實際應用是十分重要的。采用在0.5 mol·L-1H2SO4溶液中,電流密度200 mA·cm-2,溫度40℃下進行強化壽命實驗,結果如圖10所示。從圖10中可以看出,IrO2電極強化壽命為100 h,而Ir0.5Pt0.5O2電極強化壽命為341 h,提高了3.41倍,說明當鉑銥形成復合氧化物后由于析氧活性的下降,減少了電極表面金屬氧化物涂層的缺氧固溶體結構發(fā)生破壞,較好地防止不導電的TiO2鈍化膜的形成,所以其使用壽命大幅度增加。
圖10 Ir0.5Pt0.5O2/Ti和IrO2/Ti催化劑的強化壽命實驗
3 結 論
針對目前氧化電解水制備過程中,其陽極電催化材料析氯反應選擇性低和使用壽命短等問題,制備了鉑銥復合氧化物電極。結果表明Ir0.5Pt0.5O2具有典型的金紅石型結構,呈蜂窩狀分布,具有較大比表面積和電化學面積,具有較好的析氯反應活性和較差的析氧反應活性。Ir0.5Pt0.5O2的析氯反應Tafel斜率為56.3 mV·dec-1,反應機理為Volmer-Heyrovsky機理;其析氧反應Tafel斜率為126.6 mV·dec-1,控速步驟為催化劑表面氫氧化物的形成。以上研究表明,Ir0.5Pt0.5O2電催化劑作為陽極材料來制備氧化電解水是十分適宜的。實驗結果表明,以Ir0.5Pt0.5O2/Ti電極制備的氧化電解水中有效氯含量明顯優(yōu)于IrO2/Ti,同時電解效率也明顯提高,強化實驗壽命是IrO2/Ti的3.14倍,大大提高了電極性能,有利于其商品化使用。
References
[1] Thorn R M S, Lee S W H, Robinson G M, Greenman J, Reynolds D M. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in health care environments [J]......., 2012, 31 (5): 641-653
[2] Gulabivala K, Stock C J R, Lewsey J D, Ghori S, Ng Y L, Spratt D A. Effectiveness of electrochemically activated water as an irrigant in an infected tooth model [J]...., 2004, 37 (9): 624-631
[3] Chittoria R K, Yootla M, Sampatrao L M, Raman S V. The role of super oxidized solution in the management of diabetic foot ulcer: our experience [J]....., 2007, 9: 125-128
[4] Vorobjeva N V, Vorobjeva L I, Khodjaev E Y. The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections [J]..., 2004, 28 (6): 590-592
[5] Fenner D C, Bürge B, Kayser H P, Wittenbrink M M. The anti-microbial activity of electrolysed oxidizing water against microorganisms relevant in veterinary medicine [J]......., 2006, 53 (3): 133-137
[6] Robinson G M, Lee S W H, Greenman J, Salisbury V C, Reynolds D M. Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores [J]...., 2010, 50 (3): 289-294
[7] Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: effect of oral administration on mouse digestive tractand changes in body weight [J]...., 2011, 56 (4): 359-366
[8] Park G W, Boston D M, Kase J A, Sampson M N, Sobsey M D. Evaluation of liquid- and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus [J]...., 2007, 73 (14): 4463-4468
[9] Keskinen L A, Burke A, Annous B A. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminateO157:H7 from lettuce leaves [J]...., 2009, 132 (2/3): 134-140
[10] Koide S, Shitanda D, Note M, Cao W. Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot [J]., 2011, 22 (2/3): 452-456
[11] McCarthy S, Burkhardt III W. Efficacy of electrolyzed oxidizing water againstandon conveyor belt and raw fish surfaces [J]., 2012, 24 (1/2): 214-219
[12] Xie J, Sun X H, Pan Y J, Zhao Y. Combining basic electrolyzed water pretreatment and mild heat greatly enhanced the efficacy of acidic electrolyzed water againston shrimp [J]., 2012, 23 (2): 320-324
[13] Rahman S M E, Wang J, Oh D H. Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork [J]., 2013, 30 (1): 176-183
[14] Ren Zhandong (任占冬), Zhu Yuchan (朱玉嬋), Liu Ye (劉曄), Zhang Zhiyong (張智勇), Zhang Qi (張奇). Electrolyzed potential water sterilizing technics and mechanism on pork stuffing [J].(農(nóng)業(yè)機械學報), 2009, 40 (12): 139-143
[15] Zhu Yuchan (朱玉嬋), Ren Zhandong (任占冬), Liu Ye (劉曄), Zhang Zhiyong (張智勇). Sterilization characteristics of electrolyzed-oxidizing water and its sterilizing effect for meat [J].(化工學報), 2009, 60 (10): 2583-2589
[16] Cao W, Zhu Z W, Shi Z X, Wang C Y, Li B M. Efficiency of slightly acidic electrolyzed water for inactivation ofand its contaminated shell eggs [J]...., 2009, 130 (2): 88-93
[17] Graca A, Abadias M, Salazar M, Nunes C. The use of electrolyzed water as a disinfectant for minimally processed apples [J]..., 2011, 61 (2/3): 172-177
[18] Xiong K, Liu H J, Li L T. Product identification and safety evaluation of aflatoxin B1 decontaminated by lectrolyzed oxidizing water [J]...., 2012, 60 (38): 9770-9778
[19] Zhang Houcheng (張后成), Zhu Yuchan (朱玉嬋), Ren Zhandong (任占冬), Pan Deng (潘登), Liu Ye (劉曄), Wang Yourong (王又容), Chai Bo (柴波). Sterilizing effect and mechanism of neutral electrolyzed oxidizing water on cabbage [J].(農(nóng)業(yè)工程學報), 2013, 29 (22): 277-283
[20] Huang Y R, Hung Y C, Hsu S Y, Huang Y W, Hwang D F. Application of electrolyzed water in the food industry [J]., 2008, 19 (4): 329-345
[21] Trieu V, Schley B, Nattera H, Kintrup J, Bulan A, Hempelmann R. RuO2-based anodes with tailored surface morphology for improved chlorine electro-activity [J].., 2012, 78: 188-194
[22] Cao H Z, Lu D H, Lin J P, Ye Q, Wu J J, Zheng G Q. Novel Sb-doped ruthenium oxide electrode with ordered nanotube structure and its electrocatalytic activity toward chlorine evolution [J].., 2013, 91: 234-239
[23] Petrykin V, Macounová K, Okubea M, Mukerjeec S, Krtil P. Local structure of Co doped RuO2nano crystalline electrocatalytic materials for chlorine and oxygen evolution [J]., 2013, 202: 63-69
[24] Neodoa S, Rosestolato D, Ferro S, Battisti A D. On the electrolysis of dilute chloride solutions: influence of the electrode material on Faradaic efficiency for active chlorine, chlorate and perchlorate [J].., 2012, 78: 282-291
[25] Hu W, Chen S L, Xia Q H. IrO2/Nb-TiO2electrocatalyst for oxygen evolution reaction in acidic medium [J]..., 2014, 39 (13): 6967-6976
[26] Xu J Y, Liu G Y, Li J L, Wang X D. The electrocatalytic properties of an IrO2/SnO2catalyst using SnO2as a support and an assisting reagent for the oxygen evolution reaction [J].., 2012, 59: 105-112
[27] HuW, Wang Y Q, Hu X H, Zhou Y Q, Chen S L. Three-dimensional ordered macroporous IrO2as electrocatalyst for oxygen evolution reaction in acidic medium [J]...., 2012, 22: 6010-6016
[28] Ye Z G, Meng H M, Sun D B. New degradation mechanism of Ti/IrO2+MnO2anode for oxygen evolution in 0.5M H2SO4solution [J].., 2008, 53: 5639-5643
[29] Stoyanova A, Borisov G, Lefterova E, Slavcheva E. Oxygen evolution on Ebonex-supported Pt-based binary compounds in PEM water electrolysis [J]..., 2012, 37 (21): 16515-16521
[30] Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials [J].., 2012, 2 (8): 1765-1772
[31] Adams R, Shriner R L. Platinum oxide as a catalyst in the reduction of organic compoundsⅢpreparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate [J]....., 1923, 45: 2171-2179
[32] Song S D, Zhang H M, Ma X P, Shao Z G, Zhang Y N, Yi B L. Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell [J]..., 2006, 8: 399-405
[33] Santana M H P, Faria A D L. Oxygen and chlorine evolution on RuO2+TiO2+CeO2+Nb2O5mixed oxide electrodes [J].., 2006, 51: 3578-3585
[34] Hansen H A, Man I C, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J. Electrochemical chlorine evolution at rutile oxide (110) surfaces [J]....., 2010, 12: 283-290
[35] Guerrini E, Consonni V, Trasatti S. Surface and electrocatalytic properties of well-defined and vicinal RuO2single crystal faces [J]..., 2005, 9: 320-329
[36] Ferro S, Battisti A D. Electrocatalysis and chlorine evolution reaction at ruthenium dioxide deposited on conductive diamond [J]...., 2002, 106: 2249-2254
[37] Ye Z G, Meng H M, Chen D, Yu H Y, Huan Z S, Wang X D, Sun D B. Structure and characteristics of Ti/IrO2()+MnO2(1-) anode for oxygen evolution [J]., 2008, 10: 346-354
[38] Macounova K, Makarova M, Krtil P. Oxygen evolution on nanocrystalline RuO2and Ru0.9Ni0.1O2-δelectrodes-DEMS approach to reaction mechanism determination [J]..., 2009, 11: 1865-1868
[39] Tsuji E, Imanishi A, Fukui K, Nakato Y. Electrocatalytic activity of amorphous RuO2electrode for oxygen evolution in an aqueous solution [J].., 2011, 56: 2009-2016
[40] Zhu Yuchan (朱玉嬋), Ren Zhandong (任占冬), Liu Ye (劉曄), Chen Hongmei (陳紅梅). Sterilizing effect and neutral electrolyzed oxidizing water [J]....(中國公共衛(wèi)生), 2011, 27 (6): 805-806
[41] Ren Zhandong (任占冬), Zhu Yuchan (朱玉嬋), Liu Ye (劉曄), Zhou Xiaorong (周曉榮), Zhang Zhiyong (張智勇). Sterilizing effect and mechanism of electrolyzed water [J]..... (中華預防醫(yī)學), 2008, 8: 578-581
Electrocatalytic performance of Ir0.5Pt0.5O2anode and preparation of electrolyzed oxidizing water
GAO Jie, ZHU Yuchan, REN Zhandong, LI Wenyang, QUAN Shanshan, LIU Ye, WANG Yourong, CHAI Bo
School of Chemical and Environmental EngineeringWuhan Polytechnic UniversityWuhanHubeiChina
Electrolyzed oxidizing water (EOW), as an innovative disinfectant characterized by its high efficiency, broad antimicrobial spectrum, and non-toxic residues, has been broadly used in health care industry, medicines, agriculture, and food processing. EOW is usually generated by electrolysis of a dilute NaCl solution in a chamber with two cells separated by membrane, and is obtained from the anode side. But low current efficiency and short service life of the anode in EOW generators restrict the application of EOW. Ir0.5Pt0.5O2anode was prepared by the improved Adams fusion method. The properties of Ir0.5Pt0.5O2anode was investigated with X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemistry cyclic voltammetry (CV). The crystal type is rutile with (101), (002) and (301) crystal planes. A large number of cellular structures were observed on the surface of the anode, which greatly increased specific surface area of the anode. With increasing specific surface area, electric charge was enhanced to 0.4 mC, which was 2.65 times of pure IrO2. Electrochemical characteristics of the anode surface, such as oxidation peaks at 1.0 V(Pt-OH) and 0.9 V(Ir3+/Ir4+) proved the formation of platinum iridium oxide. The activities of chlorine evolution and oxygen evolution were also studied through linear sweep voltammetry (LSV). Compared with IrO2, chlorine evolution activity in unit apparent surface area increased significantly, but oxygen evolution activity decreased obviously. The slope of Tafel was 56.3 mV·dec-1for chlorine evolution reaction (CER), and the mechanism was Volmer-Heyrovsky in which the rate controlling step was electrochemical desorption. The slope of Tafel was 126.6 mV·dec-1for oxygen evolution reaction (OER), and the rate controlling step was formation of surface hydroxide on the catalyst surface. Electrochemical surface structure and electrochemical performance of Ir0.5Pt0.5O2oxide coatings in 1 g·L-1NaCl solution were investigated with electrochemical impedance spectroscopy (EIS). CER activity of Ir0.5Pt0.5O2was better than IrO2, which was in agreement with previous research. In the actual EOW preparation, electrolysis efficiency and available chlorine content (ACC) of EOW on the Ir0.5Pt0.5O2anode were much greater than IrO2anode under the same condition. The accelerated life of Ir0.5Pt0.5O2anode was 3.14 times of the IrO2anode and the performance of the anode was greatly improved, which favored its commercial use.
Ir0.5Pt0.5O2composites; electrolysis; chlorine evolution; oxygen evolution; reaction kinetics
2014-08-05.
Prof. ZHU Yuchan, zhuyuchan@163.com; Prof. REN Zhandong, renzhandong@163.com
10.11949/j.issn.0438-1157.20141176
TQ 151.2
A
0438—1157(2015)03—0992—09
國家自然科學基金項目(31101370);湖北省自然科學基金項目(2012FFB04803);武漢輕工大學校立科研計劃項目(2015d8)。
2014-08-05收到初稿,2014-12-08收到修改稿。
聯(lián)系人:朱玉嬋,任占冬。第一作者:高潔(1990—),女,碩士研究生。
supported by the National Natural Science Foundation of China (31101370) and the Natural Science Foundation of Hubei Province (2012FFB04803).