陳星文
(上海核工程研究設(shè)計(jì)院工藝系統(tǒng)所,上海200233)
管道解耦計(jì)算正確性論證
陳星文
(上海核工程研究設(shè)計(jì)院工藝系統(tǒng)所,上海200233)
抗震分析中,核電廠、火電廠及各種石油化工廠房中的某些重要管道(如核電廠中的主管道)需做動(dòng)力學(xué)時(shí)程分析,分析所需的位移時(shí)程來(lái)源于建筑廠房的抗震分析。從建筑廠房抗震模型得到的位移時(shí)程能否作為管道分析唯一的邊界條件?是否應(yīng)當(dāng)在輸入時(shí)程數(shù)據(jù)的同時(shí),再考慮廠房的剛度對(duì)計(jì)算結(jié)果的影響?基于結(jié)構(gòu)力學(xué)和有限元的基本理論,對(duì)上述計(jì)算方法的正確性做理論推導(dǎo),并通過(guò)有限元實(shí)例進(jìn)行靜力工況和動(dòng)力工況的計(jì)算驗(yàn)證。
時(shí)程分析;解耦;剛度
核電廠、火電廠及各種石油化工廠房是由構(gòu)筑物、管系、設(shè)備等組成的十分復(fù)雜的系統(tǒng)(圖1,圖2所示)[1~2],在抗震分析過(guò)程中,不可能建立一個(gè)完整的,十分細(xì)致的廠房整體分析模型。因此,為了對(duì)電廠各個(gè)部件進(jìn)行全面、可靠、細(xì)致和有效的抗震分析,必須將廠房各個(gè)部分分解成若干抗震子系統(tǒng),很多子系統(tǒng)再分為更小的子系統(tǒng),然后逐步依次進(jìn)行抗震分析。
以管道抗震分析為例,核電廠、火電廠及各種石油化工廠房中,都存在著大量的管道來(lái)傳遞水、石油等介質(zhì),這些管道通過(guò)管道支撐伸根在建筑廠房中??拐鹩?jì)算分析中,不可能將所有的管道與建筑廠房完全耦合計(jì)算,而需要通過(guò)解耦的方式來(lái)逐步完成計(jì)算。通常情況下,一般的管道抗震分析都采用響應(yīng)譜的計(jì)算方法,但對(duì)于一些特殊的重要的管道(如核電站的主管道)或者需要精確分析的管道,需要采用時(shí)程分析方法。管道時(shí)程分析方法的設(shè)計(jì)輸入為從廠房抗震分析中得到各管道支撐點(diǎn)的位移時(shí)程。
以圖3所示的管道分析模型為例,該管道在抗震分析時(shí),采用時(shí)程分析方法[3],其設(shè)計(jì)輸入時(shí)程數(shù)據(jù)為從廠房模型抗震分析中得到的各支撐點(diǎn)的位移時(shí)程。將該位移時(shí)程施加給圖3所示的管道分析模型,即可完成管道的抗震分析。
圖1 某核電廠整體示意圖
圖2 建筑廠房中管道圖
圖3 管道計(jì)算模型示意圖
根據(jù)管道的解耦計(jì)算過(guò)程,從主模型(廠房模型)中得到的解耦點(diǎn)的位移時(shí)程數(shù)據(jù)或載荷時(shí)程數(shù)據(jù)是子模型分析唯一的邊界輸入條件。這唯一的邊界輸入條件是否能夠完全反應(yīng)主模型中的相關(guān)因素,需要進(jìn)行論證。因此,專家研究討論時(shí),就提出了以下的問(wèn)題:
(1)從廠房模型得到的管道支撐處的位移時(shí)程,能否作為管道分析唯一的邊界條件?是否應(yīng)當(dāng)在輸入時(shí)程數(shù)據(jù)的同時(shí),再考慮廠房的剛度對(duì)管道分析的影響?
(2)從廠房分析中得到的管道支撐點(diǎn)載荷,能否作為管道分析的唯一邊界條件?支撐點(diǎn)載荷與管道的受力狀態(tài)是否存在一一對(duì)應(yīng)的關(guān)系,對(duì)于不同的管道變形狀態(tài),是否存在有同樣的支撐載荷的情況發(fā)生?
為驗(yàn)證本文第一節(jié)所提出的兩個(gè)問(wèn)題,本節(jié)建立了兩個(gè)簡(jiǎn)單的有限元模型,分別如圖4和圖5所示。其中,圖4為主模型示意圖,圖5為將主模型從節(jié)點(diǎn)1和節(jié)點(diǎn)14解耦,所得到的子模型示意圖。通過(guò)這兩個(gè)相對(duì)簡(jiǎn)單的有限元模型的計(jì)算結(jié)果對(duì)比,可以作為主模型和子模型解耦計(jì)算準(zhǔn)確性的一個(gè)輔證。
圖4 主模型示意圖
圖5 子模型示意圖
1.1靜力計(jì)算工況
首先進(jìn)行靜力工況下的計(jì)算驗(yàn)證。圖6為靜力計(jì)算的主模型示意圖。該模型由管道單元組成,管道單元為150×6的圓管。模型中施加任意的載荷,本例中施加的載荷為:22節(jié)點(diǎn)施加三個(gè)方向各0.01mm的線位移,10節(jié)點(diǎn)加100N向上的載荷。18節(jié)點(diǎn)完全約束,位移為0。通過(guò)求解,可以得到節(jié)點(diǎn)1和節(jié)點(diǎn)14的位移值和節(jié)點(diǎn)反力。
將圖6所示的主模型從節(jié)點(diǎn)1和節(jié)點(diǎn)14斷開,即得到圖7所示的子模型示意圖。子模型根據(jù)解耦點(diǎn)的加載形式,分為兩種情況。一是給節(jié)點(diǎn)1和節(jié)點(diǎn)14施加從主模型中得到的位移值,再在10節(jié)點(diǎn)施加相同的100N向上的載荷,如圖8所示。另外一種情況是,給節(jié)點(diǎn)1和節(jié)點(diǎn)14施加從主模型中得到的載荷值,10節(jié)點(diǎn)施加相同的100N向上的載荷。其模型如圖8所示。
圖6 主模型示意圖
圖7 子模型示意圖(約束點(diǎn)邊界條件為位移)
圖8子模型示意圖(約束點(diǎn)邊界條件為節(jié)點(diǎn)載荷)
圖8列出了上述三個(gè)模型中1~6號(hào)單元起始點(diǎn)所有6個(gè)方向的載荷,通過(guò)對(duì)比可以發(fā)現(xiàn),三個(gè)模型計(jì)算的結(jié)果完全相同。其他單元的計(jì)算結(jié)果頁(yè)完全相同,這里不再一一列出。
1.2動(dòng)力計(jì)算工況
針對(duì)1.1節(jié)相同的模型,在主模型(圖6)22節(jié)點(diǎn)處施加一位移時(shí)程,以模擬地震激勵(lì)載荷,18節(jié)點(diǎn)仍為完全約束,位移為0,在節(jié)點(diǎn)10附加一100kg的質(zhì)量點(diǎn),以模擬結(jié)構(gòu)的動(dòng)力效應(yīng)。節(jié)點(diǎn)22的輸入位移時(shí)程如圖10所示。通過(guò)主模型,求解到節(jié)點(diǎn)1和14的位移時(shí)程及力時(shí)程,將其施加在圖7和圖8所示的子模型中。
圖9 主模型與子模型計(jì)算結(jié)果對(duì)比
圖10節(jié)點(diǎn)22位移時(shí)程
圖11列出了主模型和子模型的動(dòng)力計(jì)算結(jié)果。通過(guò)對(duì)比可以發(fā)現(xiàn),主模型11節(jié)點(diǎn)和子模型中的11節(jié)點(diǎn)的位移響應(yīng)完全相同。
圖11 主模型與子模型動(dòng)力計(jì)算結(jié)果對(duì)比
結(jié)構(gòu)的動(dòng)力學(xué)計(jì)算方程如公式(1)所示[4]:
式中:K為結(jié)構(gòu)的剛度矩陣,Δ為結(jié)構(gòu)的位移矩陣,C為結(jié)構(gòu)的阻尼矩陣,M為結(jié)構(gòu)的質(zhì)量矩陣,F(xiàn)為結(jié)構(gòu)所受到的外載矩陣。
首先對(duì)結(jié)構(gòu)的剛度矩陣進(jìn)行相關(guān)的計(jì)算。設(shè)主模型共有n個(gè)自由度,則主模型的剛度矩陣如式(2)所示:
式中,剛度系數(shù)Kij為J方向自由度的單位位移在i方向自由度所產(chǎn)生的載荷。剛度系數(shù)Kl1至Klk為將要解耦的節(jié)點(diǎn)的自由度。
解耦點(diǎn)施加位移的子模型的剛度矩陣如公式(3)所示[5],由于從主模型中刪除掉了一些單元和節(jié)點(diǎn),因此,假設(shè)其共有n-m個(gè)自由度。
上式中的剛度系數(shù)與主模型中的剛度系數(shù)唯一的不同的是Kll'至K'l+kl+k。其代表的是解耦點(diǎn)的剛度系數(shù)。
Δl至Δ1+k為解耦點(diǎn)的節(jié)點(diǎn)位移,在Δl至Δ1+k相等的前提下,需論證公式(2)和公式(3)能夠求得相同的解。
對(duì)公式(1)進(jìn)行相應(yīng)的推導(dǎo)計(jì)算,整體剛度矩陣中刪掉不包含在子模型的自由度,得到公式(4)的剛度矩陣方程。
其他的系數(shù)與公式(2)完全相同。
Klr至Kl+ks為與解耦自由度相連,但不在子模型中的自由度在解耦點(diǎn)的剛度系數(shù)。
刪掉公式(4)中的L至K行,再將剛度矩陣中的L至K列移到公式的右邊,可得公式(5)的剛度方程。
對(duì)子模型的剛度矩陣采用同樣的計(jì)算方案,即刪掉公式(3)中的L至K行,再將剛度矩陣中的L至K列移到公式的右邊,同樣可得公式(5)的剛度方程。
對(duì)于公式(5)中各個(gè)矩陣的意義[6],闡述如下:
①方程左邊的第1部分為子模型,除解耦點(diǎn)外的所有自由度的剛度矩陣,此部分矩陣,對(duì)于子模型與主模型是相同的。
②方程左邊的第2部分為子模型需求解的節(jié)點(diǎn)自由度位移。
③方程右邊的第一部分為子模型中,除解耦點(diǎn)外各個(gè)自由度接點(diǎn)上所承受的外載荷,此部分矩陣子模型與主模型相同。
④方程右邊的第2部分為解耦點(diǎn)自由度的位移,即解耦點(diǎn)處施加的邊界條件,此部分內(nèi)容從主模型中提取,施加在子模型上,所以子模型與主模型中此部分內(nèi)容相同。
⑤方程右邊的第3部分為解耦點(diǎn)自由度對(duì)子模型中其他自由度的剛度系數(shù),由于在解耦點(diǎn)賦予了同樣的邊界條件,所以此部分矩陣也不變。
因此,對(duì)于公式(5)中的各矩陣,子模型和主模型中的元素完全相同,主模型和子模型也必然求得相同的結(jié)果。
解耦點(diǎn)施加節(jié)點(diǎn)支反力的子模型的剛度矩陣如公式(6)所示:
小k為與解耦點(diǎn)相連接的不屬于子模型中的單元?jiǎng)偠染仃囍械南禂?shù)。
將公式(6)中的Fl''和F''l+K移至公式的左邊,即可得到與公式(4)完全相同的方程。從而,可以得到結(jié)論,主模型與子模型所求解的結(jié)果完全相同。
另外,在動(dòng)力學(xué)計(jì)算過(guò)程中,需考慮慣性對(duì)結(jié)構(gòu)的影響,即需要考慮質(zhì)量矩陣對(duì)方程的影響。而質(zhì)量矩陣無(wú)論采用協(xié)調(diào)質(zhì)量矩陣還是集中質(zhì)量矩陣,在子模型輸入邊界條件一致的情況下,均能夠與主模型求得完全一致的解。其推導(dǎo)過(guò)程與剛度矩陣相似,這里不再詳述。
圖12(a)是核電廠匯總某系統(tǒng)耦合鋼結(jié)構(gòu)模塊和管道的主模型示意圖,圖12(b)為解耦后的管道子模型計(jì)算模型,其邊界條件為從圖12(a)模型中得到的回路支撐點(diǎn)位移時(shí)程。通過(guò)對(duì)兩個(gè)模型所求得計(jì)算結(jié)果的對(duì)比,可以驗(yàn)證上述理論的準(zhǔn)確性。表1列出了兩個(gè)模型計(jì)算得到的相同支撐的最大載荷,通過(guò)載荷的對(duì)比可以發(fā)現(xiàn),兩者計(jì)算結(jié)果基本一致,誤差較小。
表1 兩種模型計(jì)算結(jié)果對(duì)比
圖12 某系統(tǒng)耦合鋼結(jié)構(gòu)模塊和管道的模型示意圖
本文針對(duì)管道計(jì)算的解耦計(jì)算問(wèn)題,做了理論論證和有限元算例,得到了如下結(jié)論:
(1)主模型解耦點(diǎn)的位移可以作為子模型分析唯一的邊界條件,不論是靜力計(jì)算還是動(dòng)力計(jì)算。子模型分析時(shí),只需施加解耦點(diǎn)的位移,不需要再考慮其他的因素(前提是子模型中的單元與主模型施加同樣的載荷)。
(2)主模型解耦點(diǎn)的載荷也可以作為子模型分析唯一的邊界條件。子模型分析時(shí),只需施加主模型中解耦點(diǎn)的載荷,不需要再考慮其他的因素(前提是子模型中的單元與主模型施加同樣的載荷)。
本文所得到的結(jié)論適用于所有設(shè)備和管道的計(jì)算分析。
[1]林誠(chéng)格.非能動(dòng)安全先進(jìn)核電廠AP1000[M].北京:原子能出版社,2008:5~82
[2]希年臧,申世飛.核電廠系統(tǒng)及設(shè)備[M].清華大學(xué)出版社.2003:280~290
[3]ASME鍋爐與壓力容器委員會(huì)核動(dòng)力分委員會(huì).ASME III-核設(shè)施部件建造規(guī)則[M].上海科技文化出版社,2004:NB-3600
[4]朱伯芳.有限單元法原理與應(yīng)用[M].2版.北京:水利水電出版社,1998:33~95
[5]ANSYS Company.ANSYS 12.1 HELP[Z].USA:ANSYS Company,2009
[6]龍馭球,包世華,匡文琦等.結(jié)構(gòu)力學(xué)教程[M].北京:高等教育出版社,1999:215~435
Correctness Proof of Pipeline Decoupling Calculation
CHEN Xing-wen
(Design of Institute,Shanghai Nuclear Engineering Research,Shanghai 200233)
In the process of seismic analysis,time history analysis is needed for some important piping systems in the nuclear power and thermal power plant.The time histories are from the seismic analysis of civil structure,and are the only inputs for the piping seismic analysis. Puts forward a question that whether should consider some other factors from the structure besides the displacement time histories,for example,the stiffness of the concrete.Through the research,illustrates that the displacement or force time history from the structure or main model can be the only inputs for the piping or sub_model analysis.
Time History Analysis;Decouple;Stiffness
1007-1423(2015)11-0032-06
10.3969/j.issn.1007-1423.2015.11.006
陳星文(1983-),男,山東青島人,碩士研究生,工程師,研究方向?yàn)楣腆w力學(xué)
2015-03-03
2015-03-11